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Today’s Readings:  

Chapter 13 The Concept of Energy and Conservation of 
Energy,  

Sections 13.1-13.8  

 



 
Announcements 

  

Problem Set 4 due Week 6 Tuesday at 9 pm in box outside 
26-152 
 
Math Review Week 6 Tuesday at 9 pm in 26-152 
 
 
 
 
 
 
 
 
 
 



Kinetic Energy 
•  Scalar quantity (reference frame dependent) 

•  SI unit is joule:  

•  Change in kinetic energy: 
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Momentum and Kinetic Energy: 
Single Particle 

   Kinetic energy and momentum for a single particle 
are related by 
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Concept Question: Pushing Carts 

    Consider two carts, of masses m and 2m, at rest on an air 
track. If you push one cart for 3 seconds and then the other 
for the same length of time, exerting equal force on each, 
the kinetic energy of the light cart is  

 
1)  larger than  
2) equal to  
3)  smaller than  
 
  the kinetic energy of the heavy car. 



Work Done by a Constant Force 
for One Dimensional Motion 

   Definition: 
 

   The work W done by a constant force with an x-component,  
Fx, in displacing an object by Δx is equal to the x-
component of the force times the displacement: 

 W = FxΔx



Concept Q.: Pushing Against a Wall 

 The work done by the contact force 
of the wall on the person as the 
person moves away from the wall is 

 
1. positive. 

2. negative. 

3.  zero. 

4.  impossible to determine from 
information given in question and  
the figure.  



Concept Question: Work and Walking 

  When a person walks, the force of friction between the 
floor and the person's feet accelerates the person 
forward. The work done by the friction force is 

  
1. positive.  
2. negative.  
3.  zero. 



Worked Example: Work Done by 
Gravity Near the Surface of the Earth  

   Consider an object of mass m  near the surface of 
the earth falling directly towards the center of the 
earth. The gravitational force between the object 
and the earth is nearly constant. Suppose the 
object starts from an initial point that is a distance 
y0 from the surface of the earth and moves to a 
final point a distance yf from the surface of the 
earth. How much work does the gravitational 
force do on the object as it falls? 



Work done by Non-Constant Force: One 
Dimensional Motion 

(Infinitesimal) work is a scalar  

Add up these scalar quantities to get the total work as area under graph 
of Fx vs x :  
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Table Problem: Work Done by the 
Spring Force  

   Connect one end of a spring of length leq with spring 
constant k to an object resting on a smooth table and fix 
the other end of the spring to a wall. Stretch the spring 
until it has length li and release the object. How much 
work does the spring do on the object as a function of x = 
l – leq, where l  is the length of the spring ? 



Recall:  Integration of Acceleration 
with Respect to Time   

The x-component of the acceleration of an object 
is the derivative of the x-component of the velocity 
 
 
Therefore the integral of x-component of the 
acceleration with respect to time, is the x-
component of the velocity 
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Integration of Acceleration with Respect 
to Displacement  

The integral of x-component of the acceleration 
with respect to the displacement of an object, is 
given by 
 
 
 
 
Multiply both sides by the mass of the object giving 
integration formula 
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Work-Kinetic Energy Theorem One 
Dimensional Motion 

Substitute Newton’s Second Law (in one dimension)  
 
 
in definition of work integral which then becomes 
 
 
 
Apply integration formula to get work-kinetic energy theorem 
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Concept Question 
  Two objects are pushed on a frictionless surface from a 
starting line to a finish line with equal constant forces. 
One object is four times as massive as the other. Both 
objects are initially at rest. Which of the following 
statements is true when the objects reach the finish 
line? 

1.  The  kinetic energies of the two objects are 
equal. 

2.  Object of mass 4m has the greater kinetic 
energy.  

3.  Object of mass m has the greater kinetic energy.  

4.  Not information is given to decide.	
  
 

 



Concept Question: Work due to 
Variable Force 

 A particle starts from rest at x = 0 and moves to x = L under 
the action of a variable force F(x), which is shown in the 
figure. What is the particle's kinetic energy at x = L/2 and at 
x = L? 

 
(1)  (Fmax)(L/2), (Fmax)(L) 

(2) (Fmax)(L/4), 0  
 
(3) (Fmax)(L), 0  
 
(4) (Fmax)(L/4), (Fmax)(L/2) 
 
(5) (Fmax)(L/2), (Fmax)(L/4) 
 



Power  

The average power of an applied force is the rate of doing 
work  

SI units of power: Watts 
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Scalar Product 
A scalar quantity 

Magnitude:  

The scalar product can be positive, zero, or negative 

Two types of projections: the scalar product is the parallel 
component of one vector with respect to the second vector 
times the magnitude of the second vector 
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Scalar Product:   Unit Vectors in 
Cartesian Coordinates 
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Generally: 



Scalar Product: Cartesian Coordinates 

    


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Kinetic Energy and Scalar Product 
Velocity 
 
 
Kinetic Energy: 
  
 
 
Change in kinetic energy: 
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Work Done by a Constant Force 

   Definition: Work 
 

    The work done by a constant force        on an object is 
equal to the component of the force in the direction of the 
displacement times the magnitude of the displacement: 

 
 
 

 Note that the component of the force in the direction of the 
displacement can be positive, zero, or negative so the work 
may be positive, zero, or negative  
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Worked Example: Work Done by a 
Constant Force in Two Dimensions 

Force exerted on the object: 
 
 
Components: 
 
 
 
Consider an object undergoing displacement: 
 
 
Work done by force on object: 
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Work Done Along an Arbitrary 
Path 

   ΔWi =

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Work done by force for 
small displacement 
 
 
 
Work done by force along 
path from A to B 
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Work-Energy Theorem in Three-
Dimensions 

As you will show in the problem set, the one dimensional 
 work-kinetic energy theorem generalizes to three dimensions 
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Work: Path Dependent Line 
Integral 

Work done by force along path from A to B 
 
 
 
 
 
 
 
 In order to calculate the line integral, in principle, 
requires a knowledge of the path. However we will 
consider an important class of forces in which the work 
line integral is independent of the path and only 
depends on the starting and end points 
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Conservative Forces 

Definition: Conservative Force If the work done by 
a force in moving an object from point A to point B is 
independent of the path (1 or 2),  
 
 
then the force is called a conservative force which 
we denote by      . Then the work done only depends 
on the location of the points A and B. 
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B
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Example: Gravitational Force 
 Consider the motion of an object under the influence 
of a gravitational force near the surface of the earth  
 

 The work done by gravity depends only on the 
change in the vertical position  

g gW F y mg y= Δ = − Δ



Non-Conservative Forces 
 Definition: Non-conservative force Whenever the 
work done by a force in moving an object from an 
initial point to a final point depends on the path, 
then the force is called a non-conservative force 
and the work done is called non-conservative work    
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Non-Conservative Forces  
Work done on the object by the force  depends 
on the path taken by the object  

Example: friction on an object moving on a 
level surface 

friction

friction friction 0
k
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Table Problem: Work Constant Forces 
and Scalar Product 

An object of mass m, starting from rest, slides down an inclined 
plane of length s. The plane is inclined by an angle of  θ to the 
ground. The coefficient of kinetic friction is µk. What is the 
kinetic energy of the object after it slides down the inclined 
plane a distance s? 
 


