

Kivy: Interactive Applications
in Python

Create cross-platform UI/UX applications and games
in Python

Roberto Ulloa

 BIRMINGHAM - MUMBAI

Kivy: Interactive Applications in Python

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-159-6

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Roberto Ulloa

Reviewers
Anai Arroyo B.

Andrés Vargas González

Javier de la Rosa

Hugo Solis

Acquisition Editor
James Jones

Commissioning Editor
Sruthi Kutty

Technical Editors
Ruchita Bhansali

Gauri Dasgupta

Monica John

Project Coordinator
Michelle Quadros

Proofreader
Amy Johnson

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Roberto Ulloa has a diverse academic record in multiple disciplines within the
field of Computer Science. He obtained an MSc from the University of Costa Rica
and also taught programming and computer networking there. He then spent two
years researching about cultural complexity at PhD level at the CulturePlex Lab of
the University of Western Ontario.

He loves travelling and enjoys an itinerant life, living among different cultures and
environments. He loves nature and has spent many months volunteering in Central
and South America.

He currently lives in Kuala Lumpur, earning a living as a web developer in
Python/Django and PHP/Wordpress. He constantly worries that the Internet has
already become aware of itself and we are not able to communicate with it because
of the improbability of it being able to speak Spanish or any of the 6,000 odd human
languages that exist in this world.

Acknowledgments

I would like to thank Su, for not hesitating one second in encouraging and trusting
my ability to write this book; for believing in me and motivating me with endless
cups of coffee.

Javier de la Rosa, with whom I worked on my first Kivy project—the one that gave
birth to the blog post that caught the attention of my publishers.

My technical reviewers, Anaí Arroyo, Javier de la Rosa, Hugo Solís and Andrés
Vargas for their time and corrections.

My supervisor, Gabriela Barrantes, who has been a constant source of support and
inspiration throughout my academic life.

My family and friends, for whom this book will be a surprise, and who've paid with
the time that I didn't have to share with them.

The editorial personnel, for their patience in answering my questions.

Celina, for risking her Android to test my codes for the first time; for her constant
motivation, support, and criticism even though I disagree that my Space Invaders
look like bunnies and, if so, I still think they are terrifying space bunnies.

About the Reviewers

Anaí Arroyo is a PMI certified Project Manager who loves software development
and is passionate about how technology can be used to improve the quality of
people's life and volunteering as a way to contribute to make a positive difference.

Over the last years, she has worked in the Education field, collaborating in the
design and development of Learning Management and Student Information
Management systems.

Andrés Vargas González is currently pursuing a Master of Science in Computer
Science through a Fulbright Fellowship at University of Central Florida (UCF). He
received a Bachelor's degree in the same field from Escuela Superior Politécnica del
Litoral (ESPOL) in Ecuador.

He is a member of the Interactive Systems and User Experience Lab at UCF.
His current research is on machine learning techniques to reduce the time on
gesture recognition in context. His previous works include enterprise multimedia
distribution and exploring usability of multi-touch interfaces in Information Systems,
which was tested on his DIY multi-touch surface. He is also interested in web
applications development. He implemented some e-commerce solutions as well as
Facebook applications in his home country and recently was working in the backend
of an educational data resource system in Florida, USA.

Besides his academic and professional interests, he enjoys hiking high elevations,
learning from different cultures, biking by the city, and finally, playing and
watching soccer.

First and foremost, I would like to thank my four mothers for the
values, love, and inspiration I got from them every moment of my
life. I also wish to express my sincere gratitude to Shivani Wala for
providing me an opportunity to be part of this great project. At the
same time my special thanks to Michelle Quadros for keeping me
updated with the deadlines and any doubt I had. Last but not least I
wish to avail myself of this opportunity, express a sense of gratitude
and love to my relatives, professors, and friends.

Javier de la Rosa is a full-stack Python developer since 2005, when he first met
the Django web framework. During his years in Yaco, one of the main FLOSS-based
companies in Spain, he leaded the Research and Development Team, participating
in both European and national projects. Late in 2009, he started to collaborate with
The CulturePlex Lab for Cultural Networks research, at the Western Unviersity in
Canada, in his sparse time. As a result, he left Yaco in 2010 and joined the laboratory
to lead and supervise technical and software developments. Today, he is still in
charge of the developers team as well as conducting his own research on Big Culture,
where he mixes his background as a BA and MA in Computer Sciences, Logics and
Artificial Intelligence by the University of Seville, and his recent acquired skills
as a 3rd year PhD student in Hispanic Studies at Western University in Canada.
Currently, he just started his 1st year as a PhD in Computer Sciences, focusing on
Graph Databases and Query Languages.

A regular collaborator of Open Source projects, he is the owner and main
developer of qbe (http://versae.github.io/qbe/) and neo4j-rest-client
(https://github.com/versae/neo4j-rest-client). In the academic field, he
is author of several articles, as well as one of the writers of the book Programming
Historian 2 (http://programminghistorian.org/). You can always contact him
on Twitter (@versae) or GitHub under the nickname versae.

Hugo Solis is an assistant professor in the Physics Department at University
of Costa Rica. His current research interests are computational cosmology,
complexity and the influence of hydrogen on material properties. He has wide
experience with languages including C/C++ and Python for scientific programming
and visualization. He is a member of the Free Software Foundation and he has
contributed code to some free software projects. Currently, he is in charge of the
IFT, a Costa Rican scientific non-profit organization for the multidisciplinary practice
of physics. (http://iftucr.org)

I'd like to thank Katty Sanchez, my beloved mother, for her support
and vanguard thoughts.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: GUI Basics – Building an Interface 7

Hello World! 8
Basic widgets – labels and buttons 11
Layouts 14
Embedding layouts 18
Our Project – comic creator 22
Summary 28

Chapter 2: Graphics – The Canvas 31
Basic shapes 32
Images, colors, and backgrounds 38
Rotating, translating, and scaling 41
Comic creator – PushMatrix and PopMatrix 44
Summary 48

Chapter 3: Widget Events – Binding Actions 51
Attributes, id and root 52
Basic widget events – dragging the stickman 54
Localizing coordinates – adding stickmen 59
Binding and unbinding events – sizing limbs and heads 62
Binding events in the Kivy language 67
Creating your own events – the magical properties 69
Kivy and properties 72
Summary 75

Chapter 4: Improving the User Experience 77
Screen manager – selecting colors for the figures 78
Color Control on the canvas – coloring figures 81
StencilView – limiting the drawing space 84

Table of Contents

[ii]

Scatter – multitouching to drag, rotate, and scale 85
Recording gestures – line, circles, and cross 89
Simple gestures – drawing with the finger 91
Summary 95

Chapter 5: Invaders Revenge – An Interactive Multitouch Game 97
Invaders Revenge – an animated multitouch game 98
Atlas – efficient management of images 99
Boom – simple sound effects 101
Ammo – simple animation 102
Invader – transitions for animations 103
Dock – automatic binding in the Kivy language 105
Fleet – infinite concatenation of animations 107
Scheduling events with the Clock 108
Shooter – multitouch control 110
Invasion – moving the shooter with the keyboard 113
Combining animations with '+' and '&' 115
Summary 117

Index 119

Preface
Mobile devices have changed the way applications are perceived. They have
increased in interaction types, the user expects gestures, multi-touches, animations,
and magic-pens. Moreover, compatibility has become a must-have if you want to
avoid the barriers imposed by major Operative Systems. Kivy is an Open Source
Python solution that covers these market needs with an easy to learn and rapid
development approach. Kivy is growing fast and gaining attention as an alternative
to the established developing platforms.

This book introduces you into the Kivy world, covering a large variety of important
topics related to interactive application development. The components presented
in this book were not only selected according to their usefulness for developing
state-of-the- art applications, but also for serving as an example of broader Kivy
functionalities. Following this approach, the book covers a big part of the Kivy library.

Instead of giving a detailed description of all the functions and properties, it
provides you with examples to understand their use and how to integrate the two
big projects that come with the book. The first one, the comic creator, exemplifies
how to build a user interface, how to draw vector shapes in the screen, how to bind
user interactions with pieces codes and other components related to improve the
user experience. The second project, Invaders Revenge, is a very interactive game
that introduces you to the use of animations, scheduling of tasks, keyboard events,
and multi-touch control.

Occasionally the book explains some technical but important Kivy concepts that are
related to the order and strategies used to draw in the screen. These explanations give
the readers some insights into the Kivy internals that will help them solve potential
problems when they are developing their own projects. Even though they are not
necessary for the comprehension of the main topics of this book, they will become
important lessons when the readers are implementing their own applications.

