SAT Subject Physics Formula Reference

This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are not given on the test.) Each formula row contains a description of the variables or constants that make up the formula, along with a brief explanation of the formula.

Kinematics

$v_{\mathrm{ave}}=\frac{\Delta x}{\Delta t}$	$\begin{aligned} v_{\text {ave }} & =\text { average velocity } \\ \Delta x & =\text { displacement } \\ \Delta t & =\text { elapsed time } \end{aligned}$	The definition of average velocity.
$v_{\mathrm{ave}}=\frac{\left(v_{\mathrm{i}}+v_{\mathrm{f}}\right)}{2}$	$\begin{aligned} v_{\text {ave }} & =\text { average velocity } \\ v_{\mathrm{i}} & =\text { initial velocity } \\ v_{\mathrm{f}} & =\text { final velocity } \end{aligned}$	Another definition of the average velocity, which works when a is constant.
$a=\frac{\Delta v}{\Delta t}$	$\begin{aligned} a & =\text { acceleration } \\ \Delta v & =\text { change in velocity } \\ \Delta t & =\text { elapsed time } \end{aligned}$	The definition of acceleration.
$\Delta x=v_{\mathrm{i}} \Delta t+\frac{1}{2} a(\Delta t)^{2}$	$\begin{aligned} \Delta x & =\text { displacement } \\ v_{\mathrm{i}} & =\text { initial velocity } \\ \Delta t & =\text { elapsed time } \\ a & =\text { acceleration } \end{aligned}$	Use this formula when you don't have v_{f}.
$\Delta x=v_{\mathrm{f}} \Delta t-\frac{1}{2} a(\Delta t)^{2}$	$\begin{aligned} \Delta x & =\text { displacement } \\ v_{\mathrm{f}} & =\text { final velocity } \\ \Delta t & =\text { elapsed time } \\ a & =\text { acceleration } \end{aligned}$	Use this formula when you don't have v_{i}.

SAT Subject Physics Formula Reference

Kinematics (continued)

	$v_{\mathrm{f}}=$ final velocity	
$v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta x i t i a l ~ v e l o c i t y$		
a	$=$ acceleration	Use this formula when you
$\Delta x=$ displacement		

Dynamics

$F=m a$	$\begin{aligned} F & =\text { force } \\ m & =\text { mass } \\ a & =\text { acceleration } \end{aligned}$	Newton's Second Law. Here, F is the net force on the mass m.
$W=m g$	$\begin{aligned} W= & \text { weight } \\ m= & \text { mass } \\ g= & \text { acceleration due } \\ & \text { to gravity } \end{aligned}$	The weight of an object with mass m. This is really just Newton's Second Law again.
$f=\mu N$	$\begin{aligned} f= & \text { friction force } \\ \mu= & \text { coefficient } \\ & \text { of friction } \\ N= & \text { normal force } \end{aligned}$	The "Physics is Fun" equation. Here, μ can be either the kinetic coefficient of friction μ_{k} or the static coefficient of friction μ_{s}.
$p=m v$	$\begin{aligned} p & =\text { momentum } \\ m & =\text { mass } \\ v & =\text { velocity } \end{aligned}$	The definition of momentum. It is conserved (constant) if there are no external forces on a system.

SAT Subject Physics Formula Reference

Dynamics (continued)

$\Delta p=F \Delta t$	$\Delta p=$ change	
	in momentum	$F \Delta t$ is called the impulse.
	$F=$ applied force	
$\Delta t=$ elapsed time		

Work, Energy, and Power

$W=F d \cos \theta$ or $W=F_{\\|} d$	$\begin{aligned} W= & \text { work } \\ F= & \text { force } \\ d= & \text { distance } \\ \theta= & \text { angle between } F \\ & \text { and the direction } \\ & \text { of motion } \\ F_{\\|}= & \text {parallel force } \end{aligned}$	Work is done when a force is applied to an object as it moves a distance $d . F_{\\| \mid}$is the component of F in the direction that the object is moved.
$\mathrm{KE}=\frac{1}{2} m v^{2}$	$\begin{aligned} \mathrm{KE} & =\text { kinetic energy } \\ m & =\text { mass } \\ v & =\text { velocity } \end{aligned}$	The definition of kinetic energy for a mass m with velocity v.
$\mathrm{PE}=m g h$	$\begin{aligned} \mathrm{PE} & =\text { potential energy } \\ m= & \text { mass } \\ g= & \text { acceleration due } \\ & \text { to gravity } \\ h & =\text { height } \end{aligned}$	The potential energy for a mass m at a height h above some reference level.

