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PREFACE 

This textbook has evolved from part of the first-year graduate curriculum in the 
Department of Materials Science and Engineering at the Massachusetts Institute of 
Technology (MIT) . This curriculum includes four required semester-long subjects- 
“Materials at Equilibrium,” “Mechanical Properties of Materials,” “Electrical, Op- 
tical, and Magnetic Properties of Materials,” and “Kinetic Processes in Materials.” 
Together, these subjects introduce the essential building blocks of materials science 
and engineering at the beginning of graduate work and establish a foundation for 
more specialized topics. 

Because the entire scope of kinetics of materials is far too great for a semester- 
length class or a textbook of reasonable length, we cover a range of selected topics 
representing the basic processes which bring about changes in the size, shape, com- 
position, and atomistic structures of materials. The subject matter was selected 
with the criterion that structure is all-important in determining the properties (and 
applications) of materials. Topics concerned with fluid flow and kinetics, which are 
often important in the processing of materials, have not been included and may 
be found in standard texts such as those by Bird, Stewart, and Lightfoot [l] and 
Poirier and Geiger [2]. The major topics included in this book are: 

I. Motion of atoms and molecules by diffusion 

11. Motion of dislocations and interfaces 

111. Morphological evolution due to capillary and applied mechanical forces 

IV. Phase transformations 

xvii 



xviii PREFACE 

The various topics are generally introduced in order of increasing complexity. The 
text starts with diffusion, a description of the elementary manner in which atoms 
and molecules move around in solids and liquids. Next, the progressively more com- 
plex problems of describing the motion of dislocations and interfaces are addressed. 
Finally, treatments of still more complex kinetic phenomena-such as morpholog- 
ical evolution and phase transformations-are given, based to a large extent on 
topics treated in the earlier parts of the text. 

The diffusional transport essential to many of these phenomena is driven by a 
wide variety of forces. The concept of a basic diffusion potential, which encompasses 
all of these forces, is therefore introduced early on and then used systematically in 
the analysis of the many kinetic processes that are considered. 

We have striven to develop the subject in a systematic manner designed to 
provide readers with an appreciation of its analytic foundations and, in many cases, 
the approximations commonly employed in the field. We provide many extensive 
derivations of important results to help remove any mystery about their origins. 
Most attention is paid throughout to kinetic phenomena in crystalline materials; 
this reflects the interests and biases of the authors. However, selected phenomena 
in noncrystalline materials are also discussed and, in many cases, the principles 
involved apply across the board. We hope that with the knowledge gained from 
this book, students will be equipped to tackle topics that we have not addressed. 
The book therefore fills a significant gap, as no other currently available text covers 
a similarly wide range of topics. 

The prerequisites for effective use of this book are a typical undergraduate knowl- 
edge of the structure of materials (including crystal imperfections), vector calculus 
and differential equations, elementary elasticity theory, and a somewhat deeper 
knowledge of classical thermodynamics and statistical mechanics. At MIT the lat- 
ter prerequisite is met by requiring students to take “Materials at Equilibrium” 
before tackling “Kinetic Processes in Materials.” To facilitate acquisition of pre- 
requisites, we have included important background material in abbreviated form in 
Appendices. We have provided a list of our most frequently used symbols, which we 
have tried to keep in correspondence with general usage in the field. Also included 
are many exercises (with solutions) that amplify and extend the text. 

Bibliography 
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2. D.R. Poirier and G.H. Geiger. Transport Phenomena in Materials Processing. The 

Sons, New York, 2nd edition, 2002. 

Minerals, Metals and Materials Society, Warrendale, PA, 1994. 
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N OTAT I0 N 

Not at ion Definition 
~ 

a' 
~~~ ~ ~ 

Vector a, the column vector a' 

d Unit vector a 

- A, [Aajl Matrix A, matrix A in component form 

A 

a'. b' 
Tensor A of rank two or greater 

Scalar, inner or dot product of a' and b' 
Z X b '  Vector, outer or cross product of a' and b' 
a'T, AT Transpose of a' or A 
A, A, a Total amount of A, amount of A per mole or per 

atom as deduced from context, density of A 

(a) Average value of a 

Va Gradient of scalar field a 

V . A '  Divergence of vector field A' 
V . Va 3 V2a Laplacian of scalar field a 

6ij 

L{a} or d 

Kronecker delta, S i j  = 1 for i = j ;  dij = 0 if i # j 

Laplace transform of a 

Car, Kroger-Vink notation for Ca on K-site with 
positive effective charge 

vx, 

s: 

Kroger-Vink notation for vacancy on Ag-site with 
negative effective charge 

Kroger-Vink notation for S on O-site with zero 
effective charge 
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SY M BOLS-ROMAN 

Symbol Definition Units 

A Area m2 

a ,  b,  c Lattice constants m 

g, b Burgers vector, magnitude of m 

b’ Specific magnetic moment A m-l 

Burgers vector 

C ,  C i  Concentration of molecules or m-3, d = 3 

m-2, d = 2 
m-l, d = 1 

atoms, concentration of species i 

D ,  D Mass diffusivity, diffusivity tensor m2 s-l 

D x L  Bulk diffusivity in crystalline m2 s-l 
material free of line or planar 
imperfections 

DB Boundary diffusivity m2 s-l 

DD Dislocation diffusivity m2 s-l 

DL Liquid diffusivity m2 s-l 

DS Surface diffusivity m2 s-l 
- 
D Chemical interdiffusivity m2 s-l 

~ ~ 

*D Self-diffusivity in pure material m2 s-l 

*Di Self-diffusivity of component i in m2 s-l 

Di Intrinsic diffusivity of component m2 s-l 

mult icomponent system 

i in multicomponent system 

d Spatial dimensionality - 

E Activation energy J atom-’ 

E Young’s elastic modulus Pa  = J m-3 

I3 Electric field vector V m-l 
~~~ ~ 