Preface

[2]

The book keeps the readers attention by stating small problems and their solutions.
The sections are short and straightforward, making the learning process constant.
These short sections will also serve as a reference when they finish the book.
However, serving as a reference doesn't prevent the text from achieving the main
goal, which is teaching with bigger projects that connects the small topics. At the end
of the book, the readers will feel comfortable to start their own project.

What this book covers
Chapter 1, GUI Basics – Building an Interface, introduces basic components and layouts
of Kivy and how to integrate them through the Kivy Language.

Chapter 2, Graphics – The Canvas, explains the use of the canvas and how to draw
vector figures on the screen.

Chapter 3, Widget Events - Binding Actions, teaches how to connect the interactions of
the user through the interface with particular code inside the program.

Chapter 4, Improving the User Experience, introduces a collection of useful components
to enrich the interaction of the user with the interface.

Chapter 5, Invaders Revenge – An Interactive Multitouch Game, introduces components
and strategies to build highly interactive applications.

What you need for this book
This book requires a running installation of Kivy with all its requirements.
The installation instructions can be found at http://kivy.org/docs/
gettingstarted/installation.html.

Who this book is for
The book aims at Python developers who want to create exciting and interesting
UI/UX applications. They should be already familiarized with Python and have a
good understanding of some software engineering concepts, particularly inheritance,
classes, and instances. That said, the code is kept as simple as possible and it avoids
the use of very specific Python nuances. No previous experience of Kivy is required
though some knowledge of event handling, scheduling, and user interface, in
general, would boost your learning.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Missile and Shot inherits from the same
class called Ammo, which also inherits from Image. There is also the Boom class that
will create the effect of explosion when any Ammo is triggered."

A block of code is set as follows:

File name: hello.py
import kivy
kivy.require('1.7.0')

from kivy.app import App
from kivy.uix.button import Label

class HelloApp(App):
 def build(self):
 return Label(text='Hello World!')

if __name__=="__main__":
 HelloApp().run()

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Consider App as an empty window as shown in the following screenshot
(Hello World! output)".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

GUI Basics – Building
an Interface

Kivy emerges as a successor of PyMT (a library for multitouch applications) with a
simple but ambitious goal in mind — same code for every commonplace platform:
Linux / Windows / Mac OS X / Macosx / Android / iOS (Mathieu Virbel, http://
txzone.net/2011/01/kivy-next-pymt-on-android-step-1-done/). This support
is being extended to Raspberry Pi thanks to a founding campaign started by Mathieu
Virbel, the creator of Kivy. Kivy was introduced in the EuroPython 2011, as a Python
framework designed for creating natural user interfaces.

So, let's start creating user interfaces using one of its fun and powerful components,
the Kivy language (.kv). The Kivy language helps us to separate the logic from the
presentation. This is a fundamental engineering concept that helps to keep an easy
and intuitive code. Nonetheless, it is possible to build a Kivy application using pure
Python and Kivy as a library. We will also learn those concepts in later chapters
because they allow us to modify interfaces dynamically.

This chapter covers all the basics for building a graphical user interface (GUI) in
Kivy. Afterwards, you will be able to build practically any GUI you have in your
mind, and even make them responsive to the size of window! The following is a list
of all the skills that you're about to learn:

• Launching a Kivy application
• The Kivy language
• Creating and using widgets (GUI components)
• Basic properties and variables of the widgets
• Fixed, proportional, absolute, and relative coordinates
• Organizing GUIs through layouts
• Tips for achieving responsive GUIs

GUI Basics – Building an Interface

[8]

Apart from Python, this chapter requires some knowledge about Object-Oriented
Programming (http://en.wikipedia.org/wiki/Object-oriented_programming)
concepts. In particular, inheritance (http://en.wikipedia.org/wiki/
Inheritance_(object-oriented_programming)) and the difference between
instances (http://en.wikipedia.org/wiki/Instance_(computer_science))
and classes (http://en.wikipedia.org/wiki/Class_(computer_science)) will
be assumed. Before starting, you will need to install Kivy (The instructions can be
found in http://kivy.org/docs/installation/installation.html). The book
examples were tested on Kivy 1.7.0 but a more recent version should work as well.

At the end of this chapter, we will be able to build a GUI starting from a pencil and
paper sketch. We will introduce the main project of the book — the Comic Creator,
and implement the main structure of the GUI.

Hello World!
Let's put our hands on our first code. The following is yet another Hello World
program:

1. # File name: hello.py
2. import kivy
3. kivy.require('1.7.0')
4.
5. from kivy.app import App
6. from kivy.uix.button import Label
7.
8. class HelloApp(App):
9. def build(self):
10. return Label(text='Hello World!')
11.
12. if __name__=="__main__":
13. HelloApp().run()

Chapter 1

[9]

This is merely a Python code. Launching a Kivy program is not different from
launching any other Python application. In order to run the code, you just have to
open a terminal (line of commands or console) and specify the command, python
hello.py --size=150x100 (--size is a parameter to specify the screen size). In the
preceding code, the lines 2 and 3 verify if you have the appropriate version of Kivy
installed in your computer.

If you try to launch your application with an older Kivy
version (say 1.6.0), an exception is raised for the specified
version. There is no exception raised if you have a more
recent version. Of course, backwards compatibility is desired
but not always possible, and so you might face problems if
you use a newer version.

We omit this statement in most of the examples inside the book, but you will be
able to find it again in the online codes, which you can download, and its use is
strongly encouraged in real life projects. The program uses two classes from the Kivy
library (lines 5 and 6): App and Label. The App class is the starting point of any Kivy
application. The following screenshot shows the window containing a Label with the
Hello World text:

Hello World Output

The way we use the App class is through inheritance. App becomes the base class
of HelloApp (line 8), the subclass or child class. In practice, this means that the
HelloApp class has all the properties and methods of App in addition to whatever we
define in the body (lines 9 and 10) of the HelloApp class.

In this case, the HelloApp's body just modifies one of the existent App's methods,
the build(self) method. This method returns the window content. In this case, a
simple Label saying Hello World! (line 10). Finally, the line 13 creates an instance
of HelloApp and runs it.

GUI Basics – Building an Interface

[10]

So, is Kivy just another library for Python? Well, yes. But as part of the library, Kivy
offers its own language to separate the logic from the presentation. For example you
could write the preceding Python code in two separate files. The first file would then
include the Python lines as shown in the following code:

14. # File name: hello2.py
15. from kivy.app import App
16. from kivy.uix.button import Label
17.
18. class Hello2App(App):
19. def build(self):
20. return Label()
21.
22. if __name__=="__main__":
23. Hello2App().run()

The hello2.py code is very similar to hello.py. The difference is that the line 20
doesn't have the Hello World! message. Instead, the message has been moved to
the text property in the second file (hello2.kv) which contains the Kivy language:

24. # File name: hello2.kv
25. #:kivy 1.7.0
26. <Label>:
27. text: 'Hello World!'

How does Python or Kivy know that these files are related? This is quite important
and tends to be confusing at the beginning. The key is in the name of the subclass of
the App, that is, HelloApp.

The initial part of the App's subclass name has to coincide with
the name of the Kivy file. For example, if the definition of the
class is class FooApp(App), then the name of the file must
be foo.kv and it must be in the same directory of the main file
(the one that executes the App's run() method).

Once that consideration is included, this example can be run in the same way we ran
the hello.py. We just need to be sure that we are calling the new main file (hello2.
py), python hello2.py -–size=150x100.

This is your first contact with the Kivy language, so let's go slowly. The #:Kivy
1.7.0 line of the hello2.kv code tells Python the minimal Kivy version that should
be used. The line does the same that the lines 2 and 3 did in the hello.py code. The
instructions that start with #: in the header of a Kivy language are called directives.
We will also be omitting the version directive along the book, but remember to
include it in your projects.

Chapter 1

[11]

The <Label>: rule (line 26) indicates that we are going to modify the Label class
by setting 'Hello World!' in the text property (line 27). This code generates the
same output that was shown in the previous screenshot. There is nothing you can't
do using pure Python and importing the necessary classes from the Kivy library as
we did in the first example (hello.py). However, the separation of the logic from the
presentation results in simpler and cleaner code. Therefore, this book explains all the
presentation programming through the Kivy language, unless dynamic components
are added.

You might be worrying that modifying the Label class affects all the instances we
create from Label, because, they will all contain the same Hello World text. That
is true. Therefore, in the following section, we are going to learn how to directly
modify specific instances instead of classes.

Basic widgets – labels and buttons
In the previous section, we were already using the Label class, which is one of the
widgets that Kivy provides. Widgets are the little interface blocks that we use to set
up the GUI. Kivy has a complete set of widgets including buttons, labels, checkboxes,
dropdowns, and so on. You can find them all in the Kivy API kivy.uix (http://
kivy.org/docs/api-kivy.html) under the package kivy.uix.

