
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1016/j.jss.2018.03.001

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S., & Sharbaf, M. (2018). A survey of model transformation
design patterns in practice. Journal of Systems and Software, 140, 48-73.
https://doi.org/10.1016/j.jss.2018.03.001

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King's Research Portal

https://core.ac.uk/display/153382922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jss.2018.03.001
https://kclpure.kcl.ac.uk/portal/en/publications/a-survey-of-model-transformation-design-patterns-in-practice(7f83df49-d34d-4371-906b-93df70535a4c).html


1

A Survey of Model Transformation Design Patterns in
Practice

Kevin Lano, Sobhan Yassipour-Tehrani,
Dept. of Informatics

King’s College London, London, UK
Email: { kevin.lano, sobhan.yassipour tehrani }@kcl.ac.uk

Shekoufeh Kolahdouz-Rahimi, Mohammadreza Sharbaf
Dept. of Software Engineering

University of Isfahan, Iran
Email: { sh.rahimi, m.sharbaf }@eng.ui.ac.ir

Abstract—Model transformation design patterns have been proposed by
a number of researchers, but their usage appears to be sporadic and
sometimes patterns are applied without recognition of the pattern. In this
paper we provide a systematic literature review of transformation design
pattern applications. We evaluate how widely patterns have been used,
and how their use differs in different transformation languages and for
different categories of transformation. We identify what benefits appear
to arise from the use of patterns, and consider how the application of
patterns can be improved. The paper also identifies several new patterns
which have not previously been catalogued.

Keywords: Model Transformations; Design Patterns; Empirical Soft-
ware Engineering.

I. INTRODUCTION

Design patterns have become a widely-used technique in software
engineering, to support systematic software construction and the reuse
of design solutions. Mainstream patterns, such as those defined in
[72], have become part of standard programming knowledge, and have
been incorporated into programming languages and environments.
Specialised patterns, for particular technical domains, have also been
defined, for concurrent systems, for security, and for many other
concerns. In the model transformations (MT) domain, patterns have
also been identified and formalised [24], [102], [145]. For example,
the fundamental pattern Auxiliary Metamodel involves the introduc-
tion of auxiliary metamodel entity types and/or features to support
transformation processing, such as the maintenance of traces or other
information associated with the transformation execution [145]. A
specialised pattern is Auxiliary Correspondence Model, which uses
auxiliary entity types and features to maintain a correspondence be-
tween source and target elements, to support bidirectional processing
such as change propagation and model synchronisation (Figure 1).

Figure 1. Auxiliary Correspondence Model pattern

An example of Auxiliary Correspondence Model is the UmlToRel
transformation in the ModelMorf QVT-R repository:

transformation UmlToRel(uml:umlmm, rdbms:relmm)
{ key umlmm::Class{name};

key umlmm::Attribute{name,class};

key relmm::Table{name};
key relmm::Column{name,table};

...

top relation ClassToTable
{ n : String;

enforce domain uml
c : Class { name = n };

enforce domain rdbms
t : Table { name = n };

}
...

}

The keys Class :: name and Table :: name are used to maintain a
bidirectional correspondence between classes and tables.

We were interested in discovering how widely these and other
patterns have been used in MT in practice, and if patterns were of
clear benefit for MT development. We decided to perform a systematic
literature review (SLR) [118]. We defined the SLR according to the
PICOC criteria of [155]:
• Population: Research papers presenting MT developments or

case studies
• Intervention: MT design pattern usage
• Comparison: Analysis of the current state of MT pattern usage
• Outcome: Identification of benefits of MT pattern use, and

potential for increased usage
• Context: MT specification and design.
In Section II we define our research questions and the classifica-

tions used for transformations and transformation patterns. In Section
III we describe the sources and procedure used for the survey, and in
Section IV we give the results with respect to each research question.
Section V gives a detailed analysis of the results, Section VI considers
threats to validity, and Section VII describes related work.

II. RESEARCH QUESTIONS

The research questions we asked were:
Q1. Design pattern usage: How often are model trans-
formation design patterns used in practice in MT develop-
ment? Which categories of patterns and which individual
patterns are used? Is the use explicit (recognised as a
specific design decision) or not? Are different categories of
patterns used for particular categories of transformations?
Q2. Design patterns benefits: What perceived benefits
were obtained from using patterns? Is there evidence for
these benefits?
Q3. Gaps and novel patterns: Are there cases where
patterns should have been applied? Are there necessary
patterns which have not yet been formalised?
Q4. Trends: Has there been a change in the adoption
of MT patterns over time? Have papers cataloguing MT
patterns been influential for MT developers?
Q5. MT languages: Do different MT languages differ in
their capabilities for expressing and using MT patterns?

The term model transformation design pattern is defined in [102]
as “A general repeatable solution to a commonly-occurring model
transformation problem”. Adapting the definition of design pattern
from [72] we could also define the concept as “descriptions of trans-
formation rules and transformations that are customised to solve a
general model transformation design problem in a particular context”.



2

We adopt a classification of transformation kinds similar to the
transformation intents of [156]. We grouped transformations into
categories based upon the main divisions of transformation imple-
mentation types which arose in the surveyed cases. In this survey
we are concerned with the structure and techniques used in the
implementations of transformation cases, therefore our classifications
differ from [156]. The difference can be seen in a paper such as [238],
which has a Migration intent, but uses a Refactoring transformation
to perform migration. For our purposes, it is considered a refactoring.

In contrast to [156] we use the terms Refactoring and Bidirectional
as these are more commonly used in the MT community than the
terms Editing and Model synchronisation. Our main difference to
[156] is that cases of a PIM to PSM mapping (such as the class
diagram to relational database example [119]) are considered as
refinements, not translations. Likewise, mappings that map from a
semi-formal to a formal language (eg., [212]) are usually considered
semantic mappings, not translations. We use the term Translation only
for cases of mappings from one language to another, which do not
belong to a more specific category (migration, semantic mapping,
etc).

The category of a transformation was assigned based on the
following definitions:

1) Refinement – mapping from a higher abstraction level model
to a lower-level model. This includes CIM to PIM and PIM
to PSM mappings in the sense of the OMG’s Model-driven
Architecture. The same as Refinement in [156], but subtracting
the specialised category of code generation.

2) Code generation – mapping from a model to text or exe-
cutable code. Corresponds to Synthesis in [156].

3) Migration – mapping from one language to another at the
same level of abstraction. The same as Migration in [156].

4) Analysis – extracting information from a model as a view
or other analysis result. Corresponds to Restrictive query and
Analysis in [156].

5) Refactoring – Update-in-place transformations which restruc-
ture a model, retaining its conformance to the same or a
closely-related metamodel. Corresponds to the Editing intent
in [156].

6) Semantic mapping – maps a model m in one language to a
formal representation in a language with a formal semantics, to
support semantic analysis of m. Semantic definition and some
cases of Translation in [156].

7) Bidirectional (Bx) – transformations which can be applied
in either source-to-target or target-to-source directions, sup-
porting model synchronisation and change-propagation. Model
synchronization in [156].

8) Abstraction – the inverse of refinement. The same as Abstrac-
tion in [156].

More unusual types of transformation, such as streaming, higher-order
(HoT) or runtime transformations, were also encountered.

We adopt the classification of MT design patterns identified in
[145], with the addition of Bidirectional patterns: MT patterns that
address issues specific to bidirectional transformations (bx), such as
model synchronisation and change propagation. The category of a
pattern is assigned based on the primary purpose of the pattern.

The pattern categories are:

1) Rule modularisation patterns – these have the purpose to
organise the structure of individual rules or the structure
of dependencies and relationships between rules within a
transformation. For example, the Map Objects before Links
pattern separates rules that map model entity instances from
rules that map links between the instances.

2) Architectural patterns – these aim to organise relationships
between transformations, or to organise systems of transfor-
mations at the inter-transformation level to improve the mod-
ularity or processing capabilities of the system. For example,
by using a pre-processing transformation to normalise models
which are then provided to a subsequent transformation (Pre-
Normalisation pattern).

3) Optimisation patterns – these are concerned with increasing
the efficiency of transformation execution at the rule/individual
transformation level. For example by caching of rule results
to avoid repeated computations (Rule Caching pattern).

4) Expressiveness – these patterns are concerned with pro-
viding extended processing capabilities for a transformation,
by simulating these capabilities using existing facilities. For
example, simulating a universal quantification X→forAll(P)
matching condition by not(X→exists(not(P))) (Simulate Uni-
versal Quantification pattern).

5) Bidirectional (Bx) – these are concerned with aspects specific
to bidirectional processing: change-propagation and model
synchronisation. For example, maintaining an explicit source-
target correspondence relation as an auxiliary model (Auxiliary
Correspondence Model pattern).

6) Model-to-text/Concrete syntax – these are concerned with
aspects specific to the concrete syntax of models, including
code or text generation from models. For example, writing text
emission rules using a combination of literal text and model
element expressions (Text Templates pattern).

7) Classical/external – patterns from the GoF book [72] or from
the patterns community external to MT. For example, the
classical State or Visitor patterns.

We considered that bx and model-to-text patterns do form separate
categories because management of bidirectionality and concrete syn-
tax involve specialised problems which therefore require specialised
patterns. On the other hand, Auxiliary Metamodel and Unique In-
stantiation are somewhat different in character from the other rule
modularisation patterns, and could be considered separately in a
category of fundamental patterns.

It is interesting to consider whether particular categories of patterns
are predominately used for particular categories of transformations
(eg., if optimisation patterns tend to be used for refactoring transfor-
mations). We will address this question as part of Q1. Details of the
particular patterns considered in this paper are given in the appendix.

III. SURVEY METHOD

We used a combination of manual and automated search to identify
transformation cases. These were then filtered to remove irrelevant
papers, and the remaining papers were inspected in detail to identify
which patterns (if any) were used in the cases.

A. Sources and selection criteria

We surveyed papers from four specific sources: The SoSyM journal
(from 2003-2016); the Transformation Tool Contest (TTC) from
2010-2016; the ICMT conference from 2008-2016, the MODELS
conference from 2005-2016. These sources were chosen as they were
known to be the leading conference and journal sources for MT
publications. We also included the 82 transformation case papers from
[22] in our initial sources. Note that the selection criteria of [22] are
similar to ours, although they use ECMFA as an additional specific
source, in addition to SoSyM, ICMT and MODELS, and they omit
TTC.



3

In addition, we performed a search in Research Gate1 using the
search string

Model transformation
The reason for using such a general search string is that we wish
to estimate the prevalence of pattern use in MT development. Using
a more specific string, such as model transformation AND design
pattern, would distort this estimate. From this search only peer-
reviewed papers published in conferences and journals were selected
for further consideration: PhD theses and other unpublished materials
were excluded at this point, together with papers not written in
English. Only papers between 2000 and 2016 were considered.

Papers were only considered if they satisfied either of these
conditions:

• Contains sufficient samples of source code of the transformation
to determine if patterns were used in the case.

• Provides sufficiently detailed description of the transformation
to determine if any patterns were used.

The King’s College authors were responsible for gathering all of
the potential cases from these sources, and for classifying the cases
as (i) irrelevant for the SLR due to the absence of any transformation
case study or of any adequate information about a transformation
case according to the above conditions; (ii) containing sufficient in-
formation about a transformation case to evaluate the transformation,
but not using any patterns; (iii) containing a transformation case with
a pattern use. The final category was subdivided based on whether
the pattern use was explicit or not. The proportion of transformation
cases using a pattern is then (iii)

(ii)+(iii) .
The overall number of papers produced from the initial searches

was over 1000. These were scanned by the two reviewers to initially
decide on their inclusion or exclusion. Only papers which included
some transformation specifications or designs from transformation
developments, industrial or academic, were then selected for further
consideration. In cases where exclusion/inclusion was not clear, the
reviewers discussed the papers and reached agreement. Resulting
from this process, we obtained 289 papers suitable for analysis. We
then extended our survey by cascading the references from papers
in category (iii). This produced a further 304 papers for analysis, of
which 110 were in category (ii) and 120 in category (iii). Table I
gives the aggregated numbers of papers considered in the initial and
second rounds.

Source (i) No case (ii) No pattern (iii) Pattern All
Initial search 1062 181 108 1351
Cascaded 74 110 120 304
Total 1136 291 228 1655

TABLE I. FINAL SELECTION STATISTICS

The 228 category (iii) papers are included in the ref-
erences of this paper. The 291 excluded papers (category
(ii) papers) are listed in the supplementary material, and at
www.nms.kcl.ac.uk/kevin.lano/mtdpsurx.pdf.

We did not analyse further the 10 papers from category (iii) that
are focussed on cataloguing patterns ([24], [49], [102], [132], [110],
[141], [142], [143], [145], [147]). These are considered separately in
Table XVI.

B. Data collection

The following information was extracted for each surveyed paper:
(i) which patterns were used; (ii) whether a use was explicitly
identified as a design decision or not; (iii) what benefits, if any, were

1This database was used because of its very broad scope, and because it
directly provides full-text versions of papers in many cases.

expected or obtained from use of the patterns; (iv) the MT language(s)
used; (v) what was the category of the transformation (refinement;
refactoring; migration, etc); (vi) the date of the case publication (year).

The patterns used in the papers were identified (for previously-
documented patterns) according to the criteria given in the appendix.
In all cases the specifications or code of the transformations were
examined in detail. We decided to identify new patterns if there
was a clearly defined specification or design structure expressed in a
transformation case, which was not an example of a known pattern.

Tables XXVIII, XXIX, XXX, XXXI, XXXII in the Appendix give
the initial extracted data for each analysed case in category (iii).
Pattern usages are listed for each case, an explicit use of a pattern
is marked by *. The category of transformation and the language(s)
used to implement the transformation are listed. In some cases the
MT language used was not defined in the paper (eg., [232]) or the
transformation was implemented in a 3GL/custom language. In these
cases we have marked the language entry as none. We also indicate
which (if any) of the transformation catalogue papers are cited in the
case.

Table II shows the distribution of transformation categories across
the 218 surveyed cases. In some aspects this distribution is similar
to that found in [22], with the categories of Semantic Map/Definition
(12% in [22]) and Analysis (8%) similar in extent to our results.
Our category of Bidirectional transformations corresponds partly to
Model Composition (9%) in [22]. Bidirectional transformations have
become an area of significant research activity in recent years, hence
the relatively large proportion of bx cases in our study compared with
[22].

Evaluating the 82 cases of [22] using our transformation classifi-
cations gives: Refinement 33%; Semantic mapping 15%; Translation
11%; Code generation 9%; Refactoring 7%; Migration 6%; Abstrac-
tion 6%; Bidirectional 6%; others 7%.

Category Number of cases Percentage (of 218)
Refinement 56 26%
Bidirectional 38 17%
Refactoring 30 14%
Migration 27 12%
Code generation 20 9%
Analysis 17 8%
Semantic map 15 7%
Others 15 7%
Total 218
TABLE II. SLR TRANSFORMATION CATEGORIES

IV. RESULTS

Concerning research question 1, from the search results we iden-
tified 519 papers that concerned MT developments. Of these, 228
(44%) contained details of MT pattern usage in the developments. In
109 cases (21%) at least one pattern use was explicitly recognised as
a design decision. In 119 cases (23%) no pattern use was explicit.
Figure 2 shows the extent of MT pattern usage.

Table III identifies the frequencies of use of different categories of
patterns in the surveyed cases, and the number of different patterns
used in each category. The percentages are taken of the 218 analysed
category (iii) papers, and do not add to 100% because some papers
used several patterns, from different categories. On average, a paper
uses patterns from 1.3 categories (the total of Table III divided
by 218), which suggests that our pattern categories correspond to
separate use cases for patterns in practice.

Figure 3 shows the percentage of analysed category (iii) papers
using each pattern category.

In terms of the percentages of cases (Table III) and the number
of individual pattern usages (Table IV), there is a preponderance of



4

Figure 2. Extent of MT pattern usage

Category Patterns Papers Percentage (of 218)
Rule Modularisation 14 128 58%
Architectural 13 46 21%
Optimisation 6 35 13%
Expressiveness 4 14 6%
Bidirectional 4 45 21%
Model-to-text 2 15 7%
External (GoF, etc) 4 6 3%
Total 47 289

TABLE III. NUMBER/PERCENTAGES OF PAPERS USING EACH PATTERN
CATEGORY

Modularisation and Architectural patterns: 79% of cases used such a
pattern, and 66% of pattern uses were of these categories.