f Correlation factor for atomic - 

jumps in diffusion 
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SYMBOLS-ROMAN 

Symbol Definition Units 

F, F ,  f Helmholtz energy, Helmholtz 
energy per mole (or particle), 
Helmholtz energy density 

J ,  J mol-l, J m-3 

$7 s Force, force per unit length N, Nm-l 

6, G, g Gibbs energy, Gibbs energy per 
mole (or particle), Gibbs energy 
density 

J, J mol-l, J m-3 

7f, H ,  h Enthalpy, enthalpy per mole (or 
particle), enthalpy density 

J ,  Jmol-l ,  Jm-3 

h Planck constant 6.626 x 10-34 J s 

14, Ii Current of electrical charge, c s-1, s-1 

i, j ,  I Unit vectors parallel to - 

current of species i 

Cartesian coordinates 2, y, z 
m-2 -1 f, $ Flux, flux of species i S 

J Nucleation rate ,-3 s-l 

K Thermal conductivity J s-l K-1 

K Rate constant various 

k Boltzmann constant 1.38 x ~ o - ~ ~ J K - ~  

Lap Onsager coupling coefficient (or m-2 S -' N-' 
tensor) 

M ,  M Mobility, mobility tensor various 

M, O Atomic or molecular weight of kg N;' 
species i 

m Mass kg 
N Number - 

N Total number of atoms or - 

molecules in subsystem 

tion 
Nc Number of components in a solu- - 

NO Avogadro's number 6.023 x 
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SYMBOLS-ROMAN 

Symbol Definition Units 

n Number per unit volume m-3 

a Unit normal vector at interface - 

(concentration) 

n d  Instantaneous diffusion-source m-2, d = 3 

m-l, d = 2 
number, d = 1 

strength 

P Pressure Pa  = Jm-3  

P Probability - 

p' Momentum kg m s-l 

Q Heat J 

4 Electrical charge C 

R Radius m 

r' Position vector relative to origin m 

T ,  8, z Cylindrical coordinates - 

r ,  8, q5 Spherical coordinates - 

Entropy, entropy per mole (or 
particle), entropy density 

S, S, s J K-l, J K-lmol-', J K-1m-3 

T Absolute temperature K 

Tm Absolute melting temperature K 

t Time S 

U, U ,  u Internal energy, internal energy J ,  Jmol-l, Jm-3 
per mole (or particle), internal 
energy density 

u' Displacement field m 
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SYMBOLS-ROMAN 

Symbol Definition 
~~ 

Units 

V Volume m3 

5, v Velocity, speed m s-l 

21 Specific volume - 

w, w Work, work per unit volume J 

XZ Composition variable: mole, - 

atomic, or number fraction of 
component i 

2, Y, z Cartesian orthogonal coordinates m 

X I ,  22,23 General coordinates - 

2, Z C  Coordination number, effective - 

coordination number for critical 
nucleus 

z Partition function - 

z Zeldovich factor - 
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SYMBOLS-GREEK 

Symbol Definition Units 
~ ~ 

r', r Atomic or molecular jump S-1  

frequency for a particular jump, 
total jump frequency 

work to  produce unit interfacial 
area at  constant stress and 
temperature at orientation 

y,  ?(a) Surface or interfacial tension, J m-' 

?fa Activity coefficient of component various 

6 Effective thickness of grain m 
boundary or surface layer; 
diameter of dislocation core 

77 Diffusion scaling factor, z / m  - 

t Unit vector tangent to  dislocation - 

E ,  E ,  E , ~  Component of strain, strain mm-l 

i 

tensor, strain tensor in 
component form 

K ,  ~ 1 ,  K' Mean curvature; principal m-l 

K-I Weighted mean curvature J m-3 

K Thermal diffusivity m2 s-l 

curvatures 

x Wavelength m 

A Elastic-energy shape factor - 
~ ~ 

P Elastic shear modulus Pa  = Jm-3 

P ,  Pi Chemical potential, chemical J 
potential of species i 

p r ,  ,LLP Chemical potential of species i J 
in phase a,  chemical potential of 
species i in reference state 