It's a good practice to create your own Widget for your applications instead of using
the Kivy classes directly as we did in hello2.kv (line 26). The following code shows
how to do that through inheritance:

28. # File name: widgets.py
29. from kivy.app import App
30. from kivy.uix.widget import Widget
31.
32. class MyWidget(Widget):
33. pass
34.
35. class WidgetsApp(App):
36. def build(self):
37. return MyWidget()
38.
39. if __name__=="__main__":
40. WidgetsApp().run()

GUI Basics – Building an Interface

[12]

In line 32 of the preceding code (widgets.py), we inherit from the base class Widget
and create the subclass MyWidget, and, in line 37, we instantiated MyWidget instead
of modifying the Kivy Label class directly as we did in hello2.py. The rest of the
code is analogous to what we covered before. The following is the corresponding
Kivy language code (widgets.kv):

41. # File name: widgets.kv
42. <MyWidget>:
43. Button:
44. text: 'Hello'
45. pos: 0, 100
46. size: 100, 50
47. color: .8,.9,0,1
48. font_size: 32
49. Button:
50. text: 'World!'
51. pos: 100,0
52. size: 100, 50
53. color: .8,.9,0,1
54. font_size: 32

Notice that now we are using buttons instead of labels. Most of the basic widgets in
Kivy work in a very similar manner. In fact, Button is just a subclass of Label that
includes more properties such as background color.

Compare the notation of line 26 (<Label>:) of hello2.kv with the line 43 (Button:)
of the preceding code (widgets.kv). We used the class notation (<Class>:) for the
Label (and for MyWidget) but another notation (Instance:)
for Button. We just defined that MyWidget has two instances of Button (on line
43 and 49), and then we set the properties of those instances (the color is in RGBA
format that stands for red, green, blue, and alpha/transparency).

The size and pos properties consist of fixed values, that is, the exact pixels on
the window.

Notice that the coordinate (0, 0) is at the bottom-left
corner, that is, the Cartesian origin. Many other languages
(including CSS) use the top-left corner as the (0, 0)
coordinate, so be careful with this.

Chapter 1

[13]

The following screenshot shows the output of the widgets.py and widgets.kv code
files with some helpful annotations (on white color):

Creating our own widget

A couple of things could be improved in the previous code (widgets.kv). The
first thing is that there are many repeated properties for the buttons such as pos,
color and font_size. Instead of that, let's create our own Button as we did with
MyWidget. The second is that the fixed position is quite annoying because the
widgets don't adjust when the screen is resized because the position is fixed. Let's
make the widgets more responsive:

55. # File name: widgets2.kv
56. <MyButton@Button>:
57. color: .8,.9,0,1
58. font_size: 32
59. size: 100, 50
60.
61. <MyWidget>:
62. MyButton:
63. text: 'Hello'
64. pos: root.x, root.top - self.height
65. MyButton:
66. text: 'World!'
67. pos: root.right - self.width, root.y

In widgets2.kv we created (<MyButton@Button>:) and customized the MyButton
class (as shown in lines 56 to 59) and instances (as shown in the lines 62 to 67).

Please note the difference between the way we defined MyWidget and MyButton.
We need to specify @Class only if we didn't define the base class in the Python side
as we did with MyWidget (line 32 of widgets.py). On the other hand, we had to
define MyWidget in the Python side because we instantiated it directly (line 37 of
widgets.py).

GUI Basics – Building an Interface

[14]

In this example, each Button's position is responsive in the sense that they will
always be displayed in the corners of the screen, no matter what the window size is.
In order to achieve that, we need to use the self and root variables. You might be
familiar with the variable self. As you have probably guessed, it is just a reference
to the Widget itself. For example, self.height (line 64) has a value of 50 because
that is the height of that particular MyButton. The root variable is a reference to
the Widget class at the top of the hierarchy. For example, the root.x (line 64) has a
value of 0 because that is the position in the X-axis of the MyWidget instance created
on in line 37 of widgets.py. Since, the MyWidget instance is the only one in the
WidgetsApp, it uses all the space by default; therefore, the origin is (0, 0). The x, y,
width, and height are also the widgets properties.

Still, fixed coordinates are an inefficient way of organizing widgets and elements in
the window. Let's move on to something smarter: layouts.

Layouts
No doubt that fixed coordinates are the most flexible way of organizing elements in
an n-dimensional space; however, it is very time-consuming. Instead, Kivy provides a
good set of layouts instead, which facilitate the work of organizing widgets. A Layout
is a Widget subclass that implements different strategies to organize embedded
widgets. For example, one strategy could be organizing widgets in a grid (GridLayout).

Let's start with a simple FloatLayout example. It works very similar to the way
we organize widgets directly inside another Widget, except that now we can use
proportional coordinates (proportions of the total size of the window) rather than
fixed coordinates (exact pixels). This means that we don't need the calculations we
did in the previous section with self and root. The following is the Python code:

68. # File name: floatlayout.py
69.
70. from kivy.app import App
71. from kivy.uix.floatlayout import FloatLayout
72.
73. class FloatLayoutApp(App):
74. def build(self):
75. return FloatLayout()
76.
77. if __name__=="__main__":
78. FloatLayoutApp().run()

There is nothing new in the preceding code (floatlayout.py) except for the
use of FloatLayout (on line 75). The interesting parts are in the Kivy language
(floatlayout.kv):

79. # File name: floatlayout.py
80. <Button>:

Chapter 1

[15]

81. color: .8,.9,0,1
82. font_size: 32
83. size_hint: .4, .3
84.
85. <FloatLayout>:
86. Button:
87. text: 'Hello'
88. pos_hint: {'x': 0, 'top': 1}
89. Button:
90. text: 'World!'
91. pos_hint: {'right': 1, 'y': 0}

In the floatlayout.kv code file, we use two new properties, size_hint and
pos_hint, which work with the proportional coordinates with values ranging from
0 to 1; (0, 0) is the bottom-left corner and (1, 1) the top-right corner. For example, the
size_hint on line 83 sets the width to 40 percent of the current window width and
the height to 30 percent of the current window height. Something similar happens
to the pos_hint but the notation is different: a Python dictionary where the keys
(for example, 'x' or 'top') indicate which part of the widget is referenced. For
instance, 'x' is the left border. Notice that we use the top key instead of y in line
88 and right instead of x in line 91. The top and right properties respectively
reference the top and right edges of the Button, so it makes the positioning simpler.
That doesn't mean we could have used x and y for both the axes. For example,
something like pos_hint: {'x': .85, 'y': 0} on line 91. The right and top keys
avoids some calculations and makes the code clearer. The next screenshot illustrates
the output of the previous code with the available keys for the pos_hint dictionary:

Using FloatLayout

The available pos_hint keys (x, center_x, right, y, center_y, and top) are useful
for aligning to edges or centering. For example, pos_hint: {'center_x':.5,
'center_y':.5} would align a Widget in the middle, no matter what the size of
the window is.

GUI Basics – Building an Interface

[16]

Could have we used top and right with the fixed positioning of widgets2.kv
(in line 64 and 67)? Yes, we could; but notice that pos doesn't accept Python
dictionaries ({'x':0,'y':0}) that just lists of values (0,0). Therefore, instead of
using the pos property, we have to use the x, center_x, right, y, center_y, and
top properties directly. For example, instead of pos: root.x, root.top - self.
height, we would have used the following code:

 x: 0
 top: root.height

Notice that these properties always specify fixed values (pixels) and not
proportional ones.

If we want to use proportional coordinates, we have to be
inside a Layout (or an App), and use the pos_hint property.

