This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are *not* given on the test.) Each formula row contains a description of the variables or constants that make up the formula, along with a brief explanation of the formula.

Kinematics

$v_{\rm ave} = \frac{\Delta x}{\Delta t}$	$v_{ m ave} = { m average} \ { m velocity}$ $\Delta x = { m displacement}$ $\Delta t = { m elapsed} \ { m time}$	The definition of average velocity.
$v_{\mathrm{ave}} = \frac{(v_{\mathrm{i}} + v_{\mathrm{f}})}{2}$	$v_{ m ave} = { m average} { m velocity}$ $v_{ m i} = { m initial} { m velocity}$ $v_{ m f} = { m final} { m velocity}$	Another definition of the average velocity, which works when a is constant.
$a = \frac{\Delta v}{\Delta t}$	$a=$ acceleration $\Delta v=$ change in velocity $\Delta t=$ elapsed time	The definition of acceleration.
$\Delta x = v_{i} \Delta t + \frac{1}{2} a (\Delta t)^{2}$	$\Delta x = ext{displacement}$ $v_{ ext{i}} = ext{initial velocity}$ $\Delta t = ext{elapsed time}$ $a = ext{acceleration}$	Use this formula when you don't have $v_{\rm f}$.
$\Delta x = v_{\rm f} \Delta t - \frac{1}{2} a (\Delta t)^2$	$\Delta x = ext{displacement}$ $v_{ ext{f}} = ext{final velocity}$ $\Delta t = ext{elapsed time}$ $a = ext{acceleration}$	Use this formula when you don't have v_i .

Kinematics (continued)

$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta x$	$v_{ m f}={ m final\ velocity}$ $v_{ m i}={ m initial\ velocity}$ $a={ m acceleration}$ $\Delta x={ m displacement}$	Use this formula when you don't have Δt .
--	--	---

Dynamics

F = ma	F = force m = mass a = acceleration	Newton's Second Law. Here, F is the net force on the mass m .
W=mg	W = weight $m = mass$ $g = acceleration due$ to gravity	The weight of an object with mass m . This is really just Newton's Second Law again.
$f = \mu N$	$f = ext{friction force}$ $\mu = ext{coefficient}$ of friction $N = ext{normal force}$	The "Physics is Fun" equation. Here, μ can be either the kinetic coefficient of friction μ_k or the static coefficient of friction μ_s .
p = mv	p = momentum $m = mass$ $v = velocity$	The definition of momentum. It is conserved (constant) if there are no external forces on a system.

Dynamics (continued)

Work, Energy, and Power

$W = Fd\cos\theta$ or $W = F_{\parallel}d$	$W = ext{work}$ $F = ext{force}$ $d = ext{distance}$ $\theta = ext{angle between } F$ and the direction of motion $F_{\parallel} = ext{parallel force}$	Work is done when a force is applied to an object as it moves a distance d . F_{\parallel} is the component of F in the direction that the object is moved.
$KE = \frac{1}{2}mv^2$	KE = kinetic energy $m = mass$ $v = velocity$	The definition of kinetic energy for a mass m with velocity v .
PE = mgh	PE = potential energy $m = mass$ $g = acceleration due$ to gravity $h = height$	The potential energy for a mass m at a height h above some reference level.

Work, Energy, Power (continued)

$W=\Delta(ext{KE})$	W = work done $KE = kinetic energy$	The "work-energy" theorem: the work done by the <i>net</i> force on an object equals the change in kinetic energy of the object.
E = KE + PE	E = total energy $KE = kinetic energy$ $PE = potential energy$	The definition of total ("mechanical") energy. If there is no friction, it is conserved (stays constant).
$P = \frac{W}{\Delta t}$	$P = \text{power}$ $W = \text{work}$ $\Delta t = \text{elapsed time}$	Power is the amount of work done per unit time (i.e., power is the <i>rate</i> at which work is done).

Circular Motion

$a_{\rm c} = \frac{v^2}{r}$	$a_{ m c}={ m centripetal\ acceleration}$ $v={ m velocity}$ $r={ m radius}$	The "centripetal" acceleration for an object moving around in a circle of radius r at velocity v .
$F_{ m c}=rac{mv^2}{r}$	$F_{c} = \text{centripetal force}$ $m = \text{mass}$ $v = \text{velocity}$ $r = \text{radius}$	The "centripetal" force that is needed to keep an object of mass m moving around in a circle of radius r at velocity v .

Circular Motion (continued)

$v = \frac{2\pi r}{T}$	v = velocity $r = radius$ $T = period$	This formula gives the velocity v of an object moving once around a circle of radius r in time T (the period).
$f = \frac{1}{T}$	f = frequency $T = period$	The frequency is the number of times per second that an object moves around a circle.