Category Total Percentage (of 363)
Rule Modularisation 189 52%
Architectural 52 14%
Bidirectional 44 12%
Optimisation 42 12%
Expressiveness 15 4%
Model-to-text 15 4%
External (GoF, etc) 6 2%
Total 363

TABLE IV. NUMBER OF PATTERN USES IN EACH PATTERN CATEGORY

Architectural patterns have become more widely used in recent
years, perhaps due to the increasing scale of transformations, and
the use of systems of transformations (31 of the 46 papers using

Figure 3. Frequency of use of MT pattern categories

architectural patterns date from 2011 or later). Optimisation patterns
have had more limited use, in part perhaps because these patterns
are not well-known, and because some need specific MT language
support. Other kinds of pattern, such as model-to-text, are specialised
to particular forms of transformation.

A. The extent and type of pattern usage

Tables V, VI, VII, VIII show the number and type of applications
of individual rule modularisation, architectural, optimisation and
expressiveness design patterns in the surveyed papers that contain
patterns. The main categories of transformation that use the pattern
are identified, together with the main MT languages of these cases.
Graph transformation languages are listed as GT, the Triple Graph
Grammar language is listed separately as TGG. Apparent benefits of
using the pattern in the cases are also given.

There are 363 pattern applications in the 218 analysed papers,
with some papers including uses of several patterns (on average, 1.7
patterns are used per paper). 14 different Modularisation patterns are
used, 13 Architectural patterns, 6 Optimisation patterns, 4 Bx patterns
and 4 Expressiveness patterns.

Table IX shows the uses of bidirectional patterns, and Table X the
model-to-text patterns uses.

External/classical patterns are used in six cases: State [107], Visitor
[187], [195], [207], Observer [186] and Sliding Window [54].

The most frequently used individual patterns are: (i) Entity Splitting
(vertical), 37 uses; (ii) Structure Preservation, 33 uses; (iii) Auxiliary
Metamodel and Auxiliary Correspondence Model, 27 uses each, (v)
Factor Expression Evaluations, 25 uses; and (vi) Transformation
Chain with 22 uses. Overall, 47 different patterns and 20 of the
29 patterns described in [145] occur in transformation development
cases, including all of the 11 rule modularisation patterns of [145].

Different patterns tend to be used for different categories of
transformation, with Entity Splitting (vertical) more common in cases
of refinement transformations, rather than in migrations, which instead
use Entity Split (horizontal) and Structure Preservation. Code gener-
ators more commonly use Transformation Chain and Text Templates,
whilst refactorings are the most frequent users of Replace Collection
Matching and Construction and Cleanup. Factor Expression Evalua-
tion is used frequently for Refactorings and Analysis transformations,
perhaps because complex OCL expressions arise in these types of
transformation, as in the case of [138].

Table XI shows the extent of correlation of pattern types and
transformation types. This reveals that bx transformations are poorly
supported by optimisation or architectural patterns. It also shows that
architectural patterns are used broadly across all other categories of
transformations. As expected, bidirectional patterns are predominately
used by bx cases, and model-to-text patterns by code generation
transformations.

There is considerable variation within some categories of patterns.
For example, Entity Splitting (v) is most used by refinement trans-
formations, whilst Structure Preservation is most used by migrations.
Table XII shows the patterns which are used in at least 10% of the
cases in each of the main transformation categories.

The frequency of use of patterns (the number of pattern usages per
case) also differs across different categories of transformation (Table
XIII). The gap in usage rates between bx and semantic mappings
and other categories may be because there are relatively few patterns
specifically for semantic mapping or bx transformations.

While some patterns are very specialised to certain kinds of trans-
formation (eg., Lens, Text Templates) others are used more generally.
Structure Preservation occurs widely across a range of transformation
types (7 categories of transformation use it), although it particularly



5

Refinement Refactoring Bx Migration Code gen. Analysis Sem. Map Abstraction
Rule Mod. 66 22 18 40 10 7 11 7
Architectural 13 5 1 6 13 5 4 1
Optimisation 11 11 1 4 1 11 1 1
Expressiveness 5 4 2 0 0 3 0 0
Bidirectional 5 2 28 0 2 1 5 0
Model-to-text 3 3 0 1 7 0 0 0

TABLE XI. MT PATTERN CATEGORY USES IN MT CATEGORIES

Pattern MT Categories Languages Benefits
Entity Refinement (19) ATL (14) Elaborates
Splitting Semantic Map (5) QVT-R (6) structure
(vertical) Refactoring (5) GT (3) from

Code generation (2) UML-RSDS (3) source
37 cases Migration (2) ETL (2) to

Bidirectional (2) TGG (2) target
HoT (1)
Abstraction (1)

Structure Migration (12) ATL (14) Ensures
Preservation Refinement (10) QVT-R (7) copying

Bidirectional (6) UML-RSDS (3) of
33 cases Refactoring (3) GT (3) data

Runtime (1) TGG (2)
Semantic map (1) ETL (1)

Auxiliary Refinement (11) GT (8) Improves
Metamodel Migration (4) ATL (5) clarity,

Analysis (3) QVT-R (2) flexibility,
27 cases Abstraction (2) TGG (1) modularisation

Refactoring (2) ETL (1)
Bx (1), Code gen (1)
Semantic map (1)

Recursive Refinement (7) ATL (6) Functional
Descent Migration (5) QVT-R (5) decomposition

Analysis (3) ETL (2)
20 cases Abstr. (2) Refact (1) QVT-O (1)

Bx, Code gen (1)
Map Objects Refinement (9) ATL (8) Avoids
Before Links Migration (4) UML-RSDS (3) circularity
15 cases Refact; Bx (1) GT; QVT-R (1) in processing
Introduce Rule Refinement (4) ATL (5) Factor
Inheritance Migration (4) TGG (3) common

Refactoring (2) QVT-R, GT (1) rule
14 cases Code gen; Bx (1) QVT-O (1) parts

HoT; Sem map (1)
Sequential Semantic mapping (3) GT (5) Modularisation,
Composition Refactoring (2) TGG (2) Efficiency,

Code generation (2) Correctness
11 cases Bx; Analysis (1)

Trans; Mig (1)
Entity Refinement (2) ATL (6) Organises
Merging Migration (2) QVT-R (2) instance

Abstract. (2) ETL (1) data
10 cases Refact., Bx (1) QVT-O (1) integration
Construction and Refactoring (5) UML-RSDS (4) Modularisation
Cleanup Migration (1) GT (2)
7 cases Bidirectional (1) QVT-R (1)
Phased Refinement (3) UML-RSDS (1) Modularisation,
Construction Code generation (1) QVT-O (1) Correctness
5 cases Migration (1)
Entity Migration (3) ATL (2) Distinguishes
Splitting Bidirectional (1) GT (1) cases in
(horizontal) UML-RSDS (1) source
4 cases data
Unique Bidirectional (2) QVT-R (1) Avoids
Instantiation Code generation (1) TGG (1) duplicating
3 cases instances
Replace Explicit Migration (1) ETL (1) Flexibility
calls by Implicit Model merging (1)
2 cases
Fixed-point Refinement (1) GT (1) Organises
Iteration fixpoint
1 case processing
Total 189 Refinement (66) ATL (60)

Migration (40) GT (25)
Refactoring (22) QVT-R (25)
Bidirectional (18) UML-RSDS (15)
Semantic map (11) TGG (10)
Code generation (10) ETL (8)
Analysis (7) QVT-O (3)
Abstraction (7)
Model Merging (5)

TABLE V. RULE MODULARISATION PATTERN USES

Pattern MT Categories Languages Benefits
Transformation Code generation (8) ATL (7) Compose
Chain Refinement (7) TGG (2) transformations

Refactoring (3) QVT-R (2) in sequence
22 cases Analysis (2) ETL, GT (1)

Bx (1) QVT-O (1)
Model merge (1) UML-RSDS (1)

Pre- Refinement (3) GT (2) Simplifies main
Normalisation Analysis (1) QVT-O (1) transformation

Migration (1) QVT-R (1) task
7 cases Semantic map (1)
Factor Code Code generation (4) ATL (2) Modularity,
Generation Refinement (2) QVT-O (1) extensibility
6 cases
Transformation Migration (2) ATL (3) Reuse,
Inheritance Higher-order (1) QVT-O (1) factorisation
4 cases Abstraction (1)
Intermediate Semantic map (2) UML-RSDS (1) Factors
Language Code generation (1) transformation
3 cases chains
Generic Refactoring (2) ATL (2) Reuse,
Transformations Analysis (1) generality
3 cases
Adapter Migration (1) Reuse,
Transformations generality
Localised MT Refinement (1) Modularisation
Filter Analysis (1) UML-RSDS (1) Simplifies main
Transformation transformation
Post- Semantic map (1) Separation of
Normalisation concerns
Data Migration (1) Simplifies main
Cleansing transformation
Migrate along Migration (1) Task
Domain Partitions decomposition
Parallel Concurrent
Transformations execution
Total 52 Code generation (13) ATL (14)

Refinement (13) QVT-O (4)
Migration (6) GT (3)
Refactoring (5) QVT-R (3)
Analysis (5) UML-RSDS (3)
Semantic map (4) TGG (2)
Bidirectional (1) ETL (1)

TABLE VI. ARCHITECTURAL PATTERN USES

Pattern MT Categories Languages Benefits
Factor out Refinement (7) ATL (14) Factors
Expression Analysis (6) UML-RSDS (3) specification,
Evaluations Refactoring (6) QVT-R (2) may optimise

Code gen, Mig. (1) QVT-O (1) execution
25 cases Bx; Abstr (1)
Rule Refinement (4) ATL (1) Avoids
Caching Analysis (2) QVT-O (1) recomputation
8 cases Refact, Mig. (1) UML-RSDS (1)
Restrict Input Analysis (2) UML-RSDS (2) Reduces
Ranges Refactoring (1) search
3 cases space
Replace Collection Refactoring (3) UML-RSDS (2) Reduces
Matching search
3 cases space
Implicit Migration (2) Avoids
Copy explicit
2 cases copying
Replace Fixed-point Analysis (1) UML-RSDS (1) Efficiency
by Bounded Iteration
Total 42 Refactoring (11) ATL (15)

Analysis (11) UML-RSDS (9)
Refinement (11) QVT-O (2)
Migration (4) QVT-R (2)
Code gen; Bx (1)

TABLE VII. OPTIMISATION PATTERN USES



6

Pattern MT Categories Languages Benefits
Simulate Explicit Refinement (3) QVT-R (6) Enforces
Rule Scheduling Bidirectional (2) GT (1) rule

Refactoring (1) execution
8 cases Analysis (1) order
Collection Refactoring (2) GT (2) Directly
Matching Refinement (1) match
3 cases collections
Simulate Collection Analysis (1) GT (1) Individual matching
Matching Refinement (1) UML-RSDS (1) for collection
2 cases matching
Simulate Univ. Refactoring (1) GT (2) Express
Quantification Analysis (1) ∀-formulae
2 cases using ∃
Total 15 Refinement (5) GT (6)

Refactoring (4) QVT-R (6)
Analysis (3) UML-RSDS (1)
Bidirectional (2)

TABLE VIII. EXPRESSIVENESS PATTERN USES

Pattern MT Categories Languages Benefits
Auxiliary Bidirectional (13) TGG (15) Synchronise
Correspondence Refinement (5) GT (5) models;
Model Semantic map (3) ATL (2) change-

Code generation (2) QVT-R (2) propagation
27 cases Refactoring (2) UML-RSDS (1)
Lens Bidirectional (13) GT (1) Source-

Semantic map (1) view
14 cases consistency
Active Bidirectional (1) GT (2) Change-
Operations Semantic map (1) propagation
2 cases
Three-way Bidirectional (1) QVT-R (1) Multiple model
Merge synchronisation
Total 44 Bidirectional (28) TGG (15)

Semantic map (5) GT (8)
Refinement (5) QVT-R (3)
Refactoring (2) ATL (2)
Code generation (2) UML-RSDS (1)
Analysis (1)

TABLE IX. BIDIRECTIONAL PATTERN USES

occurs in migration or refinement cases. Auxiliary Metamodel is
a fundamental pattern which is also used widely (9 categories of
transformation). In refinements it is used for tracing purposes and to
store composite information during transformation processing. It is
also used within several other patterns. For example, to simulate the
matching s : Set(E) of collections of elements, an auxiliary entity type
ESet can be introduced whose instances reference partial collections
of E instances. The collections are incrementally accumulated from E
instances by auxiliary rules [91]. Single-instance matching can then
be used on ESet instances (in contrast, if a collection-matching facility
is provided in an MT language, then auxiliary entity types are not
needed [85]).

It is unusual for MT patterns to be explicitly quoted or formally
described (as, for example, using the pattern template of [72]). The
term ‘transformation design pattern’ is rarely used in the analysed

Pattern MT Categories Languages Benefits
Text Code generation (7) ATL (3) Simplifies
Templates Refinement (2) ETL (1) text

Migration (1) QVT-O (1) production
11 cases Higher-order (1) GT (1)
Replace Abstract Refactoring (3) GT (2) Simplifies
by Concrete Refinement (1) QVT-R (1) rule
Syntax specifications
4 cases
Total 15 Code generation (7) ATL (3)

Refinement (3) GT (3)
Refactoring (3) ETL (1)
Migration (1) QVT-R (1)
Higher-order (1) QVT-O (1)

TABLE X. MODEL TO TEXT PATTERN USES

Category Pattern usages
Refinement Entity Splitting v (19)

Auxiliary Metamodel (11)
Structure Preservation (10)
Map Objects before Links (9)

(56 cases) Recursive Descent (7)
Transformation Chain (7)
Factor Expression Evaluation (7)
Auxiliary Correspondence Model (5)
Introduce Rule Inherit (4)
Rule Caching (4)

Bx Lens (13)
Auxiliary Correspondence Model (13)

(38 cases) Structure Preservation (6)
Refactoring Factor Expression Evaluation (6)

Entity Split v (5)
(30 cases) Construction and Cleanup (5)

Structure Preservation (3)
Replace Collection Match (3)
Transformation Chain (3)
Replace Abstract by Concrete (3)

Migration Structure Preservation (12)
Recursive Descent (5)

(27 cases) Intro Rule Inherit (4)
Map Objects before Links (4)
Auxiliary Metamodel (4)
Entity Split h (3)

Code Transformation Chain (8)
Generation Text Templates (7)

Factor Code Generation (4)
(20 cases) Entity Split v (2)

Auxiliary Correspondence Model (2)
Sequential Composition (2)

Analysis Factor Expression Evaluation (6)
Recursive Descent (3)

(17 cases) Auxiliary Metamodel (3)
Restrict Input Ranges (2)
Rule Caching (2)
Transformation Chain (2)

Semantic Entity Splitting v (5)
Mapping Sequential Composition (3)

Auxiliary Correspondence Model (3)
(15 cases) Intermediate Language (2)

TABLE XII. PATTERN APPLICATIONS IN DIFFERENT
TRANSFORMATION CATEGORIES

Category Pattern usages Cases Pattern usages per case
Migration 51 27 1.88
Refinement 103 56 1.84
Code Generation 33 20 1.65
Analysis 27 17 1.59
Refactoring 47 30 1.57
Semantic Mapping 21 15 1.4
Bx 50 38 1.31

TABLE XIII. FREQUENCY OF PATTERN APPLICATIONS IN DIFFERENT
TRANSFORMATION CATEGORIES

cases. An exception is [65], which describes a behavioural pattern,
Fixed-point Iteration, and gives examples of this.

Many of the pattern usages in the development cases appear to be
ad-hoc and without explicit recognition of the pattern. For example, in
[138], we used Replace Collection Matching implicitly, to implement
a matching condition of the form “v is a set of classes such that”
using an individual element matching. The rule before applying the



7

pattern appeared like this:

Entity ::
v ⊆ specialisation & a : v.specific.ownedAttribute &
v ̸= specialisation &
v→forAll(s |

s.specific.ownedAttribute→exists(b |
b.name = a.name & b.type = a.type)) &

v.size > 1 ⇒
Entity→exists(e | e.name = name + “ 2 ” + a.name &

a : e.ownedAttribute &
e.specialisation = v &
Generalization→exists(g |

g : specialisation & g.specific = e)) &
v.specific.ownedAttribute→select(

name = a.name)→isDeleted()

This rule matches strict subsets v of the subclasses of a class self ,
such that all elements of v all have a common-named and -typed
attribute. It then creates a class e as a new superclass of the v classes
and moves the duplicated attribute up to e.