If we are using a Layout instance, can we force the use of fixed values? Yes, but
there can be conflicts if we are not careful with the properties we use. If we use any
Layout, then pos_hint and size_hint will have the priority. If we want to use fixed
positioning properties (pos, x, center_x, right, y, center_y, and top), we have to
ensure that we are not using the pos_hint property. Secondly, if we want to use the
size, height, or width properties, we need to give a None value to the size_hint
axis we want to use with the absolute values. For example, size_hint: (None,
.10) allows using the height property, but it keeps the width as 10 percent of the
windows size. The following table summarizes everything we learned about the
positioning and sizing properties. The first and second columns indicate the name of
the property and its respective value. The third and fourth columns indicate if it is
available for layouts and for widgets:

Property Value For layouts For widgets
size_hint A pair [w, h] where, w and h

express a proportion (from 0 to 1
or None)

Yes No

size_hint_x
size_hint_y

A proportion from 0 to 1 or None
indicating width (size_hint_x)
or height (size_hint_y)

Yes No

pos_hint A dictionary with one x-axis key
(x, center_x, or right) and one
y-axis key (y, center_y, or top).
The values are proportions from
0 to 1

Yes No

Chapter 1

[17]

size A pair [w, h] where, w and h
indicate fixed width and height
in pixels

Yes, but set
size_hint:
(None, None)

Yes

width A value indicating a fixed number
of pixels

Yes, but set
size_hint_x: None

Yes

height A value indicating a fixed number
of pixels

Yes, but set
size_hint_y: None

Yes

pos A pair [x, y] indicating a fixed
coordinate (x, y) in pixels

Yes, but don't use
pos_hint

Yes

x, right, or
center_x

They have fixed number of pixels Yes, but don't use x,
right, or center_x
in pos_hint

Yes

y, top, or
center_y

The have fixed number of
pixels

Yes, but don't
use y, top, or
center_y in pos_
hint

Yes

We have to be careful because some of the properties behave different according to
the layout we are using. Kivy currently has seven different layouts; six of them are
briefly described in the following table. The left column shows the name of the Kivy
Layout class and the right column describes briefly how they work:

Layout Details
FloatLayout This layout organizes the widgets with proportional coordinates with

the size_hint and pos_hint properties. The values are numbers
between 0 and 1 indicating a proportion to the window size.

Relative
Layout

This layout operates in the same way as FloatLayout does, but the
positioning properties (pos, x, center_x, right, y, center_y, and
top) are relative to the Layout size and not the window size.

GridLayout This layout organizes widgets in a grid. You have to specify at least one
of the two properties: cols (for columns) or rows (for rows).

BoxLayout This layout organizes widgets in one row or one column depending
whether the value of property orientation is horizontal or vertical.

StackLayout This layout is similar to BoxLayout but it goes to the next row or column
when it runs out of space. In this layout, there is more flexibility to set
the orientation. For example, 'rl-bt' organizes the widgets in right-
to-left and bottom-to-top order. Any combination of lr (left to right), rl
(right to left), tb (top to bottom), and bt (bottom to top) is allowed.

Anchor
Layout

This layout organizes the widgets to a border or to the center. The
anchor_x property indicates the x position (left, center or right),
whereas anchor_y indicates the y position (top, center or bottom)

GUI Basics – Building an Interface

[18]

The seventh layout, which is the ScatterLayout, works similar to RelativeLayout
but it allows multitouch gesturing for rotating, scaling, and translating. It is
slightly different in its implementation so we will review it later. The Kivy API
(http://kivy.org/docs/api-kivy.html) offers a detailed explanation and good
examples on each of them. The behavioral difference of the properties depending on
the Layout is sometimes unexpected but the following are some of the hints that will
help you in the GUI building process:

• The size_hint, size_hint_x, and size_hint_y properties work on all
the layouts but the behavior might be different. For example, GridLayout
will try to take an average of the x hints and y hints on the same row or
column respectively.

• It is advisable to use values from 0 to 1 with the size_hint, size_hint_x,
and size_hint_y properties. However, you can also use values bigger
than 1. Depending on the Layout, Kivy makes the Button bigger than the
container or tries to recalculate a proportion based on the sum of the hints on
the same axis.

• The pos_hint property works only in FloatLayout, RelativeLayout, and
BoxLayout. In BoxLayout, only the x keys (x, center_x, and right) work
in the vertical orientation and vice versa. An analogous rule applies for the
fixed positioning properties (pos, x, center_x, right, y, center_y, and top).

• The size_hint, size_hint_x, and size_hint_y properties can always be
set as None in favor of size, width, and height.

There are more properties and particularities of each Layout, but with the ones we
have covered, you will be able to build almost any GUI you desire. In general, the
recommendation is to use the layout as it is. Don't try to force the layout through an
odd configuration of properties. Instead, it is better to use more layouts and embed
them to reach our design goals. In the next section, we will teach you how to embed
layouts, and we will offer a more comprehensive example of them.

Embedding layouts
The layouts studied in the previous section are subclasses of Widget. We have
already been embedding widgets inside widgets since the beginning of this
chapter and, of course, it won't matter if the widgets we are embedding are layouts
as well. The following Python code is the base of a comprehensive example about
embedding Layouts:

92. # File name: layouts.py
93. from kivy.app import App
94. from kivy.uix.gridlayout import GridLayout
95.

Chapter 1

[19]

96. class MyGridLayout(GridLayout):
97. pass
98.
99. class LayoutsApp(App):
100. def build(self):
101. return MyGridLayout()
102.
103. if __name__=="__main__":
104. LayoutsApp().run()

There's nothing new in the preceding code, we just implemented the MyGridLayout
class. The final result is shown first in the following screenshot with a few indications
in different colors:

In the preceding screenshot all the types of Kivy layouts are embedded into a
GridLayout of 2 rows by 3 columns. This is a big example, so we are going to study
the corresponding Kivy language code (layouts.kv) in five fragments. Don't be
overwhelmed by the amount of code, it is very straightforward. The following code
is the fragment 1:

105. # File name: layouts.kv (Fragment 1)
106. <MyGridLayout>:
107. rows: 2
108. FloatLayout:
109. Button:
110. text: 'F1'
111. size_hint: .3, .3

GUI Basics – Building an Interface

[20]

112. pos: 0, 0
113. RelativeLayout:
114. Button:
115. text: 'R1'
116. size_hint: .3, .3
117. pos: 0, 0

In the preceding code, MyGridLayout is first defined by the number of rows
(line 107). Then we add the first two layouts, FloatLayout and RelativeLayout
with one Button each. Both the buttons (F1 and R1) have defined the property
pos: 0,0 (lines 112 and 117) but you can notice in the preceding screenshot
(Embedding Layouts) that the Button F1 (line 110) is in the bottom-left corner of the
whole window, whereas the Button R1 (line 115) is in the bottom-left corner of the
RelativeLayout. The reason for this is that the coordinates in FloatLayout are not
relative to the position of the layout. It is important to mention that this wouldn't have
happened if we have used pos_hint, which always use the relative coordinates.

In the fragment 2, one GridLayout is added to MyGridLayout as shown in the
following code:

118. # File name: layouts.kv (Fragment 2)
119. GridLayout:
120. cols: 2
121. spacing: 10
122. Button:
123. text: 'G1'
124. size_hint_x: None
125. width: 50
126. Button:
127. text: 'G2'
128. Button:
129. text: 'G3'
130. size_hint_x: None
131. width: 50

In the preceding code, we define two columns (line 120) and a spacing of 10 (line
121) which separates the internal widgets by 10 pixels from each other. Also notice
that in the previous screenshot (Embedding Layouts), the first column is thinner than
the second column. We achieved this by setting the size_hint_x property to None
and width to 50 of the buttons G1 (line 122) and G3 (line 128).

Chapter 1

[21]

In the fragment 3, an AnchorLayout is added as shown in the following code:

132. # File name: layouts.kv (Fragment 3)
133. AnchorLayout:
134. anchor_x: 'right'
135. anchor_y: 'top'
136. Button:
137. text: 'A1'
138. size_hint: [.5, .5]
139. Button:
140. text: 'A2'
141. size_hint: [.2, .2]

In the preceding code, we have specified anchor_x to right and anchor_y to top
(line 134 and 135). You can notice in the previous screenshot (Embedding Layouts)
how both the buttons (lines 136 and 139) of AnchorLayout have been placed in
the top-right corner. This layout is very useful to embed other layouts inside it, for
example top menu bars or side bars.

In the fragment 4, a BoxLayout is added as shown in the following code:

143. # File name: layouts.kv (Fragment 4)
144. BoxLayout:
145. orientation: 'horizontal'
146. Button:
147. text: 'B1'
148. Button:
149. text: 'B2'
150. size_hint: [2, .3]
151. pos_hint: {'y': .4}
152. Button:
153. text: 'B3'

The preceding code illustrates the use of BoxLayout in its horizontal orientation.
Also, in lines 150 and 151 we use size_hint and pos_hint to move the button B2
further up.

Finally, the fragment 5 adds a StackLayout as shown in the following code:

154. # File name: layouts.kv (Fragment 5)
155. StackLayout:
156. orientation: 'rl-tb'
157. padding: 10
158. Button:
159. text: 'S1'

GUI Basics – Building an Interface

[22]

160. size_hint: [.6, .2]
161. Button:
162. text: 'S2'
163. size_hint: [.4, .4]
164. Button:
165. text: 'S3'
166. size_hint: [.3, .2]
167. Button:
168. text: 'S4'
169. size_hint: [.4, .3]

Here we have added four buttons of different sizes. To understand the rules applied
to organize the widgets in the rl-tb (right-to-left and top-to-bottom) orientation
(line 156) please refer back to the previous screenshot (Embedding Layouts). Also,
you can notice that the padding property (line 157) adds 10 pixels of space between
the widgets and the border of the StackLayout.