Torques and Angular Momentum

$\tau = rF \sin \theta$ or $\tau = rF_{\perp}$	$ au = ext{torque}$ $r = ext{distance (radius)}$ $F = ext{force}$ $ au = ext{angle between } F$ $ ext{and the lever arm}$ $F_{\perp} = ext{perpendicular force}$	Torque is a force applied at a distance r from the axis of rotation. $F_{\perp} = F \sin \theta$ is the component of F perpendicular to the lever arm.
L=mvr	L = angular momentum $m = mass$ $v = velocity$ $r = radius$	Angular momentum is conserved (i.e., it stays constant) as long as there are no external torques.

Springs

$F_s = kx$	$F_s = \text{spring force}$ $k = \text{spring constant}$ $x = \text{spring stretch or compression}$	"Hooke's Law". The force is opposite to the stretch or compression direction.
$PE_s = \frac{1}{2}kx^2$	$PE_s = potential energy$ $k = spring constant$ $x = amount of$ $spring stretch$ $or compression$	The potential energy stored in a spring when it is either stretched or compressed. Here, $x=0$ corresponds to the "natural length" of the spring.

Gravity

$F_g = G \frac{m_1 m_2}{r^2}$	$F_g = ext{force of gravity}$ $G = ext{a constant}$ $m_1, m_2 = ext{masses}$ $r = ext{distance of separation}$	Newton's Law of Gravitation: this formula gives the attractive force between two masses a distance r apart.
-------------------------------	--	---

Electric Fields and Forces

Electric Fields and Forces (continued)

F = qE	F = electric force $E = electric field$ $q = charge$	A charge q , when placed in an electric field E , will feel a force on it, given by this formula (q is sometimes called a "test" charge, since it tests the electric field strength).
$E = k \frac{q}{r^2}$	E = electric field $k = a constant$ $q = charge$ $r = distance of$ $separation$	This formula gives the electric field due to a charge q at a distance r from the charge. Unlike the "test" charge, the charge q here is actually generating the electric field.
$E = \frac{V}{d}$	E = electric field $V = voltage$ $d = distance$	Between two large plates of metal separated by a distance d which are connected to a battery of voltage V , a uniform electric field between the plates is set up, as given by this formula.
$\Delta V = \frac{W}{q}$	$\Delta V = \text{potential difference}$ $W = \text{work}$ $q = \text{charge}$	The potential difference ΔV between two points (say, the terminals of a battery), is defined as the work per unit charge needed to move charge q from one point to the other.

Circuits

V = IR	V = voltage $I = current$ $R = resistance$	"Ohm's Law". This law gives the relationship between the battery voltage V , the current I , and the resistance R in a circuit.
--------	--	---

Circuits (continued)

$P = IV$ or $P = V^2/R$ or $P = I^2R$	P = power $I = current$ $V = voltage$ $R = resistance$	All of these power formulas are equivalent and give the power used in a circuit resistor R . Use the formula that has the quantities that you know.
$R_{\rm s} =$ $R_1 + R_2 + \dots$	$R_{\mathrm{s}} = \mathrm{total} \; (\mathrm{series})$ $\mathrm{resistance}$ $R_{1} = \mathrm{first} \; \mathrm{resistor}$ $R_{2} = \mathrm{second} \; \mathrm{resistor}$ \dots	When resistors are placed end to end, which is called "in series", the effective total resistance is just the sum of the individual resistances.
$\frac{1}{R_{\rm p}} =$ $\frac{1}{R_1} + \frac{1}{R_2} + \dots$	$R_{ m p}={ m total~(parallel)}$ resistance $R_1={ m first~resistor}$ $R_2={ m second~resistor}$ \ldots	When resistors are placed side by side (or "in parallel"), the effective total resistance is the inverse of the sum of the re- ciprocals of the individual re- sistances (whew!).
q = CV	$q = { m charge}$ $C = { m capacitance}$ $V = { m voltage}$	This formula is "Ohm's Law" for capacitors. Here, C is a number specific to the capacitor (like R for resistors), q is the charge on one side of the capacitor, and V is the voltage across the capacitor.

Magnetic Fields and Forces

$F = ILB\sin\theta$	$F=$ force on a wire $I=$ current in the wire $L=$ length of wire $B=$ external magnetic field $\theta=$ angle between the current direction and the magnetic field	This formula gives the force on a wire carrying current I while immersed in a magnetic field B . Here, θ is the angle between the direction of the current and the direction of the magnetic field (θ is usually 90°, so that the force is $F = ILB$).
$F = qvB\sin\theta$	F= force on a charge $q=$ charge $v=$ velocity of the charge $b=$ external magnetic field $b=$ angle between the direction of motion and the magnetic field	The force on a charge q as it travels with velocity v through a magnetic field B is given by this formula. Here, θ is the angle between the direction of the charge's velocity and the direction of the magnetic field (θ is usually 90° , so that the force is $F = qvB$).