Applying Replace Collection Matching replaces the collection
matching for v by a normal instance matching for a, with v derived
from a:

Entity ::
a : specialisation.specific.ownedAttribute &
v = specialisation→select(

specific.ownedAttribute→exists(b |
b.name = a.name & b.type = a.type)) &

v ̸= specialisation &
v.size > 1 ⇒

Entity→exists(e | e.name = name + “ 2 ” + a.name &
a : e.ownedAttribute &
e.specialisation = v &
Generalization→exists(g |

g : specialisation & g.specific = e)) &
v.specific.ownedAttribute→select(

name = a.name)→isDeleted()

The optimisation is based on swapping the order of the two input
variable definitions, one for a and one for v, so that the value of v
becomes determined by the choice of a.

The pattern had not been recognised when [138] was written,
and it was only after encountering other examples of this situation
that we identified it as a pattern (called Avoid Collection Matching
in [149]). Subsequently, other examples were recognised, as in the
FoldEntryAction rule of [182], which acts on a set of transitions
using single-element matching on their common target state. Like-
wise, Simulate Collection Matching was used implicitly in [140]
to incrementally construct sets of elements with a given property,
before being codified in [149]. The terminology of patterns differs
between authors, and especially between the model transformation
and graph transformation communities. For example, phasing (Se-
quential Composition) [51] is termed layering in graph transformation
languages [94], [173], and one approach (retyping) for structural
preservation is termed relabelling in GT [31]. Map Objects before
Links is also known as Entities before Relations [166]. The specific
approach to Structure Preservation described in [79] is known as
the Marker Relation idiom. There is not yet agreement on how to
represent patterns, with [145] using an ATL-style textual notation, and
[64], [166] using graph transformations. Some patterns from [145]
need to be reconsidered, for example the Entity Splitting pattern
seems to be clearly subdivided into two distinct subpatterns, (i) a
‘horizontal’ version, where different instances of one source entity

type are mapped to different target entity types (as in the mapping
of Pseudostates in [136], or of family members in [97]), and (ii) a
‘vertical’ version (Structure Elaboration) where each source instance
is mapped to multiple target instances. The former variant is more
suited to migration cases, and the latter to refinements.

We consider that it would be beneficial if there was wider aware-
ness of MT patterns, and an agreed terminology, to make the use of
such solutions to specification/design problems more systematic. A
library of pattern application examples would help MT developers
in this respect. Further research is needed to refine and improve
the definitions of known patterns, to fit these more closely to actual
practice.

It is unusual for MT developers to present alternative specifica-
tion/design approaches for transformations. An exception is in [159],
where QVT-R transformations for a UML to RDB mapping and for
hierarchical to non-hierarchical state machine mappings are presented,
first in the conventional Recursive Descent manner, and then in
improved versions using Entity Splitting and computation of the
closure of a model association to avoid recursive rule invocations.
Again, a well-known repertoire of MT patterns would assist in the
description and selection of alternative MT designs.

B. Benefits of MT pattern use

Concerning research question 2, precise evaluation of the benefits
of pattern applications is unusual, and there has been no systematic
analysis of these benefits. Improved execution times from the appli-
cation of optimisation patterns are reported in [145], and improved
scalability is shown in quantitative terms in [140]. However, some
of these patterns are specific to UML-RSDS and are difficult to
express in other MT languages. Quantitative comparisons of trans-
formations with and without patterns are given in [217]. Positive
results for the customisability achieved by the Factor Code Generation
pattern is described in [71]. Efficiency improvements from Sequential
Composition/layering are shown in [94]. Efficiency improvements
from the use of Active Operations are shown in [113]. Quantitative
evaluation of different transformation styles and languages is carried
out in [10], including evaluation of the effect on performance of the
removal of duplicated expression evaluations by caching. Generally,
where evaluation has been carried out, pattern use does show the
expected benefits. However there is a lack of systematic evaluation
and comparison of transformation versions with and without patterns,
and this will require further empirical research.

We have summarised the apparent or stated benefits of particular
patterns in Tables V, VI, VII, VIII, IX, X and XIV.

C. Occurrences of novel patterns

Concerning research question 3, the survey also uncovered sev-
eral patterns which had not previously been documented in pattern
collections (ie., in the papers of Table XVI). Table XIV summarises
these patterns and their benefits/costs. There are 55 applications of
these patterns in total. The first 10 patterns are architectural patterns.
Both Localised Model Transformations and Migrate along Domain
Partitions aim to divide a single large transformation operating on an
entire source model, into smaller partial transformations operating on
submodels. They are related to the Phased Model Construction ar-
chitectural pattern of [145]. Factor Code Generation has been widely
used, and is a special case of Transformation Chain in which a model-
to-model transformation precedes a model-to-text transformation. Pre-
Normalisation and Data Cleansing are also specialisations of Trans-
formation Chain, and are related to the Filter Transformation pattern
of [145]. Post-Normalisation is also a specialisation of Transformation
Chain. Intermediate Language is a technique for factorising multiple



8

transformation chains using a common intermediate representation.
Where models from multiple alternative source languages may be
mapped to two or more target languages, the intermediate representa-
tion reduces the number of transformations needed (Figure 4). Instead
of N*M individual transformations from N sources to M targets, only
N transformations to the intermediate language (IL) are needed, and
M from the IL. This pattern is related to the Auxiliary Models pattern
of [145]. Parallel Transformations aims to execute a transformation

Figure 4. Intermediate Language pattern

in parallel on partitions of an input model, to increase processing
capacity.

Transformation Inheritance aims to factor out common aspects of
two or more similar transformations by means of an inheritance
mechanism. It is a transformation-level version of Introduce Rule
Inheritance from [145].

Lens [70] is a specialised bx pattern, for a restricted category of
asymmetric bx transformations where the source to target mapping
defines the target model t : TL as a view or abstraction get(s)
containing partial information from the source model s : SL [70], [23],
[59]. A dual map put : SL×TL → SL propagates view changes to the
source, such that put(s, get(s)) = s and get(put(s, t)) = t. Three-way
Merge is a bx pattern for the management of independent updates
of two views [241], it is related to Lens. Active Operations uses an
Observer-style mechanism to incrementally propagate data changes
from one model to another, to maintain an active source-target data
correspondence (Active Expressions could be a more appropriate
name for this pattern).

Replace Collection Matching has been described above. Rule
Caching is an optimisation pattern related to Unique Instantiation.
It enforces that transformation rules or operations are not re-executed
if applied to elements that they have already processed. Instead the
value or object they previously computed is returned for the element.
Fixed-point Iteration defines rule structures for iterative computations.

The transformation structures of Table XIV were identified as
patterns because they are specific structures of rules or of transforma-
tions, organised to solve particular specification or design problems.
They therefore satisfy the definitions of MT pattern given in Section
II. For example, Factor Code Generation addresses the problem of the
inflexibility (and poor analysability) of a specification language-to-
programming language transformation that directly generates program
text.

Areas where patterns would be useful, but where we found few
patterns, are in the parallelisation of transformation execution, the
handling of large models (eg., by adaption of Big Data techniques
such as Map/Reduce for transformations) and techniques for enhanc-
ing the genericity of transformations and their independence from
specific metamodels. In order to decouple transformations from the
metamodels they operate on, variants of the classical Facade, Adapter
and Proxy patterns are probably needed. There are relatively few
patterns specialised for semantic mapping, code generation, analysis
or bx transformations.

D. Trends and influences

Concerning research question 4, Table XV identifies the changing
usage of MT patterns over time. It shows the number of papers per
year featuring MT design patterns, the total number of MT cases,
and the percentages per year featuring patterns. Similarly to [22], we
found a rise in the total number of papers using model transformations
from 2005 to 2010, followed by a dip, however in our results we found
a renewed increase to a higher sustained level in 2014–2016.

Year With patterns Without Total % with
2000 1 0 1 100%
2001 0 1 1 0%
2002 0 5 5 0%
2003 1 7 8 12%
2004 0 11 11 0%
2005 3 13 16 19%
2006 8 14 22 36%
2007 11 13 24 46%
2008 17 15 32 53%
2009 9 23 32 28%
2010 27 31 58 46%
2011 21 28 49 43%
2012 14 20 34 41%
2013 26 18 44 59%
2014 27 37 64 42%
2015 29 29 58 50%
2016 25 26 51 49%

TABLE XV. PERCENTAGES OF MT PAPERS USING PATTERNS PER YEAR

Considering ranges of years shows that there has been an overall
trend for increasing use of transformations, and relatively increasing
use of transformation patterns. For example, in the last four years
(2013-2016) there were 217 MT papers with 107 using patterns
(49%), compared to the preceding four years (2009-2012) with 71
of 173 papers with patterns (41%), and the period 2005-2008 with
39 of 94 papers (41%). For 2000–2004 only 2 of 26 papers used
patterns (8%).

The per-year graph (Figure 5) shows these trends visually.
Table XVI lists the papers that catalogue MT patterns, and gives

their citation counts. Despite the high number of citations for the top
four of these papers, it is still unusual to find explicit reference in
MT cases to the patterns that these papers define. Only 18 of the 218
cases cite any of these papers.

Paper Year Citations
Iaco et al. [102] 2008 62
Lano et al. [141] 2013 39
Lano & Kolahdouz-Rahimi [145] 2014 36
Bezivin et al. [24] 2003 34
Kurtev et al. [132] 2006 27
Johannes et al. [110] 2009 21
Cuadrado et al [49] 2008 20
Lano et al [142] 2014 10
Lano et al [143] 2013 9
Lano et al [147] 2015 0
TABLE XVI. MT DESIGN PATTERN PAPERS

Tool support for MT design patterns is in its early stages. The
UML-RSDS tool incorporates optimisation patterns into its design



9

Papers New pattern Summary Benefits Costs
[67] Localised Model Decompose complex transformations into Increases modularity, Model and

Transformations chains of cohesive small transformations verifiability, flexibility, metamodel
operating on metamodel subsets. changeability management
Related to Implicit Copy.

[73] Adapter Transformations Use pre/post processing Supports reuse, Effort needed
transformations to adapt a transformation evolution. to define
to evolved metamodels. adapters

[2], [169], [219] Factor Code Generation Map to metamodel of target Modularisation, Model and
[92], [208] into Model-to-Model and code language, and define text flexibility metamodel
[71] Model-to-Text Transformations generation from this. management
[7], [9], [127] Pre-Normalisation Simplify source model Modularisation, Additional
[184], [168] data to simplify main efficiency processing
[174], [88] transformation processing step
[56] Post-Normalisation Normalise/simplify Modularisation, Additional

transformation result separates mapping processing
and refactoring aspects step

[232] Migrate along Migrate largely independent Modularisation
Domain Partitions domain model parts separately

[196] Data Cleansing Clean legacy/source data Simplify main Additional
before transforming it. transformation by processing
Related to Filter Trans, Pre-Normalisation. pre-processing. step

[146], [222] Intermediate Replace N*M transformations Reduce redundancy, Needs careful design
[240] Language by N+M via intermediate increase flexibility of intermediate

metamodel language
[46] Parallel Parallelise transformations Increases capacity, Needs coordination,

Transformations to process large reduces execution model splitting,
models time merging

[127], [217] Transformation Reuse/adapt a Avoids May
[228], [229] Inheritance transformation by duplication reduce

specialisation/superposition cohesion
[23], [27], [59], [70], [158] Lens Asymmetric bx, target model Source-view Restricted
[98], [99], [164], [227], [233] computed as view of source consistency applicability
[84], [128], [243], [244]
[112], [113] Active Operations Use incremental expression Change- Needs specific

evaluation for change-propagation propagation language support
[241] Three-way Merge Consistently combine 2 independent Multiple model Complex

updates of a model synchronisation semantics
[121], [138], [182] Replace Collection Replace s : Set(T) input Efficiency Reduces

Matching range by x : T & s = f (x) understandability
[6], [74], [75], [148], [180] Rule Caching Cache rule result Efficiency Increased
[126], [193], [239] to avoid re-execution. Cf.: memory

ATL unique lazy rules. usage
[65] Fixed-point Iteration Pattern for computing result Organises fixpoint

using incremental approximation processing
steps.

TABLE XIV. NEW MT DESIGN PATTERNS INTRODUCED IN SURVEYED PAPERS

Figure 5. MT pattern cases per year

synthesis algorithm [149]. The work of [166] describes a language and
tool to recognise occurrences of MT design patterns. The use of ‘bad
smells’ to detect optimisation flaws in transformation specifications
is described in [215], this approach could be used to identify places
where optimisation patterns (and particularly Restrict Input Ranges)

should be introduced. Because of the variability and need for creative
choices in the application of patterns, fully automated selection and
application of patterns is unlikely to be possible. Instead, advisory
tools which can detect relevant patterns and advise transformation
developers on their use, would be more appropriate. These are likely
to be MT language-specific because of the differences between pattern
support in different MT languages (see the following section).

E. Patterns in different MT languages

Concerning research question 5, a wide range of languages were
used to implement transformations in the surveyed papers, including
custom languages and programming languages. Over 73 different
languages were used in the 218 patterns cases, indicating the lack of
standardisation in the MT field. The most popular were ATL with 48
cases, QVT-R with 24, TGG with 23 and UML-RSDS with 10. Apart
from TGG, other graph transformation languages such as VIATRA,
Groove, MotTif, Henshin, AGG and GrGen are used in 32 cases in
total. ETL is used in 5 cases and QVT-O in 7. Table XVII shows
the languages with the main categories of transformations that used
these languages, with the number of cases in each category. Table
XIX shows in detail the individual patterns used in each language.
Patterns with three or more uses in a language are listed.

Table XVIII shows the use of different pattern categories in dif-
ferent MT languages. This reveals a lack of optimisation patterns for
graph transformations, which are in contrast the most likely language



10

MT Language Transformation categories
ATL Refinement (18)

Migration (12)
(48 cases) Analysis (5)

Refactoring (4)
Graph Transformation Refactoring (10)

Refinement (8)
(32 cases) Semantic map (4)

Analysis (4)
QVT-R Refinement (8)

Bidirectional (7)
(24 cases) Refactoring (4)
TGG Bidirectional (14)
(23 cases) Code Generation (3)
UML-RSDS Refactoring (4)
(10 cases) Migration (2)
QVT-O Refinement (2)
(7 cases)
ETL Refinement (3)
(5 cases)

TABLE XVII. TRANSFORMATION CATEGORIES IN MT LANGUAGES

(with QVT-R) to use expressiveness patterns. The bx languages QVT-
R and TGG also seem poorly supported by optimisation patterns.

MT Language Patterns used
ATL Factor Expression Evaluation (14)

Entity Splitting v (14)
(94 usages) Structure Preservation (14)

Map Objects before Links (8)
Transformation Chain (7)
Recursive Descent (6)
Entity Merging (6)
Introduce Rule Inherit (5)
Aux. Meta (5); Text Templ. (3)
Transformation Inheritance (3)

Graph Transformation Auxiliary Metamodel (8)
Auxiliary Correspondence Model (5)

(45 usages) Sequential Composition (5)
Entity Split v (3)
Structure Preservation (3)

QVT-R Structure Preservation (7)
Entity Splitting v (6)

(40 usages) Sim. Explicit Rule Sched (6)
Recursive Descent (5)

UML-RSDS Construction + Cleanup (4)
Structure Preservation (3)

(29 usages) Entity Split v (3)
Map Objects before Links (3)
Factor Expr. Evaluations (3)

TGG Auxiliary Correspondence Model (15)
(27 usages) Intro Rule Inherit (3)
ETL Entity Split (v) (2)
(10 usages) Recursive Descent (2)

TABLE XIX. DESIGN PATTERN USAGES IN MT LANGUAGES

The frequency of usage of patterns in different languages in the
SLR cases (the number of pattern usages in the languages divided by
the number of cases) is shown in Table XX.

Language Cases Uses Frequency of pattern use
UML-RSDS 10 29 2.9
ETL 5 10 2
ATL 48 94 1.96
QVT-R 24 40 1.67
QVT-O 7 10 1.42
GT 32 45 1.4
TGG 23 27 1.17

TABLE XX. FREQUENCY OF PATTERN USE PER LANGUAGE

The hybrid languages with many features, such as ETL and UML-
RSDS, perhaps score highly because they provide means to support
many different patterns. More restricted languages such as QVT-R and
graph transformation languages have less support for a wide range of
patterns.

ATL is the most widely-used MT language. It provides good
support for Entity Splitting, by means of rules with one from clause

and multiple to clauses (for the vertical splitting pattern). Standard
mode ATL already has inbuilt a Map Objects Before Links execution
strategy (target instances are created in an initialisation phase for all
source instances that satisfy top-level rule application conditions, then
the links between target instances and their referenced instances are
established in the main execution phase). Specifiers can explicitly use
the pattern by using a resolveTemp call to lookup previously-mapped
target objects to link to other target objects. Rule inheritance has
only been present in more recent versions of ATL, and is infrequently
used [134]. Unique lazy rules and helper attributes directly implement
rule caching. Helper attributes, functions and using (let) variables
can be used to factor out expression evaluations [239], and helper
attributes can be used to define auxiliary metamodel features (but not
entity types). The order of execution of rules within a transformation
cannot be directly controlled, which limits the use of the Phased
Construction or Sequential Composition patterns. There is no implicit
copying facility in standard mode ATL, so that Structure Preservation
rules must be used to copy source elements to the target. It is
a unidirectional language, and external mechanisms are needed to
support bx capabilities, as in [159]. Likewise, genericity [53] and
composition of transformations [216] are facilities external to the core
ATL language. ATL has a restricted update-in-place mode, so that its
application for refactoring transformations is limited (Table XVII).
To provide additional insight into the use of patterns in ATL we
examined 53 of the 103 ATL Zoo transformations [18] and identified
that the patterns supported by intrinsic facilities of the language (such
as Map Objects before Links) are often used, whilst optimisation
and refactoring patterns are less-often applied (Table XXI). There
is a consistent trend for larger transformations to use more patterns
than smaller ones, hence the rate of pattern usages in the repository
is higher than in the SLR cases, which are often relatively short
illustrative examples. The situation regarding patterns in the ATL
Zoo cases is otherwise similar to that in the SLR ATL papers,
with the most popular patterns in both sets of cases being Factor
out Expression Evaluations, Entity Splitting (vertical), and Structure
Preservation.

Pattern Used in cases Number
of cases

Factor Exp. Eval. 1, 2, 4, 6, 7, 9-14, 18-23, 25-27, 42
29-34, 36-43, 45-48, 51-55

Structure Preservation 1, 2, 3, 6, 9, 10, 12-14, 17, 18, 22-25, 33
27-31, 34, 35, 37-39, 41-43, 48-50, 52, 53

Entity Split (vertical) 1, 3, 5, 6, 9-13, 20, 22, 25, 28, 29, 31
31, 34-39, 41-47, 51, 54, 55

Map Obj. Before Links 1, 3, 5, 6, 9-13, 35-41, 43 17
Trans. Chain 1, 7, 9, 10, 13, 22, 29, 31, 34, 36, 13

39, 41, 42
Entity Split (horizontal) 1, 9, 11-13, 19, 22, 31, 36, 40, 41, 44 12
Recursive Descent 2, 11, 12, 25, 32-34, 42, 44, 46, 47, 55 12
Rule Caching 2, 11, 12, 25, 34, 42, 46, 47, 55 9
Entity Merging 4, 6, 10, 42, 46, 48, 49 7
Factor Code Gen. 29, 39 2
Text Templates 29, 39 2
Aux. Metamodel 17, 20 2
Object Indexing 24 1
Pre-Normalisation 41 1

TABLE XXI. MT DESIGN PATTERNS IN ATL ZOO

The rate of pattern usages in the ATL zoo cases was 3.47. It
is interesting to note that although the use of helper operations to
factor out expression evaluations is the most common pattern in
ATL, there are still many cases in the published transformations
where the pattern could be further applied and duplicated expressions
are still apparent, eg., in cases 2, 20, 21, 22, etc. In case 2, in
helper ClassExistInLib() there is a substantial duplicated expression.
This is an example of the code/design smell Duplicate Code [211].
Excessive use of helper functions (instead of transformation rules)



11

ATL GT QVT-R TGG UML-RSDS QVT-O ETL
Rule Mod. 60 25 25 10 15 3 8
Architectural 14 3 3 2 3 4 1
Optimisation 15 0 2 0 9 2 0
Expressiveness 0 6 6 0 1 0 0
Bidirectional 2 8 3 15 1 0 0
Model-to-text 3 3 1 0 0 1 1

TABLE XVIII. MT PATTERN CATEGORY USES IN MT LANGUAGES

to define functionality can however hinder the comprehensibility
of a transformation, producing a specification similar in style to a
functional program. Rule Inheritance would simplify a number of
cases where there are similar rules with slight variations, eg., in cases
1, 4, 6, 13, etc. In case 1, for example, rules AntProject2Maven and
AntProject2MavenWithoutDescription are very similar and could be
expressed as two specialisations of one rule. Likewise for several rules
of the MOF to UML and UML to MOF transformations. It was noted
that Structure Preservation rules are used in many cases to explicitly
copy entities, because Implicit Copy is not available in ATL. The list
of cases is given in Table XXII.

Case Name
1 Ant to Maven
2 Assertion modification
3 ATL to BindingDebugger
4 ATL to Problem
5 ATL to Tracer
6 BibTeXML to DocBook
7 Book to Publication
8 CatalogueModelTransformations
9 Class to Relational
10 Code Clone Tools to SVG
11 CPL to SPL
12 Disaggregation
13 DSL to EMF
14 EliminateRedundantInheritance
17 EMF2KM3
18 EquivalenceAttributesAssociations
19 Families to Persons
20 Feature models, BIS to BPMN
21 Geometrical transformations
22 Grafcet to PetriNet
23 IEEE1471-2000 to MoDAF-AV
24 Introduce Primary Key
25 Introducing an Interface
26 Java source to Table
27 KM3 to SimpleClass
28 List refactoring
29 Make to Ant
30 Make partial role total
31 Maven to Ant
32 Measure to Table
33 Measure to XHTML
34 Measuring model repositories
35 Metah2Acme
36 MDL to GMF
37 MOF to UML
38 Monitor to Semaphore
39 Microsoft Office Excel Extractor
40 Microsoft Office Excel Injector
41 MySQL to KM3
42 OCL to R2ML
43 PathExpression to/from PetriNet
44 Ports
45 Public2Private
46 R2ML to OCL
47 R2ML to WSDL
48 Remove association classes
49 Replace association by foreign key
50 Replace inheritance by association
51 SimpleClass to SimpleRDBMS
52 Tree to List
53 UML to Java
54 UML to MOF
55 WSDL to R2ML

TABLE XXII. ATL CASES

Graph transformation (GT) languages include VIATRA [207],

GrGen [31] and AGG [85]. AGG supports collection matching. GrGen
supports a form of Structure Preservation via relabelling or retyping
of elements. Limitations in the expressiveness of GT languages have
been compensated by the use of patterns such as Auxiliary Metamodel
to add control over rule execution orders and strategies using flag
variables or traces [114], [204].

Triple Graph Grammar (TGG) is a GT language oriented towards
bx definition, and it includes the Auxiliary Correspondence Model
pattern as a built-in mechanism. Multiple source elements can be
related to multiple target elements, so that Entity Splitting and Entity
Merging are both supported.

QVT-R is a bidirectional MT language. Its rules permit multiple
source and target domains, so that Entity Splitting and Entity Merging
are both directly supported. QVT-R supports rule and transformation
inheritance. A common style of QVT-R specification is Recursive
Descent, with top-level rules calling non-top rules, which may then
in turn call other non-top rules. Partial rule ordering is supported by
using a when clause of a rule to require that certain mappings have
been established prior to execution of the rule. This mechanism is
also used for Map Objects before Links. Relation precedence can
also be enforced by specifying conditions in when clauses, as in
case r12 below. Implicit copying is not supported, and update-in-
place functionality can be complex to express. Curiously, QVT-R is
more often used for unidirectional transformations than for bx, in the
surveyed papers and cases, perhaps due to semantic issues for bx
application using QVT-R [29]. We examined further cases of QVT-R
specification in the examples given for the ModelMorf tool plugin for
Eclipse (cases 1 to 11, 21) or from the Medini tool examples (cases
12 to 20):

1) Hierarchical to flat state machines
2) Abstract (class) to concrete (class)
3) Class model to class model
4) DNF
5) DNF bbox
6) Hstmtostm*
7) Mi2Si
8) SeqtoStm
9) seqtostmct

10) UMLtoRDBMS
11) UMLtoRel*
12) sampleTransformation*
13) Shapes*
14) Learn debugging*
15) AImpliesBProblem
16) r1
17) r1 not toplevel
18) r1 incarnation by where
19) r12
20) r3
21) relToCore

Bidirectional transformations are indicated with *. Table XXIII shows
the patterns used in these cases.

The rate of pattern usage in the QVT-R repository cases is 2.95.
In both the SLR and repository cases, Structure Preservation is



12

Pattern Used in cases Number of cases
Struc. Pres. 1-8, 10-21 20
Recursive Descent 1, 3-11, 15, 17, 18, 21 14
Map Obj. Before Links 1, 8, 10-14, 16-19, 21 12
Factor Exp. Eval. 1, 6, 10, 11, 21 5
Aux. Corr. Model 6, 11, 12, 15, 16 5
Entity Split (vertical) 10, 12, 20, 21 4
Simulate Rule Sched. 4, 5 2

TABLE XXIII. MT DESIGN PATTERNS IN QVT-R

extensively used to explicitly copy source to target elements. Although
QVT-R does provide a means to define auxiliary helper functions for
transformations, this is less extensively used than in ATL to factor out
duplicated expressions. In general, ATL seems to facilitate a wider
range of specification styles than QVT-R, and clearer expression of
patterns.

UML-RSDS is a hybrid MT language which supports rule ordering,
and has inbuilt support for Object Indexing and other optimisation
patterns. It does not support rule or transformation inheritance, or
collection matching. If rules are specified as operations, then opera-
tion inheritance can be used to provide rule inheritance. Operations
can also be cached, to provide rule caching similar to ATL unique
lazy rules. UML-RSDS has direct support for update-in-place
transformations, and transformations may be composed within the
language. Implicit Copy is supported by the UML-RSDS tools. UML-
RSDS supports a wide range of specification styles, and 16 different
patterns were used in the 10 SLR UML-RSDS cases, compared to 16
for ATL from 48 papers and 16 for QVT-R from 24 (Table XXVI).

ETL [122] is a MT language similar to ATL, but with stronger
support for update-in-place transformations, and a more procedural
orientation. Table XXIV surveys patterns used in the ETL transfor-
mations from the Eclipse ETL repository. Again, the lack of Implicit
Copy facilities leads to frequent use of Structure Preservation rules,
although Implicit Copy is available in the related Flock language.
Rules in ETL have a single input and possibly many outputs, so that
Entity Splitting is supported. Rules can be cached. Rule inheritance
is supported, as is a form of transformation inheritance/superposition.
The rate of pattern usage in the ETL repository examples is 3.09.

Pattern Used in cases Number of cases
Struc. Pres. 1-3, 7, 9-11 7
Map Obj. Before Links 1, 5, 6, 7, 10, 11 6
Factor Exp. Eval. 6, 7, 10, 11 4
Rule Caching 1, 7, 11 3
Entity Merging 1, 6, 10 3
Recursive Descent 5, 7, 10 3
Entity Split (vertical) 6, 8 2
Rule Inheritance 1, 10 2
Phased Construction 4, 6 2
Entity Split (horizontal) 1 1
Trans. Chain 10 1

TABLE XXIV. MT DESIGN PATTERNS IN ETL

The ETL cases were:
1) Flowchart2HTML
2) CopyFlowchart
3) CopyOO
4) Flowchart2XML
5) int2out
6) OO2DB
7) Rss2Atom
8) Tree2Graph
9) UML2XSD

10) MDD-TIF
11) Argouml2Ecore

Table XXV shows how ATL, ETL, QVT-R and UML-RSDS differ
in the way they support patterns.

The range of usage of patterns in different languages in the SLR
cases (the number of different patterns used in the languages, divided
by the number of cases) is shown in Table XXVI.

Language Cases Patterns Variety of pattern use
ETL 5 8 1.6
UML-RSDS 10 16 1.6
QVT-O 7 11 1.57
QVT-R 24 16 0.66
GT 32 20 0.63
TGG 23 8 0.35
ATL 48 16 0.33

TABLE XXVI. VARIETY OF PATTERN USE PER LANGUAGE

We can conclude that the choice of MT language does have a
significant effect on the application of MT patterns. Whilst simple
patterns, such as Structure Preservation, can be used in any MT
language, more complex patterns may be difficult to use in some
MT languages. Additionally, the semantics of language features such
as rule inheritance differs from one language to another [230]. A
significant impediment is the lack of language support for a phasing
mechanism [51] in some MT languages, which affects the use of
rule modularisation patterns that rely on rule orderings (Sequential
Composition, Phased Construction, Construction and Cleanup). Such
patterns are not only useful to modularise large transformations, but
can also improve transformation efficiency. Support for architectural
patterns involving composition of transformations (Transformation
Chains, Pre-Normalisation, etc) is also lacking in some MT languages,
and is only provided by external facilities. Some facilities, such as
implicit copying of elements for migration, are not supported in the
main MT languages. The lack of consistency between different MT
languages impairs transformation reuse to the extent that language-
independent transformation designs using patterns cannot necessarily
be equivalently expressed in different MT languages.

V. ANALYSIS

In this section we try to draw some conclusions based on the results
for each research question.

A. Design patterns usage

Concerning Q1, we found that patterns were used in 44% of the 519
surveyed papers, although only in 21% was the usage made explicit.
This relatively low usage is probably due to the low level of awareness
of design patterns amongst MT developers in general (hence the
‘accidental’ use of patterns in 23% of cases). The low numbers of
publications and citations concerning MT patterns (Table XVI) also
supports this view. The low awareness of patterns means that it is
rare to find combinations of related patterns being used together (eg.,
Map Objects before Links used with Object Indexing). The problem
of awareness of patterns applies even in cases where an MT language
provides direct support – such as the capability of defining helper
functions and rule generalisations in ATL. In surveying the ATL Zoo
we found several cases where these facilities could have been further
used to simplify transformations, but were not optimally applied. In
particular, manual inspection for duplicated expressions (with more
than 10 tokens) in the zoo cases 29, 31, 37, 39, 40, 41 and 43 found
occurrences of identical clones in each of these (2, 7, 7, 2, 3, 7 and
8 different clones in each of these cases, respectively).

The type of patterns used show a predominance of modularisation
and architectural patterns, mainly concerned with improving trans-
formation structure at an infra- or inter-transformation level. There is
surprisingly low use (13% of pattern uses) of optimisation patterns,
probably due both to low awareness of these patterns, and to low
support for optimisation patterns in MT languages. For example, to



13

ATL ETL QVT-R UML-RSDS Supports
Helpers, Helpers Functions Auxiliary operations, Factor out
using clauses, let expressions Expression
let expressions Evaluations
Helper attributes Keys Use case attributes, Auxiliary

auxiliary classes/ Metamodel
features

Keys Identity Auxiliary
attributes Correspondence

Model
Rule inheritance Rule inheritance Rule Operation inheritance Introduce Rule

overriding Inheritance
Called rules, Lazy rules Non-top rules Operations Recursive Descent
lazy rules
unique lazy Cached rules, check-before- Cached Rule
rules, helper operations, enforce operations Caching
attributes equivalent()
Execution strategy, Instance mapping when clause Instance lookup by Map Objects
resolveTemp by equivalent() to enforce primary key, before Links

before prior object explicit rule
linking mapping ordering.

External Epsilon ANT External Use case Transformation
script code script script ≪include≫ Chain

TABLE XXV. LANGUAGE ELEMENTS SUPPORTING PATTERNS IN ATL, ETL, QVT-R AND UML-RSDS

use Restrict Input Ranges, an MT language needs to define a definite
order of evaluation of rule application test conditions, as in UML-
RSDS [149] or Henshin [215]. The use of phasing/layering, which
is both an optimisation and a modularisation mechanism, is limited
in the most popular MT languages (ATL, ETL and QVT-R) by their
lack of direct language support for this facility.

There is a range of complexity and abstraction level in MT patterns.
At the simplest level they are close to refactorings and specification
idioms: Factor out Expression Evaluations (related to the Extract
Helper refactoring for ATL [239]); Structure Preservation; Entity
Splitting; Recursive Descent. Such patterns require only a low level
of effort to incorporate into a specification, and are widely used in
different transformation types and in different MT languages. They
constitute 33% of the pattern uses in the SLR cases (119 out of 363
uses). They were 71% of the ATL Zoo pattern uses, and 69% of the
QVT-R repository pattern uses.

More complex patterns, requiring more significant design decisions
and effort in analysis and organisation of a transformation specifi-
cation, include: Auxiliary Metamodel, Phased Construction, Entity
Merging, Map Objects before Links, Construction and Cleanup, In-
troduce Rule Inheritance, Unique Instantiation, Restrict Input Ranges,
Replace Fixed-point by Bounded Iteration. A specifier has more
options in how these are used, and their introduction may more impact
on a specification than the more localised patterns.

Finally, highly complex patterns requiring substantial effort include
architectural patterns, which may require the construction of inter-
mediary metamodels within a transformation chain (eg., Factor Code
Generation, Intermediate Language), or careful construction of auxil-
iary transformations (Adapter Transformations; Filter Transformation;
Pre-Normalisation; Post-Normalisation) or decisions on how to divide
responsibility between transformations in a chain (Localised Model
Transformations).

Guidelines for the selection of patterns are given in [145]. Based
on the SLR, we can refine the guidelines to suggest the use of certain
patterns preferentially for given categories of transformation. For
example, Construction and Cleanup and Replace Collection Matching
were predominately used in refactoring transformations in the sur-
veyed cases, and Factor Code Generation was used only in refinement
and code generation transformations. This suggests that they are
lower-priority patterns for other transformation categories. Tables XI
and XII indicate that, for developing a code generation transformation,
a specifier should look firstly at architectural patterns, and specifically

at Transformation Chain, whilst for a refactoring, optimisation and
rule modularisation patterns are more relevant, particularly Factor Ex-
pression Evaluation and Construction and Cleanup. More precisely, in
cases of a pattern being used, a refinement transformation has a 34%
likelihood of using Entity Splitting (v), whilst a bx transformation
has a 34% likelihood of using Auxiliary Correspondence Model.

B. Design pattern benefits

Regarding MT pattern benefits, Q2, the widespread use of patterns
shows that their benefits are perceived by many MT developers,
however detailed comparative and quantitative analysis of benefits
remains to be done, particularly the evaluation of improvements to
transformation comprehensibility and maintainability by the use of
patterns [183]. The incorporation of some patterns into MT languages
(even if unconsciously) also provides evidence that they are perceived
as beneficial.

C. Gaps and novel patterns

Regarding Q3, the survey uncovered 16 patterns which had not
previously been explicitly documented as patterns in MT pattern col-
lections. Ten of these patterns are architectural, three are bidirectional
patterns (Lens, Active Operations and 3-way Merge), two are optimi-
sation patterns (Replace Collection Matching, Rule Caching), and one
is a modularisation pattern (Fixed-point Iteration). The architectural
patterns provide advanced techniques for the organisation of systems
of transformations, and four of these patterns have been applied
several times in practice. Nevertheless, there remain gaps where
additional patterns would be useful, especially for the architectural
organisation and optimisation of bx (Table XI), for the genericity of
transformations wrt metamodels, and for big data processing.

D. Trends

Regarding Q4, we found a trend for increasing pattern use over
time, corresponding closely to the general growth in transformation
use (Figure 5). In the earlier years of the surveyed range we came
across numbers of papers which concerned transformation tasks, but
which did not use model transformations, perhaps due to the lack of
MT languages or awareness of MT at that time. As in the survey
of [22], we observed a substantial increase in the use of MT up to
2010. Subsequently, MT are still widely used, but often appear as
only one element in a paper, reflecting a shift in research focus away



14

from the construction of a transformation as being the main subject
of a paper. It is clear that the field of MT is not dwindling, instead
MT is being applied in a wider range of application areas (such as
streaming transformations, combination with search-based software
engineering, and with big data analysis). Specialised MT workshop
series, such as BX, VOLT and AMT have been initiated in recent
years.

The level of influence of papers concerned with defining and
cataloguing patterns still seems quite low (they are infrequently
cited in the surveyed MT development cases, and in less than 10%
of the papers using patterns). Dedicated support forums (eg., on
stackoverflow.com) and inbuilt pattern advisors in MT tools (eg., for
Eclipse) may be a more effective means of propagating knowledge
of patterns to practitioners, compared to academic publications.

E. MT languages and patterns

Regarding Q5, we found that the main MT languages all support
the use of patterns, but with significant differences (Tables XVIII
and XIX). While ATL has good support for many modularisation
patterns, it does not support Sequential Composition or Phased
Construction, and it has relatively poor support for architectural or
bx patterns. QVT-R also has similar limitations for rule sequencing
and architectural patterns.

We examined transformation repositories for ATL, QVT-R and ETL
and found widespread use of MT patterns in these larger cases. Table
XXVII summarises the frequency of use of patterns in different MT
language repositories.

Language Patterns per case Different patterns used
ATL 3.47 14
ETL 3.09 11
QVT-R 2.95 7

TABLE XXVII. PATTERN USE IN MT LANGUAGE REPOSITORIES

Stronger support for patterns may require enhancement of MT
languages. We can suggest three significant improvements that could
be made in this direction:

1) Definition of Rule groups: a group of rules representing a
layer or phase [51], [94], whose execution may be ordered
before or after that of other rule groups. UML-RSDS partly
provides this facility via use cases: a subtransformation with
a set of postconditions can represent a rule group within a
larger transformation, and can be composed into the main
transformation via use case ≪include≫. ETL defines a pre
section which can be applied before other rules. Apart from
supporting phasing, rule groups could also be used for other
forms of modularisation, for example, to put together all rules
which process the same source entity type, if there are several
of these.

2) Ordering of rule application condition tests [149], [215],
to facilitate optimisation based on more efficient evaluation
orders, particularly restricting the range of source elements
which need to be evaluated for matches. Eg., the tests

e1 : E1 and e2 : e1.r and e2 : E2

are potentially more efficient than

e1 : E1 and e2 : E2 and e2 : e1.r

3) Capabilities to compose transformations within the language,
so avoiding the need for external facilities such as scripts to
coordinate the execution of transformation chains, etc.

VI. THREATS TO VALIDITY

The main threats to the validity of the study are: incompleteness,
publication bias, inaccuracy in classification and in data analysis.

Incompleteness may arise by the omission of relevant cases through
incorrect selection procedures. We have tried to avoid this by con-
sidering both a focussed selection of published case studies of MT,
from specialised MDE conferences and journals, and a general survey
of the Informatics research domain using a broadly-based research
database. This approach has been used in previous MT surveys, such
as [22]. We obtained more cases than [22] because we covered a wider
span of years, and a wider range of sources. We also included the
cases of this survey in our initial selection. Unlike [22] we also carried
out snowballing of references from the initial collection of papers
to also consider the papers that they cite. This process potentially
reduces the effect of publication bias arising from the restricted range
of the initial sources. We found that the process broadened the range
of cases considered in terms of MT languages and widened the span
of years in which cases occurred. Our survey became more inclusive
of cases that used graph transformation languages, in particular.

We compared our results to analysis of public repositories of
ATL, QVT-R and ETL transformations. The SLR and repository
analysis results were generally consistent, which provides evidence
that for these languages at least, the SLR cases are representative of
transformation cases in general.

It is possible that mistakes have been made in recognising the
presence of patterns in the selected papers, we have tried to minimise
this problem by having two independent reviewers for each paper. In
many published transformation cases there were insufficient details of
the transformation provided to determine if patterns had been used,
so it is possible that some positive examples have been overlooked.

Mistakes in classification (of transformation category or of the type
of pattern used) may also arise, again we cross-checked this analysis
between independent reviewers. In a number of cases there were
some discrepancies between reviewers and these were resolved by
discussion.

Analysis results were double-checked by the main author re-
examining each pattern case paper, to reduce the number of errors
in analysis. The analysis presented in this expanded version of the
paper is generally consistent with the smaller initial survey reported
in ICMT ’16. This gives us some confidence in the consistency of
our data analysis procedures.

VII. RELATED WORK

To our knowledge, there is no other survey of MT design patterns
in practice. In [145], some examples of applications of the proposed
patterns are cited, to provide evidence for existence of the patterns.
Kusel et. al. [133], [134] survey MT reuse mechanisms, including
generic and higher-order transformations, but do not explicitly con-
sider patterns. They conclude that reuse mechanisms in MT languages
lack consistency, and that reuse in practice in MT developments is
still quite low. Regarding ATL, they also note the low use of rule and
transformation inheritance in the ATL zoo [134], and the high use of
functions for factorisation. A study of MT developments in general
is given in [22], this identified 82 MT cases, which we included in
our survey sources. This study also identified a lack of validation in
the surveyed cases. In contrast to [22], we found a general increase
in the number of publications that include a model transformation,
up to 2016.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that MT design pattern use is quite widespread,
however this use is often unconscious and unsystematic. We identified



15

also a trend towards increasing use of patterns, with very few explicit
uses of transformation patterns before 2005. With one exception, all
the papers which formally define MT patterns also date from after
2005.

We also identified some new patterns which had not previously
been formally recognised as MT patterns. We identified that different
MT languages vary significantly in their support for patterns and in
how patterns can be expressed in the languages.

Not considered here are MT anti-patterns, or MT struc-
tures/solutions to be avoided (see, eg., [92]). This is an important area,
but is not so well developed as MT patterns, so we do not include
these in this paper. Likewise, the related concept of MT idioms [4]
is not considered.

Overall, we can conclude that although MT patterns represent
a useful tool for the construction of high quality transformations,
awareness of existing patterns needs to be raised, and improved tool
support and documentation of MT patterns is needed. There are
areas where further patterns appear to be necessary but have not yet
been identified. Greater uniformity between the specification facilities
of different MT languages would be beneficial, as would enhanced
language facilities to enable the use of patterns.

REFERENCES

[1] V. Acretoaie, et al., Transparent MT, ICMT 2015.
[2] J. Agirre et al., A flexible MDSD process for component based em-

bedded control systems, III Jornadas de Computacion Empotradas JCE,
SARTCO, 2012.

[3] J. Agirre et al., Evolving legacy MT to aggregate non-functional
requirements, MODELSWARD 2015.

[4] A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi, A. Narayanan, G. Karsai,
Reusable Idioms and Patterns in Graph Transformation Languages,
GraBaTs 2004, Electronic notes in Theoretical Computer Science, pp.
181–192, 2005.

[5] D. Akehurst, S. Kent, O. Patrascoiu, A relational approach to defining
and implementing transformations between metamodels, SoSyM vol. 2,
no. 4, 2003, pp. 215–239.

[6] D. Akehurst et al., SiTra: simple transformations in Java, MODELS
2005 Workshops, 2006.

[7] B. Al-Batram et al., Semantic clone detection for MBD of embedded
systems, MODELS 2011.

[8] E. Alves, P. Machado, F. Ramalho, Automatic generation of built-in
contract test drivers, SosyM, vol. 13, no. 3, 2014.

[9] M. van Amstel, M. van den Brand, Z. Protic, T. Verhoeff, Transforming
process algebra models into UML state machines, ICMT 2008.

[10] M. van Amstel, S. Bosems, I. Kurtev, L. Pires, Performance in model
transformations: experiments with ATL and QVT, ICMT 2011, LNCS
6707, pp. 198–212, 2011.

[11] A. Anjorin et al., Complex attribute manipulation in TGGs with
constraint-based programming techniques, BX 2012.

[12] A. Anjorin, M. Lauder, A solution to the Flowgraphs case study using
Triple Graph Grammars and eMoflon, TTC 2013.

[13] A. Anjorin et al., A systematic approach and guidelines to developing
a TGG, BX 2015.

[14] A. Anwar et al, Towards a generic approach for model composition,
ICSEA 2008.

[15] A. Anwar et al., A rule-driven approach for composing viewpoint-
oriented models, JoT vol. 9, 2010.

[16] T. Arendt et al., Henshin: Advanced concepts and tools for in-place
EMF model transformations, MODELS 2010, LNCS 6394, 2010.

[17] C. Atkinson et al., Enhancing classic transformation languages to
support multi-level modeling, Sosym vol. 14, 2015.

[18] ATL Zoo, www.eclipse.org/atl/atlTransformations, accessed November
30th, 2016.

[19] T. Baar, J. Whittle, On the usage of concrete syntax in MT rules, PSI
2006.

[20] Z. Balogh, D. Varro, Model transformation by example using inductive
logic programming, SoSyM, 2009.

[21] B. Barroca et al., DSLTrans: a Turing incomplete transformation
language, SLE 2010.

[22] E. Batot, H. Sahraoui, E. Syriani, P. Molins, W. Sboui, Systematic map-
ping study of model transformations for concrete problems, Modelsward
2016, pp. 176–183.

[23] G. Bergmann, C. Debreceni, I. Rath, D. Varro, Query-based access
control for secure collaborative modelling using bidirectional transfor-
mations, MODELS 2016.

[24] J. Bezivin, F. Jouault, J. Palies, Towards Model Transformation Design
Patterns, ATLAS group, University of Nantes, 2003.

[25] E. Biermann, C. Ermel, G. Taentzer, Formal foundation of consistent
EMF model transformations, SoSyM (2012) 11: 227–250.

[26] P. Bocciarelli, A. D’Ambrogio, A model-driven method for enacting the
design-time QoS analysis of business processes, Sosym, 13: 573–598,
2014.

[27] A. Bohannon et al., Boomerang: resourceful lenses for string data,
POPL ’08, 2008.

[28] K. Born, S. Schulz, D. Struber, S. John, Solving the CRA case with
Henshin and a Genetic Algorithm, TTC 2016.

[29] J. Bradfield, P. Stevens, Enforcing QVT-R with mu-calculus and games,
FASE 2013.

[30] T. Buchmann, F. Schwagerl, Using meta-code generation to realize
higher-order MT, ICSOFT 2013.

[31] S. Buchwald, E. Jakumeit, A GrGen.NET solution of the model migra-
tion case, TTC 2010.

[32] P. Buneman, et al., UnQL: a query language and algebra for semistruc-
tured data based on structural recursion, The VLDB Journal, 2000.

[33] E. Burger, O. Schneider, Translatability and translation of updated
views in ModelJoin, ICMT 2016.

[34] L. Burgueno, et al., Static fault localisation in MT, IEEE Trans. SE.,
vol. 41, 2014.

[35] F. Buttner, et al., On validation of ATL transformation rules by
transformation models, MoDeVVa 2011.

[36] F. Buttner, et al., Verification of ATL transformations using transforma-
tion models and model finders, ICFEM 2012.

[37] F. Buttner et al., On verifying ATL transformations using ‘off-the-shelf’
SMT solvers, MODELS 2012.

[38] F. Buttner et al., Checking MT refinement, ICMT 2013.
[39] J. Cabot, R. Clariso, E. Guerra, J. de Lara, Verification and validation

of declarative model-to-model transformations through invariants, JSS,
2009.

[40] J. Cabot et al., Synthesis of OCL pre-conditions for GT rules, ICMT
2010.

[41] D. Calegari, A. Delgado, Rule chains coverage for testing QVT-R, AMT
2013.

[42] V. de Castro, J. Vara, E. Marcos, Model transformations for service-
oriented web applications development, MDWE 2007.

[43] Z. Cheng et al., A sound execution semantics for ATL via translation
validation, ICMT 2015, LNCS 9152, 2015.

[44] Z. Cheng, M. Tisi, Towards incremental deductive verification for ATL,
VOLT 2016.

[45] A. Cicchetti, B. Meyers, M. Wimmer, Abstract and concrete syntax
migration of instance models, TTC 2010.

[46] C. Clasen et al., Transforming very large models in the cloud, MDE on
and for the Cloud, 2012.

[47] V. Cosentino, M. Tisi, F. Buttner, Analysing flowgraphs with ATL, TTC
2013.

[48] J. Cuadrado et al., RubyTL: a practical extensible transformation
language, ECMDA-FA 2006.

[49] J. S. Cuadrado, F. Jouault, J. G. Molina, J. Bezivin, Optimization
patterns for OCL-based model transformations, MODELS 2008, vol.
5421 LNCS, Springer-Verlag, pp. 273–284, 2008.

[50] J. Cuadrado, J. Molina, Approaches for MT reuse: factorization and
composition, ICMT 2008.

[51] J. Cuadrado, J. Molina, Modularisation of model transformations



16

through a phasing mechanism, SoSyM vol. 8, no. 3, 2009, pp. 325–
345.

[52] J. Cuadrado et al., Generic MT: write once, reuse everywhere, ICMT
2011.

[53] J. Cuadrado, E. Guerra, J. de Lara, A component model for model
transformations, IEEE TSE, vol. 7, no. 7, 2013.

[54] J. Cuadrado, J. de Lara, Streaming model transformations: Scenarios,
challenges and initial solutions, ICMT 2013.

[55] J. Cuadrado, E. Guerra, J. de Lara, Quick fixing ATL model transfor-
mations, MODELS 2015.

[56] A. Cunha, A. Garis, D. Riesco, Translating between Alloy specifications
and UML class diagrams annotated with OCL, SoSyM vol. 14, 2015,
pp. 5–25.

[57] K. Czarnecki, S. Helsen, Feature-based survey of model transformation
approaches, IBM System Journal, 45(3), pp. 621–645, 2006.

[58] A. Demuth, et al., Constraint-driven modelling through transformation,
SoSym vol. 14, no. 2, 2015.

[59] Z. Diskin, Y. Xiong, K. Czarnecki, From state- to delta-based bidirec-
tional model transformations, ICMT 2010.

[60] J. Dong et al., QVT-based MT for design pattern evolutions, IASTEAD
IMSA, 2010.

[61] J. Dyck et al., Towards the automatic verification of behaviour preser-
vation at the transformation level for operational MT, AMT 2015.

[62] H. Ehrig, et al., Information preserving bidirectional MT, FASE 2007.
[63] C. Eickhoff, T. George, S. Lindel, A. Zundorf, SDMLib solution to the

MovieDB case, TTC 2014.
[64] H. Ergin, E. Syriani, A unified template for MT design patterns, PAME,

2015.
[65] H. Ergin, E. Syriani, Identification and application of a model trans-

formation design pattern, ACMSE ’13, 2013.
[66] H. Ergin, E. Syriani, AToMPM solution for the IMDb case study, TTC

2014.
[67] A. Etien, A. Muller, T. Legrand, R. Paige, Localised model transfor-

mations for building large-scale transformations, SoSyM vol. 14, no.
3, 2015, pp. 1189–1213.

[68] M. Didonet Del Fabro, P. Valduriez, Towards the efficient development
of MT using model weaving and matching transformations, Sosym vol.
8, 2009.

[69] F. Fleurey, et al., MDE for software migration in a large industrial
context, MODELS 2007.

[70] J. Foster, M. Greenwald, J. Moore, B. Pierce, A. Schmitt, Combinators
for bi-directional tree transformations, ACM Trans. Prog. Lang. Sys.,
29(3), 2007.

[71] M. Funk, A. Nysen, H. Lichter, From UML to ANSI-C: an Eclipse-based
code generation framework, RWTH, 2007.

[72] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[73] K. Garces, J. Vara, F. Jouault, E. Marcos, Adapting transformations to
metamodel changes via external transformation composition, SoSyM
(2014) 13: 789–806.

[74] A. Garcia-Dominguez, D. Kolovos, Models from Code or Code as a
Model?, OCL 2016.

[75] C. Gerking, C. Heinzemann, Solving the Movie database case with
QVT-O, TTC, 2014.

[76] H. Giese, S. Glesner, J. Leitner, W. Schafer, R. Wagner, Towards verified
model transformations, MODEVA 2006.

[77] H. Giese, R. Wagner, From model transformation to incremental bidi-
rectional model synchronisation, SoSyM vol. 8, no. 1, 2009, pp. 21–43.

[78] H. Giese, S. Hildebrant, S. Neumann, Model synchronisation at work:
keeping SysML and AUTOSAR models consistent, ICMT 2010.

[79] T. Goldschmidt, G. Wachsmuth, Refinement transformation support for
QVT relational transformations, ENCS, 2011.

[80] S. Gottmann et al., Correctness and completeness of generalised model
synchronisation based on TGGs, AMT 2013.

[81] S. Gottmann et al., Towards the propagation of model updates, BX
2016.

[82] J. Greenyer, E. Kindler, Comparing relational MT technologies, Sosym
vol. 9, 2010.

[83] J. Greenyer, J. Rieke, Applying advanced TGG concepts, AGTIVE 2011.

[84] H. Grohne et al., Formalising semantic bidirectionalism with dependent
types, EDBT/ICDT 2014.

[85] R. Gronmo, B. Moller-Pedersen, From sequence diagrams to state
machines by graph transformation, ICMT 2010. Also in JoOT, vol.
10, 2011.

[86] R. Gronmo, S. Krogdahl, B. Moller-Pedersen, A collection operator for
graph transformations, SoSyM (2013) 12: 121–144.

[87] E. Guerra, J. de Lara, F. Orejas, Inter-modelling with patterns, SoSyM
(2013) 12: 145–174.

[88] E. Guerra, J. de Lara, D. Kolovos, R. Paige, O. Marchi dos Santos,
Engineering model transformations with transML, SoSyM (2013) 12:
555–577.

[89] E. Guerra, J. de Lara, Colouring: execution, debug and analysis of
QVT-R transformations through coloured Petri nets, SoSyM (2014) 13:
1447–1472.

[90] E. Guerra, M. Soeken, Specification-driven MT testing, Sosym, vol. 14,
no. 2, 2015.

[91] C. Heinzemann, J. Suck, R. Jubeh, A. Zundorf, Topology analysis of
car platoons merge with FujabaRT, TTC 2010.

[92] Z. Hemel, L. Kats, D. Groenewegen, E. Visser, Code generation
by model transformation: a case study in transformation modularity,
SoSyM (2010) 9: 375–402.

[93] F. Hermann, N. Nachtigall, B. Braatz, S. Gottmann, T. Engel, Solving
the FIXML2Code case study with HenshinTGG, TTC 2014.

[94] F. Hermann, S. Gottmann, N. Nachtigall, H. Ehrig, B. Braatz, G.
Morelli, A. Pierre, T. Engel, C. Ermel, Triple graph grammers in the
large for translating satellite procedures, ICMT 2014.

[95] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong,
S. Gottmann, T. Engel, Model synchronisation based on triple graph
grammars, SoSyM (2015), 14: 241–269.

[96] A. S-B. Herrera et al., An OCL-based Bridge from Concrete to Abstract
Syntax, OCL 2015.

[97] S. Hidaka, M. Tisi, J. Cabot, Z. Hu, Feature-based classification of
bidirectional transformation approaches, SoSyM 15: 907–928, 2016.

[98] G. Hinkel, Change propagation in an internal MT language, ICMT
2015.

[99] M. Hoffmann, et al., Symmetric Lenses, POPL’ 2011.

[100] T. Horn, Solving the class diagram restructuring transformation case
with FunnyQT, TTC 2013.

[101] H. Hoyos, J. Chavarriaga, P. Gomez, Solving the FIXML case study
using Epsilon and Java, TTC 2014.

[102] M. E. Iacob, M. W. A. Steen, L. Heerink, Reusable model transfor-
mation patterns, Enterprise Distributed Object Computing Conference
Workshops, 2008, pp. 1–10, doi:10.1109/EDOCW.2008.51.

[103] M. Igamberdiev et al., Verification of the CD2RDBMS Transformation
Case in Flora-2, VOLT 2015.

[104] P. Inostroza, et al., Tracing program transformation with string origins,
ICMT 2014.

[105] P. Inostroza, T. van der Storm, The TTC 2014 FIXML case: Rascal
solution, TTC 2014.

[106] P. Inostroza, T. van der Storm, The TTC 2014 Movie database case:
Rascal solution, TTC 2014.

[107] M. Iqbal, A. Arcuri, L. Briand, Environment modeling and simulation
for automated testing of soft real-time embedded software, SoSyM 14:
483–524, 2015.

[108] B. Izso, A. Hegedus, G. Bergmann, A. Horvath, PN2SC case study:
an EMF-IncQuery solution, TTC 2013.

[109] A. Jimenez, et al., Using ATL to support MDD of RubyTL transfor-
mations, MtATL, 2011.

[110] J. Johannes, S. Zschaler, M. Fernandez, A. Castillo, D. Kolovos,
R. Paige, Abstracting complex languages through transformation and
composition, MODELS 2009, LNCS 5795, pp. 546–550, 2009.

[111] F. Jouault, I. Kurtev, Transforming models with ATL, MODELS 2005
Workshops, LNCS vol. 3844, 2006.

[112] F. Jouault, O. Beaudoux, On the use of active operations for incre-
mental Bidirectional Evaluation of OCL, OCL 2015.



17

[113] F. Jouault, O. Beaudoux, Efficient OCL-based Incremental Transfor-
mations, OCL 2016.

[114] S. Jurack, J. Tietje, Solving the TTC 2011 Reengineering case with
Henshin, TTC 2011.

[115] L. Kapova et al., Evaluating maintainability with code metrics for
model-to-model transformations, Research into Practice, Springer, 2010.

[116] R. Khadka et al., WSCDL to WSBPEL: A Case Study of ATL-based
transformation, MtATL 2011.

[117] Y. Khan, M. Al-Attar, Using model transformation to refactor use case
models based on antipatterns, Inf. Syst. Front. (2016), 18: 171–204.

[118] B. Kitchenham, Procedures for defining systematic reviews, 2004.
[119] M. Kleiner, M. Del Fabro, D. De Santos, Transformation as search,

ECMFA 2013, LNCS 7949, pp. 54–69, 2013.
[120] N. Koch, Transformation techniques in the MDD process of UWE,

ICWE ’06, ACM, 2006.
[121] S. Kolahdouz-Rahimi et al., Evaluation of MT approaches for model

refactoring, Sci. Comp. Prog., vol. 85, 2014.
[122] D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Lan-

guage, ICMT 2008.
[123] D. Kolovos, et al., Update transformations in the small with the

Epsilon wizard language, JoT, 2007.
[124] D. Kolovos et al., Implementing the interactive television applications

case study using Epsilon, MDDTIF 2007.
[125] D. Kolovos et al, Merging models with the Epsilon Merging Language

(EML), MODELS 2006.
[126] D. Kolovos et al., The Epsilon pattern language, MiSE 2017.
[127] A. Kraas, Realizing model simplifications with QVT-O, OCL 2014.
[128] M. Kramer, K. Rakhman, Automated inversion of attribute mappings

in bx, BX 2016.
[129] F. Krikava, Solving the CRA case with SIGMA, TTC 2016.
[130] T. Kuhne et al., Explicit transformation modelling, MODELS 2009

Workshops, LNCS 6002, 2009.
[131] G. Kulcsar, E. Leblebici, A. Anjorin, A solution to the FIXML case

study using Triple Graph Grammars and eMoflon, TTC 2014.
[132] I. Kurtev, K. Van den Berg, F. Joualt, Rule-based modularisation in

model transformation languages illustrated with ATL, Proceedings 2006
ACM Symposium on Applied Computing (SAC 06), ACM Press, pp.
1202–1209, 2006.

[133] A. Kusel, J. Schonbock, M. Wimmer, G. Kappel, W. Retschitzegger,
W. Schwinger, Reuse in model-to-model transformation languages: are
we there yet?, SoSyM vol. 14, no. 2, 2015.

[134] A. Kusel, J. Schonbock, M. Wimmer, W. Retschitzegger, W.
Schwinger, G. Kappel, Reality check for MT reuse: the ATL transfor-
mation zoo case study, AMT 2013.

[135] M. Kuznetsov, UML model transformation and its application to MDA
technology, Prog. Computer Soft., vol 33, 2007.

[136] K. Lano, S. Kolahdouz-Rahimi, Model migration transformation spec-
ification in UML-RSDS, TTC 2010.

[137] K. Lano, S. Kolahdouz-Rahimi, Solving the TTC 2011 model migration
case with UML-RSDS, TTC 2011.

[138] K. Lano, S. Kolahdouz-Rahimi, Case study: class diagram restructur-
ing, TTC 2013.

[139] K. Lano, Solving the Petri-nets to Statecharts transformation case with
UML-RSDS, TTC 2013.

[140] K. Lano, S. Yassipour-Tehrani, Solving the TTC 2014 Movie Database
Case with UML-RSDS, TTC 2014.

[141] K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of
model transformations, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412–436.

[142] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, J. Terrell, S. Zschaler,
Correct-by-construction synthesis of model transformations using de-
sign patterns, SoSyM, vol. 13, no. 2, May 2014, pp. 412–436.

[143] K. Lano, S. Kolahdouz-Rahimi, Optimising Model-transformations
using Design Patterns, MODELSWARD 2013.

[144] K. Lano et al., A framework for MT verification, FACS, 2014.
[145] K. Lano, S. Kolahdouz-Rahimi, Model-transformation Design Pat-

terns, IEEE Transactions in Software Engineering, vol 40, 2014.

[146] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Analysis of
hybrid MT language specifications, FSEN 2015.

[147] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Patterns for
Specifying Bidirectional Transformations in UML-RSDS, ICSEA 2015.

[148] K. Lano, S. Yassipour-Tehrani, Solving the Class Responsibility As-
signment Case with UML-RSDS, TTC 2016.

[149] K. Lano, Agile model-based development using UML-RSDS, CRC
Press, 2016.

[150] K. Lano, S. Yassipour-Tehrani, Verified bidirectional transformations
by construction, VOLT, 2016.

[151] M. Lawley, J. Steel, Practical declarative Model Transformation with
Tafkat, MODELS 2005, LNCS 3844, 2006.

[152] E. Leblebici, Towards a graph grammar based approach to inter-model
consistency checks, BX 2016.

[153] L. Lengyel, et al., Model transformation with a visual control flow
language, Int. Journal of Computer and Information Eng., vol. 2, no.
2, 2008.

[154] D. Li, X. Li, V. Stolz, FIXML to Java, C# and C++ transformations
with QVTR-XSLT, TTC 2014.

[155] G. Loniewski, E. Insfran, S. Abrahao, A systematic review of the use
of requirements engineering techniques in model-driven development,
MODELS 2010, Springer, pp. 213–227.

[156] L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E.
Syriani, M. Wimmer, Model transformation intents and their properties,
SoSyM (2016) 15: 647–684.

[157] K. Ma et al., A relational approach to MT with QVT-R supporting
model synchronization, Journal Univ. Comp. Sci., vol 17, 2011.

[158] N. Macedo et al., Composing least-change lenses, BX 2013, ECE-
ASST vol. X, 2013.

[159] N. Macedo, A. Cunha, Least-change bidirectional model transforma-
tion with QVT-R and ATL, SoSyM (2016) 15: 783–810.

[160] A. di Marco, S. Pace, Model-driven approach to Agilla agent gener-
ation, IWCMC 2013, IEEE.

[161] S. Markovic, T. Baar, Refactoring OCL annotated UML class dia-
grams, SoSyM vol. 7, no. 1, 2008, pp. 25–47.

[162] S. Markovic, T. Baar, Semantics of OCL specified with QVT, SoSyM
vol. 7, no. 4, 2008, pp. 399–422.

[163] N. Matragkas et al., A traceability-driven approach to MT testing,
AMT 2013.

[164] K. Matsuda et al., Bidirectionalisation transformation based on auto-
matic derivation of view complement functions, ICFP ’07, 2007.

[165] M. McGill, B. Cheng, Test-driven development of a MT with Jemtte,
Research Gate, 2008.

[166] C. Mokaddem, H. Sahraoui, E. Syriani, Towards rule-based detection
of design patterns in model transformations, SAM 2016, LNCS vol.
9959, pp. 211–225, 2016.

[167] T. Moreira et al., Generating VHDL source code from UML models
of embedded systems, WPPL 2010.

[168] O. Muliawan, P. van Gorp, A. Keller, D. Janssens, Executing a
standard compliant transformation model on a non-standard platform,
IEEE Int. Conf. Software Testing Verification and Validation Workshop,
2008

[169] P. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneken-
burger, S. Gerard, J-M. Jezequel, Model-driven analysis and synthesis
of textual concrete syntax, SoSyM vol. 7, no. 4, 2008, pp. 423–441.

[170] N. Nachtigall et al., Towards Domain Completeness for Model Trans-
formations Based on Triple Graph Grammars, VOLT 2016.

[171] S. Nalchigar et al., Towards a catalog of non-functional requirements
for MT, AMT 2013.

[172] A. Narayanan, G. Karsai, Verifying MT by structural correspondence,
GT-VMT 2008.

[173] C. Natschlager, F. Kossak, K. D. Schewe, Deontic BPMN: a powerful
extension of BPMN with a trusted model transformation, SoSyM (2015)
14: 765–793.

[174] A. Nayak, D. Samanta, Synthesis of test scenarios using UML activity
diagrams, SoSyM vol. 10, no. 1, 2011, pp. 63–89.

[175] B. Oakes, et al., Fully verifying transformation contracts for declara-
tive ATL, MODELS 2015.



18

[176] B. Oakes, et al., Full contract verification for ATL using symbolic
execution, Soft. Sys. Model, July 2016.

[177] S. Peldszus el al., Java refactoring case using eMoflon, TTC 2015.
[178] S. Peldszus et al., Incremental co-evolution of Java programs based

on bidirectional GT, PPPJ 2015.
[179] R. Perez-Castillo, I. Garcia-Rodriguez de Guzman, M. Piattini, Imple-

menting business process recovery patterns through QVT transforma-
tions, ICMT 2010.

[180] J. von Pilgrim, Ecore2GenModel with Mitra and GEF3D, TTC 2010.
[181] E. Planas et al., Two Basic Correctness Properties for ATL Transfor-

mations: Executability and Coverage, MtATL 2011.
[182] I. Potters, Rule-based update transformations and their application to

model refactorings, SoSyM vol. 4, no. 4, 2005, pp. 368–385.
[183] L. Prechelt, An experiment on the usefulness of design patterns, Univ.

Karlsruhe Tech report 9/1997, 1997.
[184] T. Rahmani, D. Oberle, M. Dahms, An adjustable transformation from

OWL to Ecore, MODELS 2010.
[185] M. Rahmouni, S. Mbarki, MDA-based ATL transformation to generate

MVC2 web models, IJCSIT vol 3., 2011.
[186] I. Rath et al., Live MT driven by incremental pattern matching, ICMT

2008.
[187] A. Razavi, K. Kontogiannis, Partial evaluation of MT, ICSE 2012.
[188] J. Reimann, M. Seifert, U. Afmann, On the reuse and recommendation

of model refactoring specifications, SoSyM (2013) 12: 579–596.
[189] A. Rentschler et al., Remodularising legacy MT with automatic clus-

tering techniques, AMT 2014.
[190] J. Rivera et al., Orchestrating ATL model transformations, MtATL

2009.
[191] H. H. Rodriguez, D. Kolovos, Declarative Model Transformation

Execution Planning, OCL 2016.
[192] R. Romeikat, S. Roser, P. Mullender, B. Bauer, Translation of QVT

Relations into QVT Operational Mappings, ICMT 2008.
[193] L. Rose, D. Kolovos, R. Paige, F. Polack, Migrating activity diagrams

with Epsilon Flock, TTC 2010.
[194] L. Rose, D. Kolovos, R. Paige, F. Polack, S. Poulding, Epsilon Flock:

a model migration language, SoSyM (2014) 13: 735–755.
[195] S. Rottger, S. Zschaler, Tool support for refinement of non-functional

specifications, SoSyM vol. 6, no. 2, 2007, pp. 185–204.
[196] A. Ruping, Transform! – Patterns for data migration, EuroPLoP 2010.
[197] J. Santos, A. Moreira, J. Araujo, M. Goulao, Increasing quality in

scenario modelling with MDD, 7th Int. Conf. on Quality of Information
and Communications Technology, 2010.

[198] I. Sasano et al., Toward bidirectionalisation of ATL with GRoundTram,
ICMT 2011.

[199] B. Schatz, UML model migration with PETE, TTC 2010.
[200] G. Selim et al., Specification and verification of graph-based MT

properties, ICGT 2014.
[201] G. Selim et al., Finding and fixing bugs in MT with formal verification,

AMT@MoDELS, 2015.
[202] G. Selim, S. Wang, J. Cordy, J. Dingel, Model transformations for

migrating legacy deployment models in the automotive industry, SoSyM
(2015), 14: 365–381.

[203] O. Semerath et al., Incremental backward change propagation of view
models by logic solvers, MODELS 2016.

[204] W. Smid, A. Rensink, Class diagram restructuring with Groove, TTC
2013.

[205] M. dos Santos Soares, J. Vrancken, A metamodeling approach to
transform UML 2.0 sequence diagrams to Petri nets, IASTED 2008.

[206] H. Song, G. Huang, F. Chauvel, W. Zhang, Y. Sun, W. Shao, H.
Mei, Instant and incremental QVT transformation for runtime models,
MODELS 2011, LNCS 6981, pp. 273–288.

[207] D. Stein, G. Szarnyas, I. Rath, Java refactoring: a VIATRA solution,
TTC 2015.

[208] K. Stenzel, N. Moebius, W. Reif, Formal verification of QVT trans-
formations for code generation, SoSyM vol. 14, no. 2, 2015.

[209] P. Stevens, Bidirectional MT in QVT: semantic issues and open
questions, Sosym vol. 9, 2010.

[210] P. Stevens, A simple game-theoretic approach to checkonly QVT
relations, Sosym, vol. 12, no. 1, Feb. 2013.

[211] G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for soft-
ware design smells: managing technical debt, Morgan Kaufmann, 2014.

[212] E. Syriani, H. Ergin, Operational semantics of UML activity diagrams,
MoDRE 2012.

[213] G. Szarnyas, O. Semerath, B. Izso, C. Debreceni, Movie database
case: an EMF-INCQUERY solution, TTC 2014.

[214] G. Taentzer, et al., MT by graph transformation: a comparative survey,
MT in Practice, MODELS 2005.

[215] M. Tichy, et al., Detecting performance bad smells for Henshin MT,
AMT 2013.

[216] M. Tisi, J. Cabot, Combining transformation steps in ATL chains, 2nd
Workshop on MT Composition, 2011.

[217] M. Tisi, J. Cabot, F. Jouault, Improving higher-order transformations
support in ATL, ICMT 2010.

[218] M. Tisi, et al., Lazy execution of model-to-model transformations,
MODELS 2011.

[219] V. Torres, P. Giner, V. Pelechano, Developing BP-driven web applica-
tions through the use of MDE techniques, SoSyM vol. 11, no.4, 2012,
pp. 609–631.

[220] J. Troya, A. Vallecillo, A rewriting logic semantics for ATL, JOT, 2011.
[221] J. Troya et al., Towards systematic mutations for and with ATL MT,

ICSTW 2015.
[222] B. Vanhooff et al., Towards a transformation chain modelling lan-

guage, Embedded Computer Systems workshop, 2006.
[223] B. Vanhooff, Y. Berbers, Breaking up the transformation chain,

OOPSLA 2012.
[224] D. Varro et al., Road to a reactive and incremental MT platform,

SoSoym vol. 15, 2016.
[225] A. Vieira, F. Ramalho, Static Analyzer for Model Transformations,

MtATL 2011.
[226] T. Vogel, et al., Incremental model synchronisation for efficient run-

time monitoring, MODELS 2009 workshops, LNCS vol. 6002, 2010.
[227] J. Voigtlander, et al., Combining syntactic and semantic bidirectional-

ism, ICFP ’10, 2010.
[228] D. Wagelaar, Composition techniques for rule-based MT languages,

ICMT 2008.
[229] D. Wagelaar et al., Module Superposition: a composition technique

for rule-based MT languages, SoSyM vol. 9, 2009.
[230] D. Wagelaar et al., Towards a general composition semantics for rule-

based MT, MODELS 2011.
[231] D. Wagelaar, ATL solution to train benchmark case, TTC 2015.
[232] M. Wagner, T. Wellhausen, Patterns for data migration projects,

EuroPLoP 2010.
[233] M. Wang, J. Gibbons, N. Wu, Incremental Updates for Efficient

Bidirectional Transformations, ICFP ’11, 2011.
[234] D. O. Wendell et al., An MDE approach for automatic code generation

from UML/MARTE to OpenCL, Computing in Science and Engineering,
vol. 15, 2012.

[235] E. Willink, Optimised declarative transformation: first Eclipse QVTC
results, BigMDE 2016.

[236] E. Willink, Local optimisations in Eclipse QVTC and QVTr, EXE
2016.

[237] M. Wimmer, A. Schauerhuber, M. Strommer, W. Schwinger, G.
Kappel, A semi-automatic approach for bridging DSLs with UML, DSM
’07, 2007.

[238] M. Wimmer, et al., On using in-place transformations for model co-
evolution, MtATL, 2010.

[239] M. Wimmer, et al., A Catalogue of Refactorings for model-to-model
transformations, Journal of Object Technology, vol. 11, no. 2, 2012.

[240] M. Woodside, et. al., Transformation challenges: from software models
to performance models, Sosym vol. 13, no. 4, 2014.

[241] Y. Xiong, H. Song, Z. Hu, M. Takeichi, Synchronising concurrent
model updates based on bidirectional transformation, SoSyM vol. 12,
no. 1, 2013, pp. 89–104.

[242] A. Yie, R. Casallas, D. Deridder, D. Wagelaar, Realizing model
transformation chain interoperability, SoSyM (2012) 11: 55–75.



19

[243] T. Zan et al, BRUL: a putback-based bx library for updatable views,
BX 2016.

[244] Z. Zhu et al., BiYacc: roll your parser and reflective printer into one,
BX 2015.

[245] S. Zschaler, S. Yassipour-Tehrani, Mapping FIXML to OO with aspec-
tual code generators, TTC 2014.

APPENDIX

The following were used as criteria to identify if particular trans-
formation patterns had been used in the surveyed papers.

Auxiliary Metamodel The transformation uses additional
entity types and/or features which are not defined in the
source or target metamodels.
Auxiliary Correspondence Model The transformation uses
identity attributes or other auxiliary data to maintain cor-
respondences between corresponding source and target
elements.
Collection Matching A rule application matches collections
of source elements instead of individual instances.
Construction and Cleanup A transformation has separate
phases for the construction and destruction of model ele-
ments.
Entity Merging Two rules each create/update elements of
the same target entity type, using different source entity
types or elements. Or one rule combines the data of two
source elements into one target element.
Entity Splitting (Horizontal) Two rules (with disjoint ap-
plication conditions) map (instances of) the same source
entity type to instances of different target entities.
Entity Splitting (Vertical) A rule maps instances of one
source entity type to a group of two or more instances of
possibly different target entity types. The target instances
can be explicitly linked by associations, or implicitly linked
by key attribute values. The target group can also be
created by separate rules with the same source entity and
application conditions, but different target instances.
Factor Code Generation A code generation transformation
creates elements of a program language model, instead of
directly generating code text. The text is generated from
the program model by a separate transformation.
Factor out Expression Evaluations A function/query oper-
ation or rule-scope variable is used to compute/hold the
value of an expression and is referenced from within its
scope.
Filter Transformation A transformation in a transformation
chain is preceded by a pre-processing transformation which
filters out elements from source models if they are not
relevant for the main transformation.
Generic Transformations A transformation τ has a
type/predicate or transformation-valued parameter which
can be used to adapt τ for different uses.
Implicit Copy A transformation uses an implicit mechanism
to copy source model data to the target model, without the
need for explicit copying rules.
Introduce Rule Inheritance A rule is defined as a speciali-
sation of another rule.
Map Objects before Links One rule r maps instances ex of
a source entity type E to instances fx of a target entity type
F prior to a rule r′ which maps association end features of
E to corresponding features of F. r′ receives ex and fx as
parameters or looks them up using a mechanism such as
Object Indexing.

Object Indexing Entity type instances are looked-up by
means of an index or key value.
Omit Negative Application Conditions Rule application
conditions are removed if they are redundant with other
conditions, in particular NACs which are contradictory with
the positive application conditions are removed.
Phased Construction A transformation or rule set has only
non-cyclic data dependencies. At least one case occurs
where a rule r precedes a rule r′ in execution order and
writes a target entity type T which r′ reads.
Recursive Descent Transformation rules use invoked sub-
ordinate rules or operations to carry out part of their effect.
Replace Abstract by Concrete Syntax A rule is specified
in terms of the concrete syntax of source/target languages,
instead of their abstract syntax.
Replace Explicit calls by Implicit A mechanism such as the
equivalent() operator of ETL is used to implicitly invoke
rules instead of making explicit calls.
Replace Fixed-point by Bounded Iteration A rule that both
reads and writes the same entity type or feature is modified
so that this circular data-dependence is avoided, eg., by
referring to f @pre instead of f .
Restrict Input Ranges A rule application condition restricts
a source element to be in a subset of a source entity
type, based on preceding application conditions of the rule.
Alternatively the context of a rule can be changed to reduce
the range of element searches. For example, if there is a
1-many association from E to F, with respective rolenames
x and r, then a rule

E ::
v : r & Cond(v, self ) ⇒ Post(v, self )

can be more efficiently expressed as:

F ::
Cond(self , x) ⇒ Post(self , x)

Sequential Composition Two rules, or two groups of rules,
have a sequential execution order defined by the transfor-
mation.
Simulate Collection Matching Rules incrementally add
matched elements to collections sx.elements referenced by
auxiliary variables sx : ESet until sx.elements meets the
original condition for being matched as a collection.
Match conditions s : Set(E) and θ(s) in the orig-
inal collection-matching rule are replaced by sx :
ESet and θ(sx.elements).
Simulate Explicit Rule Scheduling Rule application condi-
tions are used to enforce rule execution orders, by blocking
execution of the rule until other rules have executed. Cf.
when conditions in QVT-R.
Simulating Universal Quantification A logical condition
not(X→exists(not(P))) is used in a rule.
Structure Preservation Separate source and target models.
A group of rules (with no application conditions) each map
one source entity type to one target entity type, with no
source entity types used in two or more rules, and no
target entity types used in two or more rules. Attribute
values of the source entities are copied without change to
corresponding target entity attributes.
Text Templates Text-generation rules use text templates
which combine fixed text with variable text derived from
source element data.



20

Transformation Chain The transformation involves the se-
quential composition of two or more subtransformations.
Transformation Inheritance One transformation is defined
as a specialisation of another.
Unique Instantiation A rule or operation avoids re-creating
a target element, if a target element satisfying the rule
specification with respect to given source elements already
exists.



21

Case Patterns Category Language Year Cites MT DP papers
[1] Repl. Abstract by Concrete syntax Refactoring VMTL 2015 none
[2] Factor Code gen*, Text Templates* Code gen ATL/Xpand 2012 none

Trans. Chain*
[3] Entity Split (v), Intro Rule Inherit HoT ATL 2015 none
[5] Auxiliary Metamodel Refinement KMF/ToolGen 2003 none
[6] Rule Caching, Rec. Descent Refinement SiTra 2006 none

Intro. Rule Inherit
[7] Pre-normalisation, Seq. Comp Analysis GT 2011 none
[8] Entity split v Code generation ATL 2014 none

Recursive Descent
Factor Expr. Eval.

[9] Pre-Norm*, Trans Chain* Refinement ASF+SDF 2008 none
[11] Aux. Corr. Model Bidirectional TGG 2012 none
[12] Aux. Corr. Model* Analysis TGG 2013 none
[13] Intro Rule Inherit, Aux corr model Bidirectional TGG 2015 none
[14] Entity Merge, Aux meta Model merging ATL 2008 none
[15] Trans. Chain Model merging ATL 2008 none

Aux meta, Ent merge
[16] Seq. Composition* Refactoring Henshin 2010 none
[17] Factor Expr. Eval Refinement ATL 2015 none

Recursive Descent
Entity Split v

[19] Repl. Abstract by Concrete syntax* Refactoring QVT-R 2006 none
[20] Map Objects before Links Refinement ILP 2009 none

Aux. Corr model*
[21] Sequential Composition Refactoring DSLTrans 2010 none
[23] Lens* Bidirectional Viatra 2016 none
[25] Collection Match Refactoring EMF 2012 none
[26] Recursive Descent Migration QVT-R 2014 none
[27] Lens* Bidirectional Boomerang 2008 none
[28] Transformation Chain* Refactoring Henshin 2016 none

Constr. and Cleanup*
[29] Construction and Cleanup Bidirectional QVT-R 2013 none
[30] Text Templates* Code generation ATL/Acceleo 2013 none
[31] Auxiliary Meta Migration GrGen 2010 none

Text Templates*
Entity Split h*
Relabelling (Str. Pres)*

[32] Rec. Descent Analysis UnQL 2000 none
[33] Auxiliary Meta* Bidirectional ModelJoin, xPand 2016 none
[34] Intro. Rule Inherit Refinement ATL 2014 none
[35] Struc. Pres. Refinement ATL 2011 none
[36] (i) Struc. Pres, Ent. Merge Refinement ATL 2012 none

Map Obj. before Links
(ii) Aux. Meta, Ent split v. Semantic map ATL 2012 none

[37] Struc. Preservation Migration ATL 2012 none
[38] Recursive Descent Refinement QVT-R 2013 none
[39] Auxiliary Meta* Refinement TGG, QVT-R 2009 none
[40] Replace Abstract by Concrete syn. Refactoring GT 2010 none
[41] Sim explicit rule Sched, Rec descent Refinement QVT-R 2013 none
[42] Auxiliary Meta Refinement GT 2007 none

Entity Split v
[43] Struc. Pres. Migration ATL 2015 none
[44] Entity Merge Migration ATL 2016 none

Struc. Preservation
[45] Entity Split h* Migration ATL/ 2010 none

Entity Merge* Java
Structure Pres.

[46] Parallel Transformations* – none 2012 none
[47] Transformation Chain* Analysis ATL 2013 none

Factor Expr. Eval.
[48] Ent. Split (v) Refinement RubyTL 2006 none
[50] Seq. Composition*, Aux. Meta Code generation RubyTL 2008 none

Phased Cons.
[51] Phased Cons.* Refinement Eclectic, 2009 [132]

Entity split v RubyTL
[52] Generic Trans.* Analysis ATL 2011 [24]
[53] Generic Trans* Refactoring ATL 2013 none
[54] Sliding Window* Streaming Eclectic 2013 none

Factor Expr. Eval
[55] Structure Pres. Refactoring ATL 2015 none

Entity Merge
Factor Expr. Eval

[56] Post-normalisation* Semantic mapping Haskell 2015 none
[58] Factor Expr. Eval Analysis CDM 2015 none
[60] Intro Rule Inherit, Rec. Descent Migration MTF 2010 none
[59] Lens* Bidirectional none 2010 none
[61] Aux Corr Model, Seq Comp Translation GT 2015 none

TABLE XXVIII. INITIAL DATA EXTRACTION (1)



22

Case Patterns Category Language Year Cites MT DP papers
[62] Aux. Corr. Model* Bidirectional TGG 2007 none
[63] Auxiliary Meta.* Analysis SDMLib 2014 none
[65] Fixed-point Iter.* Refinement MoTif 2013 [102]
[66] Auxiliary Meta* Analysis MoTif 2014 none
[67] Localised MT* Refinement LTDesigner 2015 none
[68] Intro. Rule Inherit.* Migration ATL 2009 none

Ent. Split (v)
[69] Text Templates Code Generation MIA-Transformation 2007 none
[70] Lens* Bidirectional none 2007 none
[71] Factor Code Gen.* Code generation xTend/xPand 2007 none
[73] Adapter Trans.* Migration AML 2014 none
[74] Rule Caching Analysis EVL 2016 none
[75] Rule Caching* Analysis QVT-O 2014 none

Factor Expr. Eval.
[76] Entity Split v Code generation TGG 2006 none

Aux. Corr Model
[77] Auxiliary Corr. Model* Bidirectional TGG 2009 none
[78] Aux cor model*, Uniq. Instant. Bidirectional TGG 2010 none
[79] Structure Pres.* Refinement QVT-R 2011 none

Sim. Explicit Rule Sched.*
[80] Aux Corr Model Bidirectional TGG 2013 none
[81] Aux Corr Model Bidirectional TGG 2016 none
[82] Aux. Corr. Model Bidirectional QVT-R, TGG 2010 none

Structure Pres.
Sim. Explicit Rule Sched

[83] Intro Rule Inherit* Semantic map. TGG 2011 none
[84] Lens* Bidirectional Agda 2014 none
[85] Auxiliary Meta Refinement GT 2010 none

Collection Match*
Simulate Coll. Match
Replace Abst. By Concrete

[86] Collection Match* Refactoring GT 2013 none
[87] Aux Corr Model* Bidirectional TGG 2013 none
[88] Transformation Chain* Refinement QVT-R, 2013 [24], [102]

Pre-Normalisation* ETL
Entity Split v
Auxiliary Meta*

[89] Aux. Corr. Model* Semantic map. QVT-R 2014 none
[90] Entity Split v Refinement PaMoMo 2015 none
[91] Simulate Coll. Match Analysis FujabaRT 2010 none
[92] Factor Code Gen.* Code generation Stratego 2010 none
[93] Aux. Corr. Model* Code generation TGG 2014 none

Transformation Chain*
Sequential Composition

[94] Transformation Chain* Bidirectional TGG 2014 none
Sequential Comp.

[95] Aux. Corr Model* Bidirectional TGG 2015 none
[96] Rec. Descent, Factor Expr Eval Abstraction OCL 2015 none
[97] Aux Corr Model Bidirectional ATL, 2016 none

Entity Split h TGG
[98] Lens* Semantic map. NMF 2015 none
[99] Lens* Bidirectional none 2011 none
[100] Factor Expr. Eval* Refactoring FunnyQT 2013 none
[101] Transformation Chain* Code generation Epsilon/Java 2014 none

Unique Instantiation
[103] Struc. Pres. Refinement MOTIF 2015 none
[104] Text Templates Code Generation Rascal 2014 none
[105] Transformation Chain Code generation Rascal 2014 none
[106] Restrict Input Ranges* Analysis Rascal 2014 none
[107] State* Refinement MOFScript 2015 none
[108] Auxiliary Meta Refactoring EMF-IncQuery 2013 none
[109] Struc pres, Ent split v Refinement ATL 2011 none

Factor Expr Eval
[111] Factor Expr. Eval. Refinement ATL 2006 none
[112] Active Operations* Bidirectional EMF 2015 none
[113] Active Operations* Refinement Viatra 2016 none
[114] Aux. Meta* Abstraction Henshin 2011 none

TABLE XXIX. INITIAL DATA EXTRACTION (2)



23

Case Patterns Category Language Year Cites MT DP papers
[115] Rec. Descent Refinement QVT-R 2010 none
[116] Trans. Chain*, Ent. Split v, Refinement ATL 2011 none

Factor Expr. Evaluation
[117] Entity Split v Refactoring ATL 2016 none
[119] Aux. Corr. Model* Refinement ATL/CP 2013 none
[120] Structure Pres. Refinement QVT-R 2006 none

Entity Split v
Sim. Explicit Rule Sched.

[122] Rec. Descent Migration ETL 2008 none
Repl. Explicit calls by Implicit

[121] (1) Replace Coll. Match, Constr. and Cleanup Refactoring UML-RSDS 2014 none
(2) Constr. and Cleanup GrGen
(3) Struc. Pres QVT-R

[123] Factor out Expression Evaluations* Refactoring EWL 2007 none
[124] Ent. Split v, Rec. Descent Refinement ETL, EGL 2007 none

Struc. Pres., Ent. Merge
Text Templates

[125] Replace Explicit by Implicit Model merging EML 2006 none
[126] Rule Caching Refinement EPL 2016 none
[127] Trans Inherit, Rec. Descent Abstraction QVT-O 2014 [102]

Pre-normalisation
[128] Lens* Bidirectional EMF/Java 2016 none
[129] Transformation Chain* Refactoring SIGMA 2016 none
[130] Aux. Corr. Model Semantic mapping AToM3 2009 none
[131] Intro. Rule Inherit Code generation eMoflon/TGG 2014 none
[135] Struc. Pres, Ent Split v Refinement Custom 2007 none
[136] Phased Cons. Migration UML-RSDS 2010 [132]

Entity Split h
Structure Pres.

[137] Const. + Cleanup* Migration UML-RSDS 2011 none
Entity Split v
Map Objs before Links

[138] Restrict Input Ranges Refactoring UML-RSDS 2013 none
Replace Coll. Match
Factor Expr. Eval

[139] Structure Pres. Refactoring UML-RSDS 2013 [141]
Entity Split v
Map Objects before Links*
Construction + Cleanup*

[140] Factor Expr. Eval* Analysis UML-RSDS 2014 [145]
Repl. Fixed Point by Bounded*
Restr. Input Ranges*
Filter Transformation*
Sim. Coll. Match

[144] Map Obj. Before Links* Refinement UML-RSDS 2014 none
[146] Intermediate Language Semantic mapping UML-RSDS 2015 [145]
[148] Transformation Chain* Refactoring UML-RSDS 2016 [141]

Construction + Cleanup*
Factor Expr. Eval*
Rule Caching*

[150] Structure Pres. Bidirectional UML-RSDS 2016 [141], [145]
Ent Split v
Aux Corr Model*

[151] Aux. Metamodel*, Rec. Descent Refinement Tefkat 2005 none
[152] Aux. Corr. Model Bidirectional TGG 2016 none
[153] Seq. Composition Refactoring VMTS 2008 none
[154] Transformation Chain* Code generation QVTR-XSLT 2014 none
[157] Map Objs before Links, Sim. Explicit rule Sched. Bidirectional QVT-R 2011 none

Factor Expr. Eval
[158] Lens* Bidirectional none 2013 none
[159] Entity Merge Bidirectional QVT-R, ATL 2016 none

Entity Split v
Recursive Descent
Structure Pres.

[160] Text Templates Code generation Acceleo 2013 none
[161] Intro. Rule Inheritance* Refactoring QVT-R 2008 none

Factor Expr. Eval.
[162] Entity Split v Semantic mapping QVT-R 2008 none
[163] Aux Metamodel Refinement ETL 2013 none
[164] Lens Bidirectional Haskell 2007 none
[165] Factor Expr. Eval., Map Objs. Before Links Refinement ATL 2008 none
[166] Map Objects before Links Refinement Henshin 2016 [102], [145]
[167] Text Templates Code generation XML/VTL 2010 none
[168] Pre-Normalisation Semantic mapping MotMot (GT) 2008 none
[169] Text Templates Code generation Sintaks/ 2008 none

Factor Code Gen* TCSSL
TABLE XXX. INITIAL DATA EXTRACTION (3)



24

Case Patterns Category Language Year Cites MT DP papers
[170] Aux. Corr. Model, Ent. Split v Refinement TGG 2016 none

Struc. Pres
[171] Ent split (v) Refinement ATL 2013 [132]
[172] Aux. Corr. Model, Ent Split (v) Semantic mapping GReAT (GT) 2008 none
[173] Sequential Composition Semantic map. GT 2015 none

Entity Split v
[174] Transformation Chain* Refinement ITM generator 2011 none

Pre-Normalisation*
[175] Map Objs. Before Links Migration ATL 2015 none
[176] Recursive Descent Migration ATL 2016 none
[177] Aux. Correspondence Model Refactoring eMoflon/TGG 2015 none
[178] Aux. Corr. Model* Refactoring TGG 2015 none
[179] Entity Merge Abstraction QVT-R 2010 none

Auxiliary Metamodel
Entity Split v

[180] Intro. Rule Inheritance Refinement Mitra 2010 none
Rule Caching
Auxiliary Metamodel

[181] Ent split v, Factor Expr Eval Refinement ATL 2011 none
[182] Replace Coll. Match Refactoring SMW/Python 2005 none

Entity Split v
[184] Auxiliary Metamodel Migration none 2010 none

Pre-Normalisation
[185] Ent split v, Map objs before links Refinement ATL 2011 none
[186] Observer* Reactive none 2008 none
[187] Visitor* Higher-order QVT-O 2012 none
[189] Ent. Merge Abstraction QVT-O 2014 none
[188] Generic Trans. Refactoring EMFText 2013 none
[190] Transformation Chain* Analysis ATL 2009 [132]
[191] Struc. Pres., Aux. Meta Migration QVT-C 2016 none
[192] Entity Split v Refinement QVT-R, QVT-O 2008 none

Phased Constr.
[193] Structure Pres Migration Flock 2010 none

Rule Caching*
Implicit Copy*
Map Objects before Links

[194] Implicit Copy* Migration Flock 2014 none
[195] Visitor* Refinement Custom/XML 2007 none
[196] Data Cleansing* Migration none 2010 none
[197] Auxiliary Meta* Refinement EMF 2010 none
[198] Structure Preservation Bidirectional ATL 2011 none
[199] Recursive Descent Migration PETE 2010 none
[200] Seq. Composition* Migration DSLTrans 2014 none
[201] Seq. Composition* Semantic map DSLTrans 2015 none
[202] Entity Split v Migration ATL 2015 none

Map Obj. before Links
Factor Expr. Eval

[203] Aux. Corr. Model Bidirectional Viatra 2016 none
[204] Entity Split v Refactoring Groove 2013 none

Auxiliary Metamodel
Sim. Explicit Rule Sched.

[205] Entity Split v Semantic map none 2008 none
[206] Structure Pres Runtime QVT-R 2011 none

Sim. Explicit Rule Sched.
[207] Sim. Univ. Quantification* Refactoring VIATRA 2015 none

Visitor*
[208] Intro. Rule Inherit. Refinement QVT-O 2015 none

Factor Code Gen*
Text Templates

[209] Unique Instantiation Bidirectional QVT-R 2010 none
[210] Structure preservation Bidirectional QVT-R 2013 none
[212] Structure Pres. Semantic map T-Core/MoTif 2012 none

Entity Split v
Phasing (Seq. Comp.)*

[213] Sim. Univ. Quant.* Analysis EMF-INCQUERY 2014 none
TABLE XXXI. INITIAL DATA EXTRACTION (4)



25

Case Patterns Category Language Year Cites MT DP papers
[214] Aux. Meta, Aux. Corr. Model Refinement GT 2005 none
[216] Transformation Chain* Refinement ATL 2010 [49]

Structure Pres.
Map Objects before Links

[217] Text Templates* Higher-order transformation ATL 2010 [102]
Factor Expr. Eval.
Transformation Inherit.*

[218] Map obj. Before Links, Rec. Descent Refinement ATL 2011 none
[219] Factor Code Gen.* Refinement ATL, MOFScript 2012 none
[220] (1) Aux. Metamodel Analysis ATL 2011 none

Factor Expr. Eval., Rec. Desc.
(2) Ent. Split (v) Refactoring
Factor Expr. Eval.

[221] Entity Split (v) Refinement ATL 2015 none
[222] Trans. Chain*, Intermediate Language Code Generation none 2006 none
[223] Trans. Chain*, Phased Cons. Refinement none 2012 none
[224] Aux. Metamodel* Refinement Viatra 2016 none
[225] Intro Rule Inherit*, Struc. Pres Migration ATL 2011 none
[226] Aux. Corr. Model*, Struc. Pres. Bidirectional TGG 2009 none
[227] Lens Bidirectional Haskell 2010 none
[228] Trans. Inheritance*, Migration ATL 2008 none

Struc. Preservation
[229] Trans. Inherit.*, Struc. Pres. Migration ATL 2009 [132]
[230] Intro. Rule Inherit.* Refactoring SimpleGT 2011 none
[231] Recursive Descent Analysis ATL 2015 none

Factor Expr. Eval
[232] Migrate along Dom. Partitions* Migration none 2010 none
[233] Lens* Bidirectional Haskell 2011 none
[234] Trans. Chain* Code generation QVT-O 2012 none
[235] Ent. Split v Refinement QVT-C 2016 none
[236] Rec. Descent Refactoring QVT-R 2016 none
[237] Auxiliary Meta Migration ATL 2007 none

Structure Pres.
Intro. Rule Inherit*

[239] Map Objects before Links, Rule Caching* Refinement ATL 2012 [49]
Factor Expre. Evaluations*

[240] Intermediate Language* Semantic map PUMA 2014 none
[241] 3-way Merge* Bidirectional QVT-R 2013 none
[242] Entity Split v Refinement ATL 2012 none

Aux. Corr. Model*
Transformation Chain*

[243] Lens* Bidirectional Haskell 2016 none
[244] Lens* Bidirectional Haskell 2015 none
[245] Transformation Chain* Code generation EOL/ETL/EGL 2014 none

TABLE XXXII. INITIAL DATA EXTRACTION (5)