Our Project – comic creator
You now have all the necessary concepts to create any interface you want. This
section describes the project that we will complete along this section itself and the
following three chapters. The basic idea of the project is a comic creator, a simple
application to draw a stickman. The following sketch is a wireframe of the GUI we
have in mind.

Total Figures: 1 Kivy Started

Clear Remove Group Color Gestures

...

Comic creator sketch

Chapter 1

[23]

We can distinguish several separate areas in the preceding sketch. Firstly, we need
a drawing space (top-right) for our comics. We also need a tool box (top-left) with
some drawing tools to draw our figures, and also some general options (second
from bottom to top) such as clearing the screen, removing the last element, grouping
elements, changing colors, and using the gestures mode. Finally, it will be useful to
have a status bar (center-bottom) to provide some information to the user such as
quantity of figures or the last action that has been performed. According to what we
have learned along this chapter, there are multiple solutions to organize this screen
but we will use the following:

• We'll use AnchorLayout for the toolbox area in the top-left corner
• We'll use Gridlayout of two columns for the drawing tools
• We'll use AnchorLayout for the drawing space in the top-right corner
• We'll use RelativeLayout to have a relative space to draw in
• We'll use AnchorLayout for the general options and status bar area at

the bottom
• We'll use BoxLayout with vertical orientation to organize the general

options on top of the status bar. We'll use also BoxLayout with horizontal
orientation for the buttons of the general options, and again for the labels
of the status bar.

We'll follow this structure by creating different files for each area: comiccreator.
py, comiccreator.kv, toolbox.kv, generaltools.kv, drawingspace.kv, and
statusbar.kv. Let's start with comiccreator.py as shown in the following code:

170. # File name: comiccreator.py
171. from kivy.app import App
172. from kivy.lang import Builder
173. from kivy.uix.anchorlayout import AnchorLayout
174.
175. Builder.load_file('toolbox.kv')
176. Builder.load_file('drawingspace.kv')
177. Builder.load_file('generaloptions.kv')
178. Builder.load_file('statusbar.kv')
179.
180. class ComicCreator(AnchorLayout):
181. pass
182.

GUI Basics – Building an Interface

[24]

183. class ComicCreatorApp(App):
184. def build(self):
185. return ComicCreator()
186.
187. if __name__=="__main__":
188. ComicCreatorApp().run()

We are explicitly loading some of the files with the Builder.load_file instruction
(from line 175 to 178). There is no need to load the comiccreator.kv because it gets
automatically loaded by the ComicCreatorApp name.

The Builder class is in charge of loading and parsing all the Kivy
language. The load_file method allows us to specify a file containing
Kivy language rules that we want to include as part of the project.

For the ComicCreator we choose AnchorLayout. It is not the only option, but
it illustrates more clearly within the code that the next level is composed of the
AnchorLayout instances. You might wonder whether it might be possible to use
a simple Widget. That would have been clear enough but unfortunately it is not
possible because Widget doesn't honor the size_hint and pos_hint properties,
which are necessary in the AnchorLayout internals.

The following is the code of the comiccreator.kv:

189. # File name: comiccreator.kv
190. <ComicCreator>:
191. AnchorLayout:
192. anchor_x: 'left'
193. anchor_y: 'top'
194. ToolBox:
195. id: _tool_box
196. size_hint: None,None
197. width: 100
198. AnchorLayout:
199. anchor_x: 'right'
200. anchor_y: 'top'
201. DrawingSpace:
202. size_hint: None,None
203. width: root.width - _tool_box.width
204. height: root.height - _general_options.height - _status_
bar.height
205. AnchorLayout:
206. anchor_x: 'center'
207. anchor_y: 'bottom'
208. BoxLayout:
209. orientation: 'vertical'
210. GeneralOptions:
211. id: _general_options

Chapter 1

[25]

212. size_hint: 1,None
213. height: 48
214. StatusBar:
215. id: _status_bar
216. size_hint: 1,None
217. height: 24

The preceding code follows the proposed structure for the comic creator. There are
basically three AnchorLayout instances in the first level (lines 191, 198, and 205) and
a BoxLayout that organizes the general options and the status bar (line 208).

The lines 197, 213 and 217 set the width of the ToolBox to 100 pixels, the height
of the GeneralOptions to 48 pixels, and the height of the StatusBar to 24 pixels
respectively. This brings up an interesting problem. We would like that the
DrawingSpace uses all the remaining width and height of the screen (no matter what
the windows size is). In other words, we want the drawing space as big as possible
without covering the other areas (tool box, general options and status bar). In order
to solve this, we introduced the use of id (in lines 195, 211, and 215) that allows us to
refer to other components inside the Kivy language. On lines 203 and 204 we subtract
the tool_box width to the root width (line 203) and the general_options and
status_bar height to the root height (line 204). Accessing these attributes is only
possible through the id's we created, which can be used as variables inside the
Kivy language.

Let's continue with the toolbox.kv as shown in the following code:

218. # File name: toolbox.kv
219. <ToolButton@ToggleButton>:
220. size_hint: None,None
221. size: 48,48
222. group: 'tool'
223.
224. <ToolBox@GridLayout>:
225. cols: 2
226. padding: 2
227. ToolButton:
228. text: 'O'
229. ToolButton:
230. text: '/'
231. ToolButton:
232. text: '?'

GUI Basics – Building an Interface

[26]

We created a ToolButton class that defines the size of the drawing tools and also
introduces a new Kivy Widget: ToggleButton. The difference from the normal
Button is that it stays clicked until we click on it again. The following is an example
of the toolbox with a ToolButton activated:

Toolbox area with an active ToggleButton

Moreover, it can be associated to other ToggleButton instances, so just one of them
is clicked at a time. We can achieve this by assigning the same group property (line
222) to the ToggleButton instances we want to react together. In this case, we want
all the instances of ToolButton instances to be part of the same group, so we set the
group in the ToggleButton class definition (line 222).

On line 224, we implemented the ToolBox as a subclass of GridLayout and we
added some character placeholders ('O', '/', and '?') to the ToolButton. These
placeholders will be substituted for something appropriate representations in the
following chapters.

The following is the code of generaloptions.kv:

233. # File name: generaloptions.kv
234. <GeneralOptions@BoxLayout>:
235. orientation: 'horizontal'
236. padding: 2
237. Button:
238. text: 'Clear'
239. Button:
240. text: 'Remove'
241. ToggleButton:
242. text: 'Group'
243. Button:
244. text: 'Color'
245. ToggleButton:
246. text: 'Gestures'

Chapter 1

[27]

In this case, when we used the ToggleButton instances (in lines 241 and 245), we
didn't associate them to any group. Here, they are independent from each other and
will just keep a mode or state. The preceding code only defines the GeneralOptions
class, but there is no functionality associated yet. The following is the resulting
screenshot of this area:

General Options area

The statusbar.kv file is very similar in the way it uses the BoxLayout:

247. # File name: statusbar.kv
248. <StatusBar@BoxLayout>:
249. orientation: 'horizontal'
250. Label:
251. text: 'Total Figures: ?'
252. Label:
253. text: "Kivy started"

The difference is that it organizes labels and not buttons. The output is as shown in
the following screenshot:

Status Bar area

The following is the code of drawingspace.kv:

254. # File name: drawingspace.kv
255. <DrawingSpace@RelativeLayout>:
256. Label:
257. markup: True
258. text: '[size=32px][color=#3e6643]The[/color] [sub]Comic[/sub]
[i][b]Creator[/b][/i][/size]'

Apart from defining that DrawingSpace is a subclass of RelativeLayout, we
introduce the Kivy markup, a nice feature for styling the text of the Label class.
It works similar to the XML based languages. For example, in HTML (and XML
based language) I am bold will specify bold text. First, you have to activate
it (line 257) and then you just embed the text you want to style between [tag] and
[/tag] (line 258). You can find the whole tag list and description in the Kivy API, in
the documentation for Label at http://kivy.org/docs/api-kivy.uix.label.html.

GUI Basics – Building an Interface

[28]

In the previous example, size and color are self-explanatory; sub refers to the
sub-indexed text; b refers to bold and i refers to italics. The following is the
screenshot that shows the final GUI of our comic creator:

Final GUI of the Comic Creator

Along the following chapters we are going to add the respective functionality to this
interface that, for now, consists of placeholders. However, it is exciting that with just
a few lines of code, we implement a GUI that is ready to go for the rest of the book
Comic Creator project. We will be working on its logic from now on.

Summary
This chapter covered all the basic, and some not so basic, concepts of Kivy. You
learned how to configure classes, instances, and templates. The following is a list
of Kivy elements we used in this chapter:

• We learned basic widgets such as Widget, Button, ToggleButton, and Label
• Layouts such as FloatLayout, RelativeLayout, BoxLayout, GridLayout,

StackLayout, and AnchorLayout
• A number of properties such as pos, x, y, center_x, center_y, top, right,

size, height, width, pos_hint, size_hint, group, spacing, padding,
color, text, font_size, cols, rows, orientation, anchor_x, and anchor_y

• We also learned variables such as self, root, and id and markup tags such
as size, color, b, i, and sub

• We used the Builder to load (the load_file method) extra Kivy
language files.

Chapter 1

[29]

There are much more elements that we can use inside the Kivy language. After this
chapter we understand the general ideas and we should be able to use most of the
elements available for the GUI design. There is, however, a very important and
particular element that we haven't studied yet: the canvas, which mainly allow us to
draw vector shapes (such as circles and lines for our project) in the screen. This will
be the major topic of the next chapter.

Graphics – The Canvas
Any Kivy Widget contains a Canvas object. Be careful with the name because it
might be confusing:

A Canvas is not the place where we draw. Instead, a
Canvas contains all the drawing instructions that will
render the graphical representation of the Widget.

The coordinate space refers to the place where we draw, what you might have
thought to be the canvas is in the first place. In this chapter, you are going to
learn how to draw and manipulate the representation of the widgets through the
instructions that we add to the Canvas instances:

• Draw basic geometric shapes (straight and curve lines, ellipses and polygons)
through vertex instructions

• Using colors and rotating, translating, and scaling the coordinate space
through the context instructions

• The difference between vertex and context instructions and how they
complement each other

• The three different sets of instructions of the Canvas that we can use to
modify the order of execution

• Storing and retrieving the current coordinate space context through
PushMatrix and PopMatrix

Any Widget contains its own Canvas but all of them share the same coordinate space.
This has consequences; for example, if we add a Rotate instruction to a specific
Canvas (let's say the Canvas of a Button); it will also affect all the subsequent graphic
instructions that are going to be displayed in the coordinate space. It doesn't matter
if the graphics belong to canvases of different widgets. A context instruction changes
the context of the coordinate space and we are going to learn strategies to control this.

Graphics – The Canvas

[32]

Another important concept related to this is the Widget. A Widget is pretty much a
place marker (with its position and size), but not necessarily a placeholder because
the instructions of the Canvas of a Widget are not restricted to the specific area of the
Widget, but to the whole coordinate space. At the same time, the coordinate space is
not even restricted to the visual space of the Kivy window and this might also create
some difficulties.

In this chapter, you will learn the available statements to draw and change the context
of the coordinate space. More importantly, you will understand the canvas as a set of
instructions, the implications of sharing a coordinate space, and the concept of widgets
as place markers. In the last section of the chapter, we will illustrate the acquired
knowledge within the comic creator. Here, you will also learn the most common
technique to deal with the problem of sharing the same coordinate space. By the end,
we will be on complete control of the graphics that are displayed on the screen.

Basic shapes
Before we start, let me introduce the Python code that we will use in most of this
chapter's examples:

1. # File name: drawing.py
2. from kivy.app import App
3. from kivy.uix.relativelayout import RelativeLayout
4.
5. class DrawingSpace(RelativeLayout):
6. pass
7.
8. class DrawingApp(App):
9. def build(self):
10. return DrawingSpace()
11.
12. if __name__=="__main__":
13. DrawingApp().run()

We have created the subclass DrawingSpace from RelativeLayout. We could have
chosen any Widget but we are going to integrate some of these ideas into our comic
creator project later on, it is best to use RelativeLayout which the comic creator
uses as drawing space.

There are two types of instructions that we can add to a Canvas instance. These
instructions are represented by two base classes: VertexInstructions and
ContextInstructions.

Chapter 2

[33]

The VertexInstruction subclasses allows us to draw vector
shapes in the coordinate space. The ContexInstruction
classes let us apply changes to the coordinate space context.
For example, changing the colors or applying transformations
(Rotate, Translate, and Scale). The coordinate space
context describes the conditions in which the shapes (vertex
instructions) are drawn in the coordinate space.

The following is the screenshot of the first example of this chapter (you should run
that code with a screen size of 500x200: python drawing.py --size=500x200) that
illustrates the use of vertex instructions:

Vertex Instructions

The letters in blue and yellow in the preceding screenshot are references that will
simplify the explanation (not part of the Kivy code). You can see 10 basic figures that
we are learning to draw with VertexInstruction instances. Almost all the available
VertexInstruction subclasses are represented in this example and we can create
any 2D geometric shape with them. We will work on the with the Kivy language
(drawing.kv) by small fragments, since we need to consider many details. Let's start
with the shape A (rectangle) in the preceding screenshot:

14. # File name: drawing.kv (vertex instructions)
15. <DrawingSpace>:
16. canvas:
17. Rectangle:
18. pos: self.x+10,self.top-80
19. size: self.width*0.15, self.height*0.3

Graphics – The Canvas

[34]

A Rectangle is a good starting point because it resembles the way we set properties
in widgets. We just have to set the pos and size properties.

All the values to specify the properties (for example,
pos and size) of the vertex instructions are given in
fixed values.

This means that we cannot use size_hint or pos_hint as we did in the Chapter 1,
GUI Basics: Building an Interface. However, we can still use the properties of self
(for example, lines 18 and 19) to achieve similar effects.

Let's proceed with the shape B (Pac-Man-like shape) as shown in the following code:

20. Ellipse:
21. angle_start: 120
22. angle_end: 420
23. pos: 110, 110
24. size: 80,80

The Ellipse works very similar to the Rectangle but we have three new properties:
angle_start, angle_end, and segments. The first two properties specify the initial
and final angle of the ellipse. The angle 0° is north (or 12 o'clock) and they add up
in the clock direction. That explains the angle 120° (90° + 30°) in line 21. It is not yet
clear why the angle_end property is 420° (360° + (90°-30°)) and not just 60°. If you
were to specify just 60°, Kivy would follow a counter clockwise direction painting
the mouth of the Pac-Man instead of its body. Since, we need Kivy to follow the
clockwise direction to paint the Ellipse, we have to be sure that our second angle is
bigger than the first one.

Let's continue with the shape C (triangle) in the previous screenshot:

25. Ellipse:
26. segments: 3
27. pos: 210,110
28. size: 60,80

The triangle of shape C is actually another Ellipse that we can obtain; thanks to
the segments property (line 26). Let's put it this way, if you have to draw an ellipse
with three lines, the best you can get is a triangle. If you have four lines you can get a
rectangle. You will need infinite lines for a complete Ellipse, but a computer cannot
process that (and the screen doesn't have enough resolution to support this either). It
becomes necessary to stop at some point. The default segments are 180 but you can
modify the number of segment to obtain other shapes as shown above. Note that if
you start with a circle, you will always get regular polygons (for example, a square if
you specify just 4 segments).

Chapter 2

[35]

We can analyze the shapes D, E, F, and G all together as shown in the following code:

29. Triangle:
30. points: 310,110,340,190,380,130
31. Quad:
32. points: 410,110,430,180,470,190,490,120
33. Line:
34. points: 10,30, 90,90, 90,10, 10,60
35. Point:
36. points: 110,30, 190,90, 190,10, 110,60
37. pointsize: 3

The Triangle, Quad, and Line shapes work similarly. Their points property
(lines 30, 32, and 34) indicates the corners of a triangle, a quadrilateral, or a line
respectively. Line has many other properties but for now we just introduce its basic
use. A Point is also similar to these three. It uses the points property (line 36) but
in this case to indicate a set of points (look at the second row and first column of the
screenshot). It uses the pointsize (line 37) property to indicate the size of the Point.

Now let's proceed with the shape as shown in the following code:

38. Bezier:
39. points: 210,30, 290,90, 290,10, 210,60
40. segments: 360
41. dash_length: 10
42. dash_offset: 5

The Bezier is a curved line that uses the points property as a set of attractors of the
curve line. There is a mathematical formalism behind the Bézier curves that we are
not going to cover in this book because it is out of its scope. If you are interested, you
can find enough information about it on Wikipedia at http://en.wikipedia.org/
wiki/Bézier_curve). The points are attractors because the line does not touch all of
them (it only touches the first and the last of them). Indeed, the points of the Bezier
(line 39) are relatively equivalent to the ones of the Line (line 34) and the Point (line
36); they have just been translated 100px to the right. You can compare the different
results of the trace in the previous screenshot (shapes F, G, and H). We have also
included two other properties, dash_length (line 41) for the length of the dashes of
the discontinuous line and dash_offset (line 42) for the distance between the dashes.

