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Set 1: CMB Statistics
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Planck Power Spectrum
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CMB Blackbody

e COBE FIRAS revealed a blackbody spectrum at 7" = 2.725K (or
cosmological density Q. h* = 2.471 x 107°)
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CMB Blackbody

e CMB is a (nearly) perfect blackbody characterized by a phase
space distribution function

1
f:eE/T—l

where the temperature 7'(x, nn, t) is observed at our position x = (
and time t; to be nearly 1sotropic with a mean temperature of

1= 2.725K

e Our observable then is the temperature anisotropy

T(07 ﬁa tO) - T
T

e Given that physical processes essentially put a band limit on this

O(h)

function it i1s useful to decompose it into a complete set of
harmonic coefficients



Spherical Harmonics

e Laplace Eigenfunctions
VA = (Il + 1)]Y;"
e Orthogonal and complete
/ dnY;™ (n)Y;"(n) = g dnm

> Y (R)Y () = 6(¢ — ¢')d(cos  — cos )
m

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

e Conjugation

Y= ()Y



Multipole Moments

e Decompose into multipole moments
O(h) = » Oy, (1)
m
e So Oy, is complex but O(n) real:

O*(h) = » 63,V (n)
m

so m and —m are not independent

Ot = (=1)"O¢



N -pt correlation

e Since the fluctuations are random and zero mean we are interested
in characterizing the /V-point correlation

O©M1)...00) = > Y (Onm - Opm, )Y (1) ... Y™ ()

El...en mia...Mn,

e Statistical 1sotropy implies that we should get the same result in a
rotated frame

RIY;"(0)] =Y Dy(a, 8,7)Y," (0)

where o, 5 and v are the Euler angles of the rotation and D is the
Wigner function (note Y, 1s a D function)
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N -pt correlation

e For any N-point function, combine rotation matrices (group
multiplication; angular momentum addition) and orthogonality

Z( 1)m2 me)ilmDe—lmg —m — 5m1m2

m

e The simplest case 1s the 2pt function:

<@£1m1 ®€2m2> — 55132 5m1 —m2 (_ 1)m1 Cﬁl
where CY 1s the power spectrum. Check
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N -pt correlation
e Using the reality of the field

<@Zlm1 @€2m2> — 551525?%1?%2051 -

e If the statistics were Gaussian then all the NV-point functions would
be defined in terms of the products of two-point contractions, €.g.

<@€1m1 @€2m2 @€3m3@€4m4> — 5€1£Q5m1m25£3£45m3m4061 053 + perm.

e More generally we can define the 1sotropy condition beyond
Gaussianity, e.g. the bispectrum

0y by /4
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CMB Temperature Fluctuations

e Angular Power Spectrum
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Why KQCg/Qﬂ'?

e Variance of the temperature fluctuation field

OM)OM)) = > ¥ (OO, )Y ()Y (0)

m 0'm/’

D Coy YMR)Y™(h)

20 + 1
Z 4 Ce

l

via the angle addition formula for spherical harmonics

e For some range A/ ~ / the contribution to the variance is

20 + 1 02
()~ —C
Ar T ot

e Conventional to use ¢(¢ + 1)/2x for reasons below

(O(n)O(N))rrae2 = AL




Cosmic Variance

e We only have access to our sky, not the ensemble average

e There are 2/ + 1 m-modes of given £ mode, so average

A

1
Co=——Y 0, Ou,
Y zm: tm ¢
o (Cy) = C, but now there is a cosmic variance

,  {((Co—C)(Cr—Cy))  (CCy) — C?

o C? S
e For Gaussian statistics
1
2 L * * o
76 = @iy 17 2 OinOnOim O] =1
1 2
— 5mm’ dm—m’ — S, . 4
(201 1)2 Z,( T om-m) = 970
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Cosmic Variance

e Note that the distribution of C, is that of a sum of squares of
Gaussian variates

e Distributed as a x? of 2¢ + 1 degrees of freedom

e Approaches a Gaussian for 2¢ + 1 — oo (central limit theorem)
e Anomalously low quadrupole 1s not that unlikely

e 0¢, 1s a useful quantification of errors at high ¢

e Suppose Cy depends on a set of cosmological parameters c; then
we can estimate errors of ¢; measurements by error propagation

oC,
8cj

Fz'j — COV Cz,(%7 %/:aCZECOV Cg,Cg/)
_ 2+ 1)aG, 56,
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Idealized Statistical Errors

e Take a noisy estimator of the multipoles in the map

é)ﬁm — @Em =+ me

and take the noise to be statistically 1sotropic
NN
<NEmN€’m’> — 5%’5mm’ ¢

e Construct an unbiased estimator of the power spectrum ((jg)

!
A 1 A A
E O; Opn — CVN

C,= —
TN
e Covariance 1n estimator
2
COV(CE, Cg/) — —(CE -+ OéNN)25€g/

20+ 1



Incomplete Sky

e On a small section of sky, the number of independent modes of a
given { is no longer 2¢ + 1

e As in Fourier analysis, there are two limitations: the lowest £ mode
that can be measured is the wavelength that fits in angular patch 6

—_ 27-‘-.

gmin — )
0
modes separated by A/ < /,,;, cannot be measured independently

e Estimates of C, covary on a scale imposed by Al < £in

e Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

2

COV(C@, Cgl) — (2£+ 1)fk
SKy

(Cp+ C7™) 200




Stokes Parameters

e Specific intensity is related to quadratic combinations of the
electric field.

e Define the intensity matrix (time averaged over oscillations)
(EET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P=<EET>:§(IUO+Q03+U01—VU2)v

where

10 0 1 0 —1 1 0
o0 = 01 = , 02 = , 03 =
0 1 1 0 1 0 0 —1

e Stokes parameters recovered as Tr(o;P)

e Choose units of temperature for Stokes parameters [ — ©



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él =+ EQ(ta Z)é2
Fi(t,z) = Al o)
Es(t, z) = Axe'? el(kz—wt)

e Explicitly:

[ = (E\E} + E;E3) = A} + A

Q= (E\E} — BbE5) = Al — Aj

U= (E\E} + E2E}) = 24, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection

e This suggests that T

€ €
abstractly there are two U omt 2

different ways to detect

polarization: separate

and difference orthogonal 81 82
modes (bolometers /, ()

or correlate the separated i
components (U, V). % Q % ‘ v ‘ X\ ‘
\C/

o
%Y

e In the correlator example the natural output would be U but one
can recover V' by introducing a phase lag ¢ = /2 on one arm, and
() by having the OMT pick out directions rotated by 7 /4.

e Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V' to U.



Detection

e Techniques also differ in the systematics that can convert
unpolarized sky to fake polarization

e Differencing detectors are sensitive to relative gain fluctuations

e Correlation detectors are sensitive to cross coupling between the
arms

e More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Eq. = JE;,

Pdet — J]-Dan]L

where the end result 1s either a differencing or a correlation of the
Pdet-



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz=wt)

Es(t, z) = ReAye'?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é; — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

A/ A . A
€; = COs x€1 + Sl €9

A

/ . A A
€, = — SIn Y€1 + COoS X €2

e Match

E(t,0) = A] coswt[cos x€; + sin yé,]
— A, cos wt|— sin y€; + cos x€s)
= Aj[cos ¢1 coswt + sin ¢ sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysin 8
e Characterize the polarization by two angles
Ajcos ¢y = Eycos [ cosy, Ajqsin ¢, = Eysin 8 sin vy,
Ay cos oy = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U = E;cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V*?, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 =0, 7/2, w then only one principal axis, ellipse collapses to a
line and VV = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] = +Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7 /4,3m/4, then principal components have equal strength

and F field rotatesonacircle:  =+V and QQ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 23 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q°+U?+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1] )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) I Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V?, all 4 Stokes parameters needed



Linear Polarization
o ) x (E1EY) — (EuE3), U o< (E1ES) + (EyEY).
e Counterclockwise rotation of axes by 6 = 45°
By = (B, —E)/V2, Ey,=(E,+E)/V?2

o U x (EE*) — (EyES), difference of intensities at 45° or '
e More generally, P transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U

or
Q' +iU = eT[Q + iU

acquires a phase under rotation and 1s a spin +2 object



Coordinate Independent Representation

2
4 B

0“= "0
IIIIIQ@ ST

>
‘E“

e Two directions: orientation of polarization N

and change in amplitude, i.e. () and

U 1n the basis of the Fourier wavevector
(pointing with angle ¢;) for small sections
of sky are called I~ and B components

E) £iB(1) = - / da[Q' (1) + iU’ (1)) e 1™

_ e / FAIQ(R) & iU (R)]e~
e For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible

for density fluctuations in linear theory

e Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics

e Laplace Eigenfunctions

VQiQYEm[O'?, Fio| = —[l(l+1) —4]Y|o3 Fioq]

e Spin s spherical harmonics: orthogonal and complete

/dﬂs}/em( ) Yvém( )— 5@6’5mm’

an )sYem(B') = 6(¢ — ¢)d(cos 0 — cos ¢')

where the ordinary spherical harmonics are Yy,,, = oY

e (Given 1n terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0450)



Statistical Representation

e All-sky decomposition

Q1) +iU(R)] = > [Epm £ iBom]2Yim(0)

m

e Power spectra

<EZmE€m> — 5@8’5mm’ EEE

<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<@ZmE€m> — 5%’5mm’C?E

others vanish if parity 1s conserved



Inhomogeneity vs Anisotropy

e O is a function of position as well as direction but we only have
access to our position

e Light travels at the speed of light so the radiation we receive in
direction n was (1, — n)n at conformal time 7

e Inhomogeneity at a distance appears as an anisotopy to the
observer

e We need to transport the radiation from the initial conditions to the
observer

e This 1s done with the Boltzmann or radiative transfer equation
e In the absence of scattering, emission or absorption the Boltzmann

equation is simply

Df_

=0
Dt



Last Scattering

JitkD )

e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Integral Solution to Radiative Transter

Sy
AN AN AN 4N /L
I,(7) —7L = 1,,(0)
T T 0

e Formal solution for specific intensity I, = 2hv° f/c?

1,(0) = L(r)e™" + /T 'S, (t")e™™

0

e Specific intensity /,, attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

e O satisfies the same relation for a blackbody



Angular Power Spectrum

e Take recombination to be instantaneous: dre™" = dDd(D — D,)
and the source to be the local temperature inhomogeneity

O(h) = /dD Ox)5(D — D,)

where D 1s the comoving distance and D, denotes recombination.

e Describe the temperature field by its Fourier moments

-

e Note that Fourier moments ©(k) have units of volume k3

e 2 point statistics of the real-space field are translationally and
rotationally invariant

e Described by power spectrum



Spatial Power Spectrum

e Translational invariance

O(x)0(x)) = (O +d)O(x+d))

/ (;lﬂ-];S (Céﬂ-k)/g <@*(k/)@(k)>eik.x—ik’,x/

d*k Ak * ik-x—ik’ - x"+i(k—k’)-
N ./ (2m)3 (2m)? (0" (K')B(k))ertex ke Hillric)d

So two point function requires ¢ (k — k’); rotational invariance says
coefficient depends only on magnitude of £ not it’s direction

(O(k)"O(K)) = (27)°d(k — k') Pr(k)

Note that (k — k') has units of volume and so Pr must have units

of volume



Dimensionless Power Spectrum

e Variance

4= (e - (Zﬂ’j Pr(k)
- [ [

/dlnk—PT(k)

7_‘_

e Define power per logarithmic interval

k3 Pr(k)

272

A (k) =

e This quantity 1s dimensionless.



Angular Power Spectrum

Temperature field

Multipole moments

3
O(h) = / TE g (k)etr-n

O(n) =

(2m)°
ng @Emnm

Expand out plane wave 1n spherical coordinates

e n—47TZZ]e (kD.)Y 5 (K)Yem (B)

Angular moment

@Em

g

&k
(2m)

O(k)4mi’jo(kD, )Y, (k)



Angular Power Spectrum

e Power spectrum

(O 1) = [ s (AmP " kD) (KD.)Yi (K)o () Pr(1)

= 5gg/5mm/47'(' / dIn k’jg(kD*)A%(k)

with [ 7 j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7
e Angular power spectrum:
47 A% (0/ D, 2
morll/Be) _ s (e,
2000+ 1) 0(+1)
e Not surprisingly, a relationship between ¢2C,/2m and A% at £ > 1.
By convention use /(¢ 4 1) to make relationship exact

Cy =

e This is a property of a thin-shell isotropic source, now generalize.



Generalized Source

e For example,

if the emission surface

1s moving with respect '(
to the observer then 0
radiation has an intrinsic /

dipole pattern at emission ';‘—

e More generally, we know the Y,”’s are a complete angular basis
and plane waves are complete spatial basis

e General source distribution can be decomposed into local
multipole moments

4
20 + 1

where the prefactor 1s for convenience for later convenience when

8™ (i)’

Y,"(n) exp(ik - x)






Generalized Source

e So general solution 1s for a single source shell 1s

. m), . 4T . .
o) =D 5™ (i) /5 1Y/ (0) explik - D)

m

and for a source that is a function of distance

. . m . 4T . .
O(h) = / ADe™ Y2 S0 (D) (i)' 5 Vi () explik - D
im

e Note that unlike the isotropic source, we have two pieces that
depend on n

e Observer sees the total angular structure

Y (0)e™ P ® = dmy i o (kD,)Y (k)Y ()Y (A)

'm/!



Generalized Source

e We extract the observed multipoles by the addition of angular
momentum Y, (1)Y;*(n) — Y (1)

e Radial functions become linear sums over j, with the recoupling
(Clebsch-Gordan) coefficients

e These radial weight functions carry important information about
how spatial fluctuations project onto angular fluctuations - or the
sharpness of the angular transfer functions

e Same 1s true of polarization - source is Thomson scattering

e Polarization has an intrinsic quadrupolar distribution, recoupled by
orbital angular momentum into fine scale polarization anisotropy

e Formal integral solution to the Boltzmann or radiative transfer
equation

e Source functions also follow from the Boltzmann equation



Polarization Basis

Define the angularly dependent Stokes perturbation

O(x,n,7), Qx,n,n), Ux,n,n)

Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n) = 2£+ 1Y€ ) exp(ik - x)
LGk, x,n) = ( \/%JrlﬂYe ) exp(ik - x)

In a spatially curved universe generalize the plane wave part

A

For a single k mode, choose a coordinate system z = k



Normal Modes

e Temperature and polarization fields

X Ak (m) ~m
@(X,ﬂ,?’]) = WZ@K Gﬁ

3
O +iU](x. h, —/ K 5 LB £ B G

e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

D 0O dx 0 dn 0  dq 8)]”

n_Ja 7A77 = 0= a_ > T a__ ) ~
an(ann) (877+d77 8X+dn 3n+d77 d0q

e For simplicity, assume spatially flat universe K = 0 then

dn/dn = 0 and dx = ndn

ﬁﬁﬁlvﬁ+q ﬁ—O

e The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the ¢ term the gravitational sources.



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

S (m) K Am)  Rep .Am) | a(m)
0" =k 2€+1@“ 2€+3@f+1 — 70, + 5,

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
S ém) with its local angular dependence as seen at a distance D.

e Proceed by decomposing the angular dependence of the plane
wave

1% = 3 (=) V/Ar(0+ 1) (kD)Y? ()

e Recouple to the local angular dependence of G*

Gy = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

Projection kernels:

m=0) . m=0)
O‘é :oe) — J¢ O‘és_w) =N

Integral solution:

0y (k, o) L (m) _(m)
el U SUR AT TR

S

Power spectrum:

dk k3 (0™ 0™

Cp=dr | &
T ke (201 1)

Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by kAn/¢ in the “Limber approximation”



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

: m 2m 2Ky
E(m) — L 2Ry E(m) . B(’m) . {+1 E(m) . E(m) (m)
¢ [—%_1 1T o0 + 31| T TR + &

260 gy, 2M pm) 2R <m>] B 4 g

B{™ =k T
‘ W—1 Tt T 23t

where 517" = /(2 — m?2)(£2 — 4) /(2 is given by the
Clebsch-Gordon coefficients and &, B are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from /2 modes by projection. Cosmologically Bém) =0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

20+ 1

B(m)(kﬂ?O) 0 —7 oM m
£2€+1 :/0 dne=E™ B (k(no — n))

e Power spectrum XY = 00,0F, FE, BB:

¢ ( 7770) :/O dne_Tgé )Gé e)(k<770 _77))

_ 47.‘./ dk kS Xém)*}/e(m)>
k 27?2 (20 4+ 1)?
e We shall see that the only sources of temperature anisotropy are
¢ = 0,1, 2 and polarization anisotropy ¢ = 2

o In the basis of Z = k there are only m = 0, &1, &2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer

e A polarization source function with £ = 2, modulated with plane
wave orbital angular momentum

e Scalars have no 5B mode contribution, vectors mostly 55 and tensor
comparable B and E

(a) Polarization Pattern (b) Multipole Power
1.0F ]

0.5 F




Polarization Transfer

e Radial mode functions characterize the projection from k& — ¢ or
inhomogeneity to anisotropy
e Compared to the scalar monopole source:
scalar dipole source very broad
tensor quadrupole, sharper
scalar I polarization, sharper
tensor £ polarization, broad
tensor BB polarization, very broad
e These properties determine whether features in the £-mode

spectrum, e.g. acoustic oscillations, intrinsic structure, survive in

the anisotropy



