

QUANTITATIVE ANALYSIS

- · Using high-tech instrumentation
- Usually intended for researchers
- Measuring variables to optimize athletic performance
 Foot forces on sprinter's blog
 Muscle contraction sequence during running
 3-D body segment movements during a high jump

Kinesiology Books Publisher

FOCUS TECHNOLOGY

Measurement Technology in Practice

Electromyography Electromyography (EMG) measures and records the electrical activity generated

Kinesiology Books Publisher

7

- QUALITATIVE ANALYSIS
 - · Using sight and hearing
 - Usually done by coaches and teachers
 - To identify and correct errors: "Observe, analyze and correct."
 - Requires framework and a set of principles

Kinesiology Books Publishe

KINEMATICS

- Describing human motion without its forces
- Focusing on motion's spatial and timing characteristics
- Measurements:

 - Time Displacement Velocity Acceleration

KINETICS

- Describing forces leading to motion
- Internal forces
 Muscles pulling on bones
 Bone-on-bone, inside joints
- External forces acting on the body Without contact (e.g., gravity)
 From contact with ground, opponent or equipment

Kinesiology Books Publisher

MODELS OF HUMAN MOTION

- Understanding and observing human movements is complex
- All body tissues undergo shape deformation
- Most movements occur in three dimensions

3 models, simplify the study of human movements:
 • Particle model
 Stick figure model
 • Rigid body segment model

Kinesiology Books Publisher

s in space

W = m x q

There is a difference between mass (m) and weight (W). Mass is a measure of inertia, while weight is a measure of the force of gravity (g) acting on the body. Mass is measured in kilograms (kg), while weight is measured in Newtons (N). A person's weight varies directly with the magnitude of the acceleration due to gravity (9.8 m/s²). Thus in space where there is no acceleration experienced due to gravity we weigh 0 N

Kinesiology Books Publisher

WEIGHT VERSUS MASS

but have the same mass as we do on earth.

How Do Levers Work

- · Force is applied and if greater than resistance
- · Rotation at the axis / fulcrum occurs
- To determine force amount, consider the length of force arm and resistance arm

How Do Levers Work

- When lever rotate around and axis / fulcrum:
 Moment of force or torque is produced
- How much torque occurs?

Torque = Force arm x Force

• Therefore, with a **longer force arm**: • Less force is needed • Greater torque is produced

27

Kinesiology Books Publisher

FIRST CLASS LEVERS

- Applied force and resistance on opposite side of axis, at un/equal distance from one another
- Example: crowbar
- Human body: head flexion

THIRD CLASS LEVERS

- Applied force and resistance on same side of axis; force closer to the axis
- Example: fishing
- Human body many: forearm flexion

- Body size and surface roughness = surface drag
- Boundary layer
 Thin layer of fluid adjacent to skin and carried along with body's motion, towing along outer fluid layers
- Laminar flow
 Small, streamlined, smooth, slow-moving bodies
 Smooth, layered flow pattern with no disturbance
- Turbulent flow
 Most human activities
 Disturbed flow pattern that changes flow conditions

PROFILE DRAG

- Main form of drag in fast-moving sports
- Characterized by turbulent flow

 Velocity of air flow past object is too fast for air to follow body's contour
 Backflow occurs at object's surface causing large, turbulent low-pressure zone behind the body
 This zone is continually formed and increases object's work

MAGNUS EFFECT

- A rotating body carries a boundary layer that interacts with surrounding air
- Boundary layer flow opposite to relative airflow
 Air is slowed by friction
 Zone of increased pressure created
- Boundary layer flow same as relative airflow
 Air is not slowed down
 Zone of increased pressure created
- Net difference in pressure on opposite sides of rotating object = Magnus force
- Magnus effect is mostly found in ping pong, tennis, soccer, and baseball

BALANCE	
	 Batance: process where body's equilibrium is controlled for a purpose Affected by two factors: Base of support; area of contact between body and surface Wider base, greater balance Location of line of gravity; imagery vertical line that passes through centre of mass Has to pass through base of support for balance
	Kinesiology Books Publisher 55

Kinesiology Books Publisher

JESERVAI	ION OF PERFORMANCE
	 Difficult task because of skill speed
	 Observation plan beforehand identifies what, why, where and how observation will occur
	* Coaches must use vision (dominant), hearing and feeling as well as look for tracks and traces
	Confirm observation accuracy with athlete and video recording (if possible)