Waves and Optics

$v = \lambda f$	v = wave velocity $\lambda = \text{wavelength}$ f = frequency	This formula relates the wavelength and the frequency of a wave to its speed. The formula works for both sound and light waves.
$v = \frac{c}{n}$	v = velocity of light $c = vacuum light speed$ $n = index of refraction$	When light travels through a medium (say, glass), it slows down. This formula gives the speed of light in a medium that has an index of refraction n . Here, $c = 3.0 \times 10^8$ m/s.

Waves and Optics (continued)

$n_1 \sin \theta_1 = n_2 \sin \theta_2$	$n_1 = ext{incident index}$ $ heta_1 = ext{incident angle}$ $n_2 = ext{refracted index}$ $ heta_2 = ext{refracted angle}$	"Snell's Law". When light moves from one medium (say, air) to another (say, glass) with a different index of refraction n , it changes direction (refracts). The angles are taken from the normal (perpendicular).
$\frac{1}{d_{\rm o}} + \frac{1}{d_{\rm i}} = \frac{1}{f}$	$d_{ m o}={ m object\ distance}$ $d_{ m i}={ m image\ distance}$ $f={ m focal\ length}$	This formula works for lenses and mirrors, and relates the focal length, object distance, and image distance.
$m = -rac{d_{ m i}}{d_{ m o}}$	$m = ext{magnification}$ $d_{ ext{i}} = ext{image distance}$ $d_{ ext{o}} = ext{object distance}$	The magnification m is how much bigger $(m > 1)$ or smaller $(m < 1)$ the image is compared to the object. If $m < 0$, the image is inverted compared to the object.

Heat and Thermodynamics

$Q = mc \Delta T$	$Q=$ heat added or removed $m=$ mass of substance $c=$ specific heat $\Delta T=$ change in temperature	The specific heat c for a substance gives the heat needed to raise the temperature of a mass m of that substance by ΔT degrees. If $\Delta T < 0$, the formula gives the heat that has to be $removed$ to lower the temperature.
-------------------	--	---

Heat and Thermodynamics (continued)

Q = ml	Q = heat added or removed $m = mass of substance$ $l = specific heat$ of transformation	When a substance undergoes a change of phase (for example, when ice melts), the temperature doesn't change; however, heat has to be added (ice melting) or removed (water freezing). The specific heat of transformation l is different for each substance.
$\Delta U = Q - W$	$\Delta U = ext{change in}$ $internal energy$ $Q = ext{heat added}$ $W = ext{work done}$ $by the system$	The "first law of thermodynamics". The change in internal energy of a system is the heat added minus the work done by the system.
$E_{\rm eng} = \frac{W}{Q_{\rm hot}} \times 100$	$E_{ m eng} = \%$ efficiency of the heat engine $W = { m work}$ done by the engine $Q_{ m hot} = { m heat}$ absorbed by the engine	A heat engine essentially converts heat into work. The engine does work by absorbing heat from a hot reservoir and discarding some heat to a cold reservoir. The formula gives the quality ("efficiency") of the engine.

Pressure and Gases

$P = \frac{F}{A}$	P = pressure $F = force$ $A = area$	The definition of pressure. P is a force per unit area exerted by a gas or fluid on the walls of the container.
-------------------	-------------------------------------	---

Pressure and Gases (continued)

		The "Ideal Gas Law". For
	P = pressure	"ideal" gases (and also for
PV	_	real-life gases at low pressure),
$\frac{PV}{T} = \text{constant}$	V = volume	the pressure of the gas times
1	T = temperature	the volume of the gas divided
		by the temperature of the gas
		is a constant.

Modern Physics and Relativity

E = hf	E = photon energy $h = a constant$ $f = wave frequency$	The energy of a photon is proportional to its wave frequency; h is a number called "Planck's constant".
$\lambda = \frac{h}{p}$	$\lambda = \text{matter wavelength}$ $h = \text{a constant}$ $p = \text{momentum}$	A particle can act like a wave with wavelength λ , as given by this formula, if it has momentum p . This is called "waveparticle" duality.
$\gamma = \frac{1}{\sqrt{1 - (v/c)^2}}$	$\gamma =$ the relativistic factor $v =$ speed of moving observer $c =$ speed of light	The relativistic factor γ is the amount by which moving clocks slow down and lengths contract, as seen by an observer compared to those of another observer moving at speed v (note that $\gamma \geq 1$).