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Planck Power Spectrum



B-modes: Auto & Cross



CMB Blackbody
• COBE FIRAS revealed a blackbody spectrum at T = 2.725K (or

cosmological density Ωγh
2 = 2.471× 10−5)
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CMB Blackbody
• CMB is a (nearly) perfect blackbody characterized by a phase

space distribution function

f =
1

eE/T − 1

where the temperature T (x, n̂, t) is observed at our position x = 0

and time t0 to be nearly isotropic with a mean temperature of
T̄ = 2.725K

• Our observable then is the temperature anisotropy

Θ(n̂) ≡ T (0, n̂, t0)− T̄
T̄

• Given that physical processes essentially put a band limit on this
function it is useful to decompose it into a complete set of
harmonic coefficients



Spherical Harmonics
• Laplace Eigenfunctions

∇2Y m
` = −[l(l + 1)]Y m

`

• Orthogonal and complete∫
dn̂Y m∗

` (n̂)Y m
` (n̂) = δ``′δmm′∑

`m

Y m∗
` (n̂)Y m

` (n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

• Conjugation

Y m∗
` = (−1)mY −m`



Multipole Moments
• Decompose into multipole moments

Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂)

• So Θ`m is complex but Θ(n̂) real:

Θ∗(n̂) =
∑
`m

Θ∗`mY
m∗
` (n̂)

=
∑
`m

Θ∗`m(−1)mY −m` (n̂)

= Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂) =

∑
`−m

Θ`−mY
−m
` (n̂)

so m and −m are not independent

Θ∗`m = (−1)mΘ`−m



N -pt correlation
• Since the fluctuations are random and zero mean we are interested

in characterizing the N -point correlation

〈Θ(n̂1) . . .Θ(n̂n)〉 =
∑
`1...`n

∑
m1...mn

〈Θ`1m1 . . .Θ`nmn〉Y m1
`1

(n̂1) . . . Y mn
`n

(n̂n)

• Statistical isotropy implies that we should get the same result in a
rotated frame

R[Y m
` (n̂)] =

∑
m′

D`
m′m(α, β, γ)Y

m′

` (n̂)

where α, β and γ are the Euler angles of the rotation and D is the
Wigner function (note Y m

` is a D function)

〈Θ`1m1 . . .Θ`nmn〉 =
∑

m′1...m
′
n

〈Θ`1m′1
. . .Θ`nm′n〉D

`1
m1m′1

. . . D`n
mnm′n



N -pt correlation
• For any N -point function, combine rotation matrices (group

multiplication; angular momentum addition) and orthogonality∑
m

(−1)m2−mD`1
m1m

D`1
−m2−m = δm1m2

• The simplest case is the 2pt function:

〈Θ`1m1Θ`2m2〉 = δ`1`2δm1−m2(−1)m1C`1

where C` is the power spectrum. Check

=
∑
m′1m

′
2

δ`1`2δm′1−m′2(−1)m
′
1C`1D

`1
m1m′1

D`2
m2m′2

= δ`1`2C`1
∑
m′1

(−1)m
′
1D`1

m1m′1
D`2
m2−m′1

= δ`1`2δm1−m2(−1)m1C`1



N -pt correlation
• Using the reality of the field

〈Θ∗`1m1
Θ`2m2〉 = δ`1`2δm1m2C`1 .

• If the statistics were Gaussian then all the N -point functions would
be defined in terms of the products of two-point contractions, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉 = δ`1`2δm1m2δ`3`4δm3m4C`1C`3 + perm.

• More generally we can define the isotropy condition beyond
Gaussianity, e.g. the bispectrum

〈Θ`1m1 . . .Θ`3m3〉 =

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3



CMB Temperature Fluctuations
• Angular Power Spectrum

Low l Anomalies
•	 Low quadrupole, octupole; C(θ); alignment; hemispheres; TT vs TE
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Why `2C`/2π?
• Variance of the temperature fluctuation field

〈Θ(n̂)Θ(n̂)〉 =
∑
`m

∑
`′m′

〈Θ`mΘ∗`′m′〉Y m
` (n̂)Y m′∗

`′ (n̂)

=
∑
`

C`
∑
m

Y m
` (n̂)Y m∗

` (n̂)

=
∑
`

2`+ 1

4π
C`

via the angle addition formula for spherical harmonics

• For some range ∆` ≈ ` the contribution to the variance is

〈Θ(n̂)Θ(n̂)〉`±∆`/2 ≈ ∆`
2`+ 1

4π
C` ≈

`2

2π
C`

• Conventional to use `(`+ 1)/2π for reasons below



Cosmic Variance
• We only have access to our sky, not the ensemble average

• There are 2`+ 1 m-modes of given ` mode, so average

Ĉ` =
1

2`+ 1

∑
m

Θ∗`mΘ`m

• 〈Ĉ`〉 = C` but now there is a cosmic variance

σ2
C`

=
〈(Ĉ` − C`)(Ĉ` − C`)〉

C2
`

=
〈Ĉ`Ĉ`〉 − C2

`

C2
`

• For Gaussian statistics

σ2
C`

=
1

(2`+ 1)2C2
`

〈
∑
mm′

Θ∗`mΘ`mΘ∗`m′Θ`m′〉 − 1

=
1

(2`+ 1)2

∑
mm′

(δmm′ + δm−m′) =
2

2`+ 1



Cosmic Variance
• Note that the distribution of Ĉ` is that of a sum of squares of

Gaussian variates

• Distributed as a χ2 of 2`+ 1 degrees of freedom

• Approaches a Gaussian for 2`+ 1→∞ (central limit theorem)

• Anomalously low quadrupole is not that unlikely

• σC`
is a useful quantification of errors at high `

• Suppose C` depends on a set of cosmological parameters ci then
we can estimate errors of ci measurements by error propagation

Fij = Cov−1(ci, cj) =
∑
``′

∂C`
∂ci

Cov−1(C`,C`′)
∂C`′

∂cj

=
∑
`

(2`+ 1)

2C2
`

∂C`
∂ci

∂C`
∂cj



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗`mN`′m′〉 = δ``′δmm′C
NN
`

• Construct an unbiased estimator of the power spectrum 〈Ĉ`〉 = C`

Ĉ` =
1

2`+ 1

l∑
m=−l

Θ̂∗`mΘ̂`m − CNN
`

• Covariance in estimator

Cov(C`, C`′) =
2

2`+ 1
(C` + CNN

` )2δ``′



Incomplete Sky
• On a small section of sky, the number of independent modes of a

given ` is no longer 2`+ 1

• As in Fourier analysis, there are two limitations: the lowest ` mode
that can be measured is the wavelength that fits in angular patch θ

`min =
2π

θ
;

modes separated by ∆` < `min cannot be measured independently

• Estimates of C` covary on a scale imposed by ∆` < `min

• Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

Cov(C`, C`′) =
2

(2`+ 1)fsky

(C` + CNN
` )2δ``′



Stokes Parameters
• Specific intensity is related to quadratic combinations of the

electric field.

• Define the intensity matrix (time averaged over oscillations)
〈EE†〉
• Hermitian matrix can be decomposed into Pauli matrices

P =
〈
EE†

〉
=

1

2
(Iσ0 +Qσ3 + U σ1 − V σ2) ,

where

σ0 =

 1 0

0 1

 ,σ1 =

 0 1

1 0

 ,σ2 =

 0 −i
i 0

 ,σ3 =

 1 0

0 −1


• Stokes parameters recovered as Tr(σiP)

• Choose units of temperature for Stokes parameters I → Θ



Stokes Parameters
• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = A1e
iφ1ei(kz−ωt)

E2(t, z) = A2e
iφ2ei(kz−ωt)

• Explicitly:

I = 〈E1E
∗
1 + E2E

∗
2〉 = A2

1 + A2
2

Q = 〈E1E
∗
1 − E2E

∗
2〉 = A2

1 − A2
2

U = 〈E1E
∗
2 + E2E

∗
1〉 = 2A1A2 cos(φ2 − φ1)

V = −i 〈E1E
∗
2 − E2E

∗
1〉 = 2A1A2 sin(φ2 − φ1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection
.

g1

ε1 ε2

g2

OMT

Q U Vφ

• This suggests that
abstractly there are two
different ways to detect
polarization: separate
and difference orthogonal
modes (bolometers I , Q)
or correlate the separated
components (U , V ).

• In the correlator example the natural output would be U but one
can recover V by introducing a phase lag φ = π/2 on one arm, and
Q by having the OMT pick out directions rotated by π/4.

• Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V to U .



Detection
• Techniques also differ in the systematics that can convert

unpolarized sky to fake polarization

• Differencing detectors are sensitive to relative gain fluctuations

• Correlation detectors are sensitive to cross coupling between the
arms

• More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Edet = JEin

Pdet = JPinJ
†

where the end result is either a differencing or a correlation of the
Pdet.



Polarization
• Radiation field involves a directed quantity, the electric field

vector, which defines the polarization

• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = ReA1e
iφ1ei(kz−ωt)

E2(t, z) = ReA2e
iφ2ei(kz−ωt)

or at z = 0 the field vector traces out an ellipse

E(t, 0) = A1 cos(ωt− φ1)ê1 + A2 cos(ωt− φ2)ê2

with principal axes defined by

E(t, 0) = A′1 cos(ωt)ê′1 − A′2 sin(ωt)ê′2

so as to trace out a clockwise rotation for A′1, A
′
2 > 0



Polarization
.

e1

e'1e'2

e2

χ

E(t)

• Define polarization angle

ê′1 = cosχê1 + sinχê2

ê′2 = − sinχê1 + cosχê2

• Match

E(t, 0) = A′1 cosωt[cosχê1 + sinχê2]

− A′2 cosωt[− sinχê1 + cosχê2]

= A1[cosφ1 cosωt+ sinφ1 sinωt]ê1

+ A2[cosφ2 cosωt+ sinφ2 sinωt]ê2



Polarization
• Define relative strength of two principal states

A′1 = E0 cos β A′2 = E0 sin β

• Characterize the polarization by two angles

A1 cosφ1 = E0 cos β cosχ, A1 sinφ1 = E0 sin β sinχ,

A2 cosφ2 = E0 cos β sinχ, A2 sinφ2 = −E0 sin β cosχ

Or Stokes parameters by

I = E2
0 , Q = E2

0 cos 2β cos 2χ

U = E2
0 cos 2β sin 2χ , V = E2

0 sin 2β

• So I2 = Q2 + U2 + V 2, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization
Special cases

• If β = 0, π/2, π then only one principal axis, ellipse collapses to a
line and V = 0→ linear polarization oriented at angle χ

If χ = 0, π/2, π then I = ±Q and U = 0

If χ = π/4, 3π/4... then I = ±U and Q = 0 - so U is Q in a
frame rotated by 45 degrees

• If β = π/4, 3π/4, then principal components have equal strength
and E field rotates on a circle: I = ±V and Q = U = 0→
circular polarization

• U/Q = tan 2χ defines angle of linear polarization and
V/I = sin 2β defines degree of circular polarization



Natural Light
• A monochromatic plane wave is completely polarized
I2 = Q2 + U2 + V 2

• Polarization matrix is like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

• Suppose the total Etot field is composed of different (frequency)
components

Etot =
∑
i

Ei

• Then components decorrelate in time average〈
EtotE

†
tot

〉
=
∑
ij

〈
EiE

†
j

〉
=
∑
i

〈
EiE

†
i

〉



Natural Light
• So Stokes parameters of incoherent contributions add

I =
∑
i

Ii Q =
∑
i

Qi U =
∑
i

Ui V =
∑
i

Vi

and since individual Q, U and V can have either sign:
I2 ≥ Q2 + U2 + V 2, all 4 Stokes parameters needed



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′1 − E ′2)/
√

2 , E2 = (E ′1 + E ′2)/
√

2

• U ∝ 〈E ′1E
′∗
1 〉 − 〈E ′2E

′∗
2 〉, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
. • Two directions: orientation of polarization

and change in amplitude, i.e. Q and
U in the basis of the Fourier wavevector
(pointing with angle φl) for small sections
of sky are called E and B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible
for density fluctuations in linear theory

• Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Y`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗`mE`m〉 = δ``′δmm′C
EE
`

〈B∗`mB`m〉 = δ``′δmm′C
BB
`

• Cross correlation

〈Θ∗`mE`m〉 = δ``′δmm′C
ΘE
`

others vanish if parity is conserved



Inhomogeneity vs Anisotropy
• Θ is a function of position as well as direction but we only have

access to our position

• Light travels at the speed of light so the radiation we receive in
direction n̂ was (η0 − η)n̂ at conformal time η

• Inhomogeneity at a distance appears as an anisotopy to the
observer

• We need to transport the radiation from the initial conditions to the
observer

• This is done with the Boltzmann or radiative transfer equation

• In the absence of scattering, emission or absorption the Boltzmann
equation is simply

Df

Dt
= 0



Last Scattering
.

D*

l≈kD*

l<kD*

k
vb

j l(
kD

*)
 acoustic peaks secondaries

Doppler
effect

observer

last s at
er

ng
su

r
ac

e

jl( *)

∫dD j∫d l(kD)

'

ddamping and po
l

iz
at

io
n

• Angular distribution
of radiation is the 3D
temperature field
projected onto a shell
- surface of last scattering

• Shell radius
is distance from the observer
to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Integral Solution to Radiative Transfer

Iν(0)Iν(τ)

0τ'τ

Sν

• Formal solution for specific intensity Iν = 2hν3f/c2

Iν(0) = Iν(τ)e−τ +

∫ τ

0

dτ ′Sν(τ
′)e−τ

′

• Specific intensity Iν attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

• Θ satisfies the same relation for a blackbody



Angular Power Spectrum
• Take recombination to be instantaneous: dτe−τ = dDδ(D −D∗)

and the source to be the local temperature inhomogeneity

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Note that Fourier moments Θ(k) have units of volume k−3

• 2 point statistics of the real-space field are translationally and
rotationally invariant

• Described by power spectrum



Spatial Power Spectrum
• Translational invariance

〈Θ(x′)Θ(x)〉 = 〈Θ(x′ + d)Θ(x + d)〉∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′

=

∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′+i(k−k′)·d

So two point function requires δ(k− k′); rotational invariance says
coefficient depends only on magnitude of k not it’s direction

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

Note that δ(k− k′) has units of volume and so PT must have units
of volume



Dimensionless Power Spectrum
• Variance

σ2
Θ ≡ 〈Θ(x)Θ(x)〉 =

∫
d3k

(2π)3
PT (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PT (k)

=

∫
d ln k

k3

2π2
PT (k)

• Define power per logarithmic interval

∆2
T (k) ≡ k3PT (k)

2π2

• This quantity is dimensionless.



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)

• Angular moment

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y

∗
`m(k)



Angular Power Spectrum
• Power spectrum

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2i`−`

′
j`(kD∗)j`′(kD∗)Y`m(k)Y ∗`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• Not surprisingly, a relationship between `2C`/2π and ∆2
T at `� 1.

By convention use `(`+ 1) to make relationship exact

• This is a property of a thin-shell isotropic source, now generalize.



Generalized Source
.

θ

• For example,
if the emission surface
is moving with respect
to the observer then
radiation has an intrinsic
dipole pattern at emission

• More generally, we know the Y m
` ’s are a complete angular basis

and plane waves are complete spatial basis

• General source distribution can be decomposed into local
multipole moments

S
(m)
` (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

where the prefactor is for convenience for later convenience when



we fix ẑ = k̂



Generalized Source
• So general solution is for a single source shell is

Θ(n̂) =
∑
`m

S
(m)
` (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik ·D∗n̂)

and for a source that is a function of distance

Θ(n̂) =

∫
dDe−τ

∑
`m

S
(m)
` (D)(−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik ·Dn̂)

• Note that unlike the isotropic source, we have two pieces that
depend on n̂

• Observer sees the total angular structure

Y m
` (n̂)eikD∗·n̂ = 4π

∑
`′m′

i`
′
j`′(kD∗)Y

m′∗
`′ (k)Y m′

`′ (n̂)Y m
` (n̂)



Generalized Source
• We extract the observed multipoles by the addition of angular

momentum Y m′

`′ (n̂)Y m
` (n̂)→ Y M

L (n̂)

• Radial functions become linear sums over j` with the recoupling
(Clebsch-Gordan) coefficients

• These radial weight functions carry important information about
how spatial fluctuations project onto angular fluctuations - or the
sharpness of the angular transfer functions

• Same is true of polarization - source is Thomson scattering

• Polarization has an intrinsic quadrupolar distribution, recoupled by
orbital angular momentum into fine scale polarization anisotropy

• Formal integral solution to the Boltzmann or radiative transfer
equation

• Source functions also follow from the Boltzmann equation



Polarization Basis
• Define the angularly dependent Stokes perturbation

Θ(x, n̂, η), Q(x, n̂, η), U(x, n̂, η)

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part

• For a single k mode, choose a coordinate system ẑ = k̂



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

D

Dη
fa(x, n̂, q, η) = 0 =

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0

• The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the q̇ term the gravitational sources.



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance D.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

α
(m=0)
`s=0` ≡ j` α

(m=0)
`s=1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` = 4π

∫
dk

k

k3

2π2

∑
m

〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by k∆η/` in the “Limber approximation”



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ
m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E(m)
`

Ḃ
(m)
` = k

[
2κ
m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

β
(m)
`s`

(k(η0 − η))

• Power spectrum XY = ΘΘ,ΘE,EE,BB:

CXY
` = 4π

∫
dk

k

k3

2π2

∑
m

〈X(m)∗
` Y

(m)
` 〉

(2`+ 1)2

• We shall see that the only sources of temperature anisotropy are
` = 0, 1, 2 and polarization anisotropy ` = 2

• In the basis of ẑ = k̂ there are only m = 0,±1,±2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer
• A polarization source function with ` = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.
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Polarization Transfer
• Radial mode functions characterize the projection from k → ` or

inhomogeneity to anisotropy

• Compared to the scalar monopole source:

scalar dipole source very broad

tensor quadrupole, sharper

scalar E polarization, sharper

tensor E polarization, broad

tensor B polarization, very broad

• These properties determine whether features in the k-mode
spectrum, e.g. acoustic oscillations, intrinsic structure, survive in
the anisotropy