SAT Subject Physics Formula Reference

Work, Energy, Power (continued)

$W=\Delta(\mathrm{KE})$	$W=$ work done $\mathrm{KE}=$ kinetic energy	The "work-energy" theorem: the work done by the net force on an object equals the change in kinetic energy of the object.
$\mathrm{E}=\mathrm{KE}+\mathrm{PE}$	$\mathrm{E}=$ total energy $\mathrm{KE}=$ kinetic energy $\mathrm{PE}=$ potential energy	The definition of total ("me- chanical") energy. If there is no friction, it is conserved (stays constant).
$P=\frac{W}{\Delta t}$	$P=$ power $W=$ work $\Delta t=$ elapsed time	Power is the amount of work done per unit time (i.e., power is the rate at which work is done).

Circular Motion

$a_{\mathrm{c}}=\frac{v^{2}}{r}$	$a_{\mathrm{c}}=$ centripetal acceleration $v=$ velocity $r=$ radius	The "centripetal" acceleration for an object moving around in a circle of radius r at veloc- ity v.
$F_{\mathrm{c}}=\frac{m v^{2}}{r}$	$F_{\mathrm{c}}=$ centripetal force $m=$ mass $v=$ velocity $r=$ radius	The "centripetal" force that is needed to keep an object of mass m moving around in a circle of radius r at velocity v.

SAT Subject Physics Formula Reference

Circular Motion (continued)

$v=\frac{2 \pi r}{T}$	$\begin{aligned} v & =\text { velocity } \\ r & =\text { radius } \\ T & =\text { period } \end{aligned}$	This formula gives the velocity v of an object moving once around a circle of radius r in time T (the period).
$f=\frac{1}{T}$	$\begin{aligned} f & =\text { frequency } \\ T & =\text { period } \end{aligned}$	The frequency is the number of times per second that an object moves around a circle.

Torques and Angular Momentum

$\tau=r F \sin \theta$ or $\tau=r F_{\perp}$	$\begin{aligned} \tau= & \text { torque } \\ r & =\text { distance (radius) } \\ F= & \text { force } \\ \theta= & \text { angle between } F \\ & \quad \text { and the lever arm } \\ F_{\perp}= & \text { perpendicular force } \end{aligned}$	Torque is a force applied at a distance r from the axis of rotation. $F_{\perp}=F \sin \theta$ is the component of F perpendicular to the lever arm.
$L=m v r$	$\begin{aligned} L & =\text { angular momentum } \\ m & =\text { mass } \\ v & =\text { velocity } \\ r & =\text { radius } \end{aligned}$	Angular momentum is conserved (i.e., it stays constant) as long as there are no external torques.

SAT Subject Physics Formula Reference

Springs

$F_{s}=k x$	$F_{s}=$ spring force $k=$ spring constant x $=$ spring stretch or compression	"Hooke's Law". The force is opposite to the stretch or com- pression direction.
$\mathrm{PE}_{s}=\frac{1}{2} k x^{2}$	$\mathrm{PE}_{s}=$ potential energy k $=$ spring constant x $=$ amount of spring stretch or compression	The potential energy stored in a spring when it is ei- ther stretched or compressed. Here, $x=0$ corresponds to the "natural length" of the spring.

Gravity

$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$\begin{aligned} F_{g} & =\text { force of gravity } \\ G= & \text { a constant } \\ m_{1}, m_{2} & =\text { masses } \\ r= & \text { distance of } \\ & \text { separation } \end{aligned}$	Newton's Law of Gravitation: this formula gives the attractive force between two masses a distance r apart.

Electric Fields and Forces

$\left.\begin{array}{|c|c|l|}\hline & & \\ F_{e}=k \frac{q_{1} q_{2}}{r^{2}} & F_{e}=\text { electric force } \\ k & =\text { a constant } \\ q_{1}, q_{2} & =\text { charges } \\ r & =\text { distance of } \\ \text { separation }\end{array} \quad \begin{array}{ll} & \text { "Coulomb's Law". This for- } \\ \text { mula gives the force of attrac- } \\ \text { tion or repulsion between two } \\ \text { charges a distance } r \text { apart. }\end{array}\right\}$

SAT Subject Physics Formula Reference

Electric Fields and Forces (continued)

$F=q E$	$\begin{aligned} F & =\text { electric force } \\ E & =\text { electric field } \\ q & =\text { charge } \end{aligned}$	A charge q, when placed in an electric field E, will feel a force on it, given by this formula (q is sometimes called a "test" charge, since it tests the electric field strength).
$E=k \frac{q}{r^{2}}$	$\begin{aligned} E & =\text { electric field } \\ k & =\text { a constant } \\ q & =\text { charge } \\ r & =\text { distance of } \\ & \text { separation } \end{aligned}$	This formula gives the electric field due to a charge q at a distance r from the charge. Unlike the "test" charge, the charge q here is actually generating the electric field.
$E=\frac{V}{d}$	$\begin{aligned} E & =\text { electric field } \\ V & =\text { voltage } \\ d & =\text { distance } \end{aligned}$	Between two large plates of metal separated by a distance d which are connected to a battery of voltage V, a uniform electric field between the plates is set up, as given by this formula.
$\Delta V=\frac{W}{q}$	$\begin{aligned} \Delta V & =\text { potential difference } \\ W & =\text { work } \\ q & =\text { charge } \end{aligned}$	The potential difference ΔV between two points (say, the terminals of a battery), is defined as the work per unit charge needed to move charge q from one point to the other.

Circuits

	$V=$ voltage	"Ohm's Law". This law gives the relationship between the $V=I R$
$I=$ current		
$R=$ resistance	battery voltage V, the current I, and the resistance R in a circuit.	

SAT Subject Physics Formula Reference

Circuits (continued)

$P=I V$ or $P=V^{2} / R$ or $P=I^{2} R$	$\begin{aligned} P & =\text { power } \\ I & =\text { current } \\ V & =\text { voltage } \\ R & =\text { resistance } \end{aligned}$	All of these power formulas are equivalent and give the power used in a circuit resistor R. Use the formula that has the quantities that you know.
$\begin{gathered} R_{\mathrm{s}}= \\ R_{1}+R_{2}+\ldots \end{gathered}$	$\begin{aligned} R_{\mathrm{s}}= & \text { total (series) } \\ & \text { resistance } \\ R_{1}= & \text { first resistor } \\ R_{2}= & \text { second resistor } \end{aligned}$	When resistors are placed end to end, which is called "in series", the effective total resistance is just the sum of the individual resistances.
$\begin{gathered} \frac{1}{R_{\mathrm{p}}}= \\ \frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \end{gathered}$	$\begin{aligned} R_{\mathrm{p}}= & \text { total (parallel) } \\ & \text { resistance } \\ R_{1}= & \text { first resistor } \\ R_{2}= & \text { second resistor } \end{aligned}$	When resistors are placed side by side (or "in parallel"), the effective total resistance is the inverse of the sum of the reciprocals of the individual resistances (whew!).
$q=C V$	$\begin{aligned} q & =\text { charge } \\ C & =\text { capacitance } \\ V & =\text { voltage } \end{aligned}$	This formula is "Ohm's Law" for capacitors. Here, C is a number specific to the capacitor (like R for resistors), q is the charge on one side of the capacitor, and V is the voltage across the capacitor.

SAT Subject Physics Formula Reference

Magnetic Fields and Forces

$F=I L B \sin \theta$	$F=$ force on a wire $I=$ current in the wire $L=$ length of wire $B=$ external magnetic field $\theta=$ angle between the current direction and the magnetic field	This formula gives the force on a wire carrying current I while immersed in a magnetic field B. Here, θ is the angle between the direction of the current and the direction of the magnetic field (θ is usually 90°, so that the force is $F=I L B)$.
$F=q v B \sin \theta$	$F=$ force on a charge $q=$ charge $v=$ velocity of the charge $B=$ external magnetic field $\theta=$ angle between the direction of motion and the magnetic field	The force on a charge q as it travels with velocity v through a magnetic field B is given by this formula. Here, θ is the angle between the direction of the charge's velocity and the direction of the magnetic field (θ is usually 90°, so that the force is $F=q v B)$.

Waves and Optics

$v=\lambda f$	$v=$ wave velocity $\lambda=$ wavelength $f=$ frequency	This formula relates the wave- length and the frequency of a wave to its speed. The for- mula works for both sound and light waves.
$v=\frac{c}{n}$	$v=$ velocity of light $c=$ vacuum light speed $n=$ index of refraction	When light travels through a medium (say, glass), it slows down. This formula gives the speed of light in a medium that has an index of refraction n. Here, $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Waves and Optics (continued)

$\left.\begin{array}{|c|l|l|}\hline & & \begin{array}{l}n_{1}=\text { incident index } \\ \theta_{1}=\text { incident angle } \\ n_{2}=\text { refracted index } \\ \theta_{2}=\text { refracted angle }\end{array} \\ \hline \frac{1}{d_{\mathrm{o}}}+\frac{1}{d_{\mathrm{i}}}=\frac{1}{f} & \begin{array}{l}\text { "Snell's Law". When light } \\ \text { moves from one medium (say, } \\ \text { air) to another (say, glass) } \\ \text { with a different index of re- } \\ \text { fraction n, it changes direc- } \\ \text { tion (refracts). The angles are } \\ \text { taken from the normal (per- } \\ \text { pendicular). }\end{array} \\ \hline m=-\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}\end{array} \quad \begin{array}{l}d_{\mathrm{o}}=\text { object distance } \\ d_{\mathrm{i}}=\text { image distance } \\ f=\text { focal length }\end{array} \quad \begin{array}{l}\text { This formula works for lenses } \\ \text { and mirrors, and relates the } \\ \text { focal length, object distance, } \\ \text { and image distance. }\end{array}\right\}$

Heat and Thermodynamics

$Q=m c \Delta T$	$Q=$ heat added or removed $m=$ mass of substance $c=$ specific heat $\Delta T=$ change in temperature	The specific heat c for a substance gives the heat needed to raise the temperature of a mass m of that substance by ΔT degrees. If $\Delta T<0$, the formula gives the heat that has to be removed to lower the temperature.

SAT Subject Physics Formula Reference

Heat and Thermodynamics (continued)

$Q=m l$	$\begin{aligned} Q= & \text { heat added } \\ & \text { or removed } \\ m= & \text { mass of substance } \\ l= & \text { specific heat } \\ & \text { of transformation } \end{aligned}$	When a substance undergoes a change of phase (for example, when ice melts), the temperature doesn't change; however, heat has to be added (ice melting) or removed (water freezing). The specific heat of transformation l is different for each substance.
$\Delta U=Q-W$	$\begin{aligned} \Delta U= & \text { change in } \\ & \text { internal energy } \\ Q= & \text { heat added } \\ W= & \text { work done } \\ & \text { by the system } \end{aligned}$	The "first law of thermodynamics". The change in internal energy of a system is the heat added minus the work done by the system.
$E_{\text {eng }}=\frac{W}{Q_{\mathrm{hot}}} \times 100$	$\begin{aligned} E_{\text {eng }}= & \% \text { efficiency of } \\ & \text { the heat engine } \\ W= & \text { work done } \\ & \text { by the engine } \\ Q_{\text {hot }}= & \text { heat absorbed } \\ & \text { by the engine } \end{aligned}$	A heat engine essentially converts heat into work. The engine does work by absorbing heat from a hot reservoir and discarding some heat to a cold reservoir. The formula gives the quality ("efficiency") of the engine.

Pressure and Gases

		$P=$ pressure $F=$ $A=$ force
	The definition of pressure. P is a force per unit area exerted by a gas or fluid on the walls of the container.	

SAT Subject Physics Formula Reference

Pressure and Gases (continued)

\(\left.$$
\begin{array}{|c|l|l|}\hline & & \begin{array}{l}\text { The "Ideal Gas Law". For } \\
\text { "ideal" gases (and also for }\end{array} \\
& P=\text { pressure } & \begin{array}{l}\text { real-life gases at low pressure), } \\
\text { renstant }\end{array}
$$

\& T=volume \& the pressure of the gas times

the volume of the gas divided\end{array}\right\}\)| theby the temperature of the gas
 is a constant. |
| :--- |

Modern Physics and Relativity

| | | $\begin{array}{l}E=\text { photon energy } \\ h=\text { a constant } \\ f=\text { wave frequency }\end{array}$ |
| :---: | :--- | :--- | \(\left.\begin{array}{l}The energy of a photon is

proportional to its wave fre-

quency; h is a number called

"Planck's constant".\end{array}\right\}\)