Let's cover the last shapes I and J as shown in the following code:

43. Mesh:
44. mode: 'triangle_fan'
45. vertices: 310,30,0,0, 390,90,0,0, 390,10,0,0, 310,60,0,0
46. indices: 0,1,2,3
47. Mesh:

Graphics – The Canvas

[36]

48. mode: 'triangle_fan'
49. vertices: 430,90,0,0, 470,90,0,0, 490,70,0,0, 450,10,0,0,
410,70,0,0
50. indices: 0,1,2,3,4

We add two Mesh instructions (in lines 43 and 47). A Mesh is a compound of
triangles and it has many applications in computer graphics and games. There
is not enough space in this book to cover the advanced techniques for using this
VertexInstruction, but we will learn its basics and be able to draw flat polygons.
The property mode is set to triangle_fan (line 44), which means that the triangles of
the mesh are filled with color instead of only drawn borders, for example.

The vertices property is a tuple of coordinates. For the purposes of this example
we will just ignore all the 0s. That leaves us with four coordinates (or vertices) in line
45. Again, these points are relatively equivalent to the ones as shapes F, G, and H.
Let's imagine how the triangles are created as we traverse them left to right on the
vertex list using 3 vertex points each time. The shape I is composed by two triangles.
The first triangle uses the first, second, and third vertices; and the second triangle
uses the first, third, and fourth vertices. In general, if we are in the ith vertex of the
list, a triangle is drawn using the first vertex, the (i-1)th vertex and the ith vertex.
The final Mesh (shape J) presents another example. It contains three triangles that are
surrounded by a blue line in the following screenshot:

Triangles of the mesh

The indexes property contains a list with the same number of vertices (not counting
the 0s) and instructs the order in which the vertices list is traversed, altering the
triangles that compose the Mesh

So far, all the polygons that we have studied have been colored in. However,
sometimes it is necessary to just draw the border of the polygon. In that case, we
should use a Line instead. In principle, this seems easy for a basic shape such as a
triangle, but how do we draw a circle with just points? The Line makes things easier
for us here.

Chapter 2

[37]

The next example will illustrate how you can build the set of figures in the
following screenshot:

Line examples

The Python code for this example should be run in a screen size of 400 x 100: python
drawing.py --size=400x100. The following is the drawing.kv code for the
preceding screenshot:

51. # File name: drawing.kv (Line Examples)
52. <DrawingSpace>:
53. canvas:
54. Line:
55. ellipse: 10, 20, 80, 60, 120, 420, 180
56. width: 2
57. Line:
58. circle: 150, 50, 40, 0, 360, 180
59. Line:
60. rectangle: 210,10,80,80
61. Line:
62. points: 310,10,340,90,390,20
63. close: True

In the preceding code, we added four Line instructions using very specific properties.
The first Line (in line 54, shape A) is similar to our Pac-Man (line 20). The ellipse
property (line 55) specify x, y, width, height, angle_start, angle_end, and
segments respectively. The order of the parameters can be difficult to remember
so always keep the Kivy API next to you (http://kivy.org/docs/api-kivy.
graphics.vertex_instructions.html). We also set the width of the Line to make
it thicker (line 56).

The second Line (in line 57, shape B) introduces a property that has no counterpart
in the vertex instructions, that is, circle. The difference is that the first three
parameters (line 58) define the center (150, 50) and the radius (40) of the circle. The
rest remains the same. The third Line (in line 59, shape C) is defined by a rectangle
(line 60) and the parameters are simply x, y, width, height. The last Line (in line 61,
shape D) ends being the most flexible way to define the polygons. We just specify
the points (line 62), as many as we want. The close property (line 63) helps by
connecting the first and last points.

Graphics – The Canvas

[38]

We have covered most of the topics related to vertex instructions and now, you
should be able to draw any geometrical shape in two dimensions with Kivy. If you
want more details about each of the instructions, you should visit the Kivy API at
http://kivy.org/docs/api-kivy.graphics.vertex_instructions.html. It is
the turn of context instructions to decorate these boring black and white polygons.

Images, colors, and backgrounds
In this section, we will learn how to add images and colors to shapes and how to
position graphics at a front or back level . We continue using the same Python code
of the first section: python drawing.py --size=400x100. The following screenshot
(Images and colors) shows the final result of this section:

Images and colors

The following is the corresponding drawing.kv code:

64. # File name: drawing.kv (Images and colors)
65. <DrawingSpace>:
66. canvas:
67. Ellipse:
68. pos: 10,10
69. size: 80,80
70. source: 'kivy.png'
71. Rectangle:
72. pos: 110,10
73. size: 80,80
74. source: 'kivy.png'
75. Color:
76. rgba: 0,0,1,.75
77. Line:
78. points: 10,10,390,10
79. width: 10
80. cap: 'square'
81. Color:
82. rgba: 0,1,0,1
83. Rectangle:

Chapter 2

[39]

84. pos: 210,10
85. size: 80,80
86. source: 'kivy.png'
87. Rectangle:
88. pos: 310,10
89. size: 80,80

This code starts with an Ellipse (line 67) and a Rectangle (line 71). We use the
source property, which inserts an image to decorate the polygon. The image
kivy.png is 80 x 80 pixels with a white background (without any alpha/transparency
channel). The result is shown in the first two columns of the previous screenshot
(Images and colors).

In line 75, we use the context instruction Color to change the color (with the rgba
property: red, green, blue, and alpha) of the coordinate space context. This means
that the next VertexInstructions will be drawn with the color changed by rgba.
A ContextInstruction changes the current coordinate space context. In the
previous screenshot, the blue bar at the bottom (line 77) has a transparent blue
(line 76) instead of the default white (1,1,1,1) as seen in the previous examples.
We set the ends shape of the line to a square with the cap property (line 80).

We change the color again in line 81. After that, we draw two more rectangles, one
with the kivy.png image and other without it. In the previous screenshot (Images
and color) you can see that the white part of the image has become as green as the
basic Rectangle on the left. Be very careful with this. The Color instruction acts as
a light that is illuminating the kivy.png image. This is why you can still see the Kivy
logo on the background instead of it being all covered by the color.

There is another important detail to notice in the previous screenshot. There is a blue
line that crosses the first two polygons in front and then crosses behind the last two.
This illustrates the fact that the instructions are executed in order and this might
bring some unwanted results. In this example we have full control of the order but
for more complicated scenarios Kivy provides an alternative.

We can specify three Canvas instances (canvas.before,
canvas, and canvas.after) for each Widget. They are
useful to organize the order of execution to guarantee that
the background component remains in the background, or
to bring some of the elements to the foreground.

Graphics – The Canvas

[40]

The following drawing.kv file shows an example of these three sets (lines 92, 98,
and 104) of instructions:

90. # File name: drawing.kv (Before and After Canvas)
91. <DrawingSpace>:
92. canvas.before:
93. Color:
94. rgba: 1,0,0,1
95. Rectangle:
96. pos: 0,0
97. size: 100,100
98. canvas:
99. Color:
100. rgba: 0,1,0,1
101. Rectangle:
102. pos: 100,0
103. size: 100,100
104. canvas.after:
105. Color:
106. rgba: 0,0,1,1
107. Rectangle:
108. pos: 200,0
109. size: 100,100
110. Button:
111. text: 'A very very very long button'
112. pos_hint: {'center_x': .5, 'center_y': .5}
113. size_hint: .9,.1

In each set, a Rectangle of different color is drawn (lines 95, 101, and 107). The
following diagram illustrates the execution order of the canvas. The number on the
top-left margin of each code block indicates the order of execution:

DrawingSpace

(1) (2) (6)

canvas.before:

Color:

rgba: 1,0,0,1

...

canvas:

Color:

rgba: 0,1,0,1

...

canvas.after:

Color:

rgba: 0,0,1,1

...

(3) (4) (5)

canvas.after:

...

canvas.before:

...

canvas:

...

Button

Execution order of the canvas

Chapter 2

[41]

Please note that we didn't define any canvas, canvas.before, or canvas.after for
the Button, but Kivy does. The Button is a Widget and it displays graphics on the
screen. For example, the gray background is just a Rectangle. That means that it
has instructions in its internal Canvas instances. The following screenshot shows the
result (executed with python drawing.py --size=300x100):

Before and after canvas

The graphics of the Button (the child) are covered up by the graphics of instructions
in the canvas.after. But what is executed between canvas.before and canvas? It
could be code of a base class when we are working with inheritance and we want to
add instructions in the subclass that should be executed before the base class Canvas
instances. A practical example of this will be covered when we apply them in the
last section of this chapter in the comic creator project. The canvas.before will also
be useful when we study how to dynamically add instruction to Canvas instances in
Chapter 4, Improving the User Experience.