~~ 

U Frequency S-1  
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SYMBOLS-GREEK 

~ 

Symbol Definition Units 

U Poisson's ratio - 

z Capillarity vector J mP2 

P Density 
~ 

kg mP3 

Electrical conductivity c v-lm-l s-l P 

0, m, c ~ i j  Stress, stress tensor, component Pa = Jm-3  

Ir Rate of entropy production per J m-3 s-l K-' 

7- Characteristic time S 

of stress tensor 

unit volume 

@i Diffusion potential for species i J 

@ Electrical potential J C-l 

X Site fraction - 

0, Ri,  (R) Atomic volume, atomic volume m3 
of component i, average atomic 
volume 

W Angular frequency S-1 



CHAPTER 1 

I NTRO D U CTI 0 N 

Kinetics of Materials is the study of the rates at which various processes occur in 
materials-knowledge of which is fundamental to materials science and engineer- 
ing. Many processes are of interest, including changes of size, shape, composition, 
and structure. In all cases, the system must be out of equilibrium during these 
processes if they are to occur at a finite rate. Because the departure from equilib- 
rium may be large or small and because the range of phenomena is so broad, the 
study of kinetics is necessarily complex. This complexity is reduced by introducing 
approximations such as the assumption of local equilibrium in certain regions of a 
system, linear kinetics, or mean-field behavior. In much of this book we employ 
these approximations. 

Ultimately, a knowledge of kinetics is valuable because it leads to prediction of 
the rates of materials processes of practical importance. Analyses of the kinetics of 
such processes are included here as an alternative to a purely theoretical approach. 
Some examples of these processes with well-developed kinetic models are the rates 
of diffusion of a chemical species through a material, conduction of heat during 
casting, grain growth, vapor deposition, sintering of powders, solidification, and 
diffusional creep. 

The mechanisms by which materials change are of prime importance in determin- 
ing the kinetics. Materials science and engineering emphasizes the role of a mate- 
rial’s microstructure. Structure and mechanisms are the yarn from which materials 
science is woven [l]. Understanding kinetic processes in, for example, crystalline 
materials relies as much on a thorough familiarity with vacancies, interstitials, grain 
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boundaries, and other crystal imperfections as it does on basic mathematics and 
physics. Extensive discussion of mechanisms is therefore a feature of this book. 

We stress rigorous analysis, where possible, and try to build a foundation for un- 
derstanding kinetics in preparation for concepts and phenomena that fall beyond 
the scope of this book. Also, in laying a foundation, we have selected basic topics 
that we feel will be part of the materials science and engineering curriculum for 
many years, no matter how technical applications of materials change. A compre- 
hensive reading of this book and an effort a t  solving the exercises should provide 
the requisite tools for understanding most of the major aspects of kinetic processes 
in materials. 

1.1 THERMODYNAMICS AND KINETICS 

In the study of materials science, two broad topics are traditionally distinguished: 
thermodynamics and kinetics. Thermodynamics is the study of equilibrium states in 
which state variables of a system do not change with time, and kinetics is the study 
of the rates at  which systems that are out of equilibrium change under the influence 
of various forces. The presence of the word dynamics in the term thermodynamics 
is therefore misleading but is retained for historical reasons. 

In many cases, the study of kinetics concerns itself with the paths and rates 
adopted by systems approaching equilibrium. Thermodynamics provides invaluable 
information about the final state of a system, thus providing a basic reference state 
for any kinetic theory. Kinetic processes in a large system are typically rapid 
over short length scales, so that equilibrium is nearly satisfied locally; at  the same 
time, longer-length-scale kinetic processes result in a slower approach to global 
equilibrium. Therefore, much of the machinery of thermodynamics can be applied 
locally under an assumption of local equilibrium. It is clear, therefore, that the 
subject of thermodynamics is closely intertwined with kinetics. 

1.1.1 Classical Thermodynamics and Constructions of Kinetic Theories 

Thermodynamics grew out of studies of systems that exchange energy. Joule and 
Kelvin established the relationship between work and the flow of heat which re- 
sulted in a statement of the first law of thermodynamics. In Clausius’s treatise, 
The Mechanical Theory of Heat, the law of energy conservation was supplemented 
with a second law that defined entropy, a function that can only increase as an 
isolated system approaches equilibrium [2]. PoincarB coined the term thermody- 
namiques to refer to the new insights that developed from the first and second 
laws. Development of thermodynamics in the nineteenth century was devoted to 
practical considerations of work, energy supply, and efficiency of engines. At the 
end of the nineteenth century, J .  Willard Gibbs transformed thermodynamics into 
the subject of phase stability, chemical equilibrium, and graphical constructions for 
analyzing equilibrium that is familiar to students of materials science. Gibbs used 
the first and second laws rigorously, but focused on the medium that stores energy 
during a work cycle. From Gibbs’s careful and rigorous derivations of equilibrium 
conditions of matter, the modern subjects of chemical and material thermodynam- 
ics were born [3]. Modern theories of statistical and continuum thermodynamics- 