For now, it is sufficient to understand that there are three sets of instructions
(Canvas instances) that provide some flexibility when we are displaying graphics
on the screen. We will now explore some more context instructions related to three
basic transformations.

Rotating, translating, and scaling
The Rotate, Translate, and Scale classes are the context instructions that are
applied to the coordinate space, and indirectly to the vertex instructions. This may
bring unexpected results if we forget that the coordinate space is of the size of the
screen (actually bigger than that because there is no restriction in the coordinates
and we can draw outside of the window), and this might affect all the subsequent
components that are drawn. In this section, you will learn more about these
problems; then, in the next section, we can analyze them more deeply and you will
learn techniques that will facilitate working with the instructions.

Let's start with the new drawing.kv code as follows:

114. # File name: drawing.kv (Rotate, Translate, and Scale)
115. <DrawingSpace>:
116. pos_hint: {'x':.5, 'y':.5}
117. canvas:

Graphics – The Canvas

[42]

118. Rectangle:
119. source: 'kivy.png'
120. Rotate:
121. angle: 90
122. axis: 0,0,1
123. Color:
124. rgb: 1,0,0
125. Rectangle:
126. source: 'kivy.png'
127. Translate:
128. x: -100
129. Color:
130. rgb: 0,1,0
131. Rectangle:
132. source: 'kivy.png'
133. Translate:
134. y: -100
135. Scale:
136. xyz:(5,.5,0)
137. Color:
138. rgb: 0,0,1
139. Rectangle:
140. source: 'kivy.png'

In this code, the first thing we do is position the coordinate (0,0) of the DrawingSpace
in the center of the screen (line 116). The displacement of the origin coordinate is
only possible because DrawingSpace is a RelativeLayout. We create a Rectangle
with the figure kivi.png that we modified to indicate the original X axis and Y axis.
You can see the resulting image at the top-right corner of the following screenshot
(executed with python drawing.py --size=200x200):

Rotate, translate, and scale

Chapter 2

[43]

In line 120, we apply the Rotate instruction by 90° on the Z axis specified in line
122. The value is (x, y and, z), which means we could use any vector in the 3D space.
Imagine nailing a pin in the bottom-left corner of the DrawingSpace. Then, we rotate
it in the counter clock direction.

By default, the pin nail of the rotation is always
the coordinate (0, 0), but we can alter this behavior
with the origin property.

The top-left section of the previous screenshot (Rotate, translate, and scale) shows the
result after the rotation. We drew the same Rectangle with red Color (using the rgb
property instead of the rgba property) to highlight it. After adding a rotation to the
coordinate space context, we have also modified the relative X axis and Y axis. In
line 128, this is taken into consideration, and the canvas is translated 100px to the
bottom-left part using the X axis instead of the Y axis (as we may have expected).
We drew the same Rectangle with green Color. You can notice that the image is
still rotated and it will remain rotated as long as we don't bring the coordinate
space context to its original angle.

The context instructions are persistent until we change
them. This persistency is also broken when the context
instructions were inside a RelativeLayout and we
are now working outside of it.

In order to scale or zoom-out the image, we translate the coordinate space context
(line 133) to use the bottom-right section of the previous screenshot. The scaling
is done in line 135, where the image will be reduced to half the width and half the
height. The Scale instruction reduces towards the (0, 0) coordinate. The question is
where is the (0, 0) coordinate after the rotation and translations? First, we rotated the
axis (line 120), so the X axis is vertical and the Y axis is horizontal. After translating
down (line 128) and right (line 133), the (0, 0) coordinate is in the bottom right corner
with the X axis being the vertical one and the Y axis the horizontal one. You can
notice that Scale uses proportions to the current size of the coordinate space context
and not the original size. For example, to recover the original size we should use
xyz: (2, 2, 0) and not simply xyz: (1, 1, 0).

Graphics – The Canvas

[44]

In this section, we learned how to use basic transformations, but it can be
summarized as follows:

The Canvas is a set of instructions that contains context
instructions and vertex instructions. The context instructions
apply changes (colors or transformation) to the coordinate
space context. That affects the conditions in which the vertex
instructions are displayed in the coordinate space.

Using the acquired knowledge, we will now add a stickman to our project in the final
section of the chapter. We will introduce two important instructions, PushMatrix
and PopMatrix, to deal with the issues of widgets sharing the same coordinate space.

Comic creator – PushMatrix and
PopMatrix
It is time to insert a few graphics to the project we started in the Chapter 1, GUI Basics:
Building an Interface. Previously, we have insisted on the following two important
things regarding the coordinate space:

• The coordinate space is not restricted to any position or size. It usually has
its origin in the bottom-left corner of the screen. We avoided this in the last
example by using RelativeLayout, which internally performs a translation
to the pos property of the Widget.

• Once the coordinate space context is transformed by any instruction, it
stays like that until we specify something different. RelativeLayout also
addresses this problem with a two context instructions that we are going to
study in this section: PushMatrix and PopMatrix.

We use RelativeLayout again in this section, but we will also explain alternatives
to it whenever we deal with any other type of Widget. We will add a new file
(comicwidgets.kv) to our project. In the comicreator.py we need to add our new
file to the Builder as follows:

Builder.load_file('comicwidgets.kv')

The file comicwidgets.kv will contain special widgets that we will create for the
project. In this chapter we are going to add the StickMan as follows:

141. # File name: comicwidgets.kv
142. <StickMan@RelativeLayout>:
143. size_hint: None, None
144. size: 48,48

Chapter 2

[45]

145. canvas:
146. PushMatrix
147. Line:
148. circle: 24,38,5
149. Line:
150. points: 24,33,24,15
151. Line:
152. points: 14,5,24,15
153. Line:
154. points: 34,5,24,15
155. Translate:
156. y: 48-8
157. Rotate:
158. angle: 180
159. axis: 1,0,0
160. Line:
161. points: 14,5,24,15
162. Line:
163. points: 34,5,24,15
164. PopMatrix

In line 142, the StickMan subclass inherits from RelativeLayout to facilitate the
positioning and the use of the context instructions. The StickMan's size is defined as
48 x 48 pixels, but we are not limited to that since we now know how to scale. The
StickMan is composed of six lines that define head, body, left leg, right leg, left arm,
and right arm (from line 147 to 163).). Three different StickMan instances within one
image are shown in the following screenshot:

Comic creator

Graphics – The Canvas

[46]

The first StickMan instance is part of the design of the last ToolButton; the other
two appear in the drawing space. One of them is scaled. Notice that the code of the
legs (from lines 151 to 154) is exactly same as the code for the arms (from lines 160
to 163). We translated it upwards (in lines 155 and 156) and rotated the canvas 180°
on the X axis (from lines 157 to 159). The resulting code is probably more extensive
than just calculating the points, but we saved ourselves some math in order to draw
the StickMan.

Since we just translated and rotated the coordinate space context, we should undo
these context changes so that everything will remain as it was at the beginning.
Instead of adding more instruction to Translate and Rotate back the coordinate
space context, we use two convenient Kivy instructions: PushMatrix and PopMatrix.
At the beginning, we do a PushMatrix (line 146) that will save the current coordinate
space context and at the end, we do the PopMatrix (line 164) to return the context to
its original state.

The PushMatrix instruction saves the current coordinate
space context and the PopMatrix instruction retrieves
the last saved coordinate space context. Therefore,
the transformation instructions (Scale, Rotate,
and Translate) surrounded by PushMatrix and
PopMatrix won't affect the rest of the interface.

We will extend this approach to add shapes to the other two instances of ToolButton
(circle and line) in the top-left part of the ToolBox. We add the following code to the
toolbox.kv:

165. # File name: toolbox.kv
166. <ToolButton@ToggleButton>:
167. size_hint: None,None
168. size: 48,48
169. group: 'tool'
170. canvas:
171. PushMatrix:
172. Translate:
173. xy: self.x,self.y
174. canvas.after:
175. PopMatrix:
176.
177. <ToolBox@GridLayout>:
178. cols: 2
179. padding: 2
180. ToolButton:
181. canvas:

Chapter 2

[47]

182. Line:
183. circle: 24,24,14
184. ToolButton:
185. canvas:
186. Line:
187. points: 10,10,38,38
188. ToolButton:
189. StickMan:
190. pos_hint: {'center_x':.5,'center_y':.5}

In the Canvas of the ToolButton class (line 166), we did a PushMatrix (line 171)
in the canvas set of instruction. Then, the Translate instruction (line 172) moves
the graphic instructions to the position of ToolButton, so we can use relative
coordinates on each ToolButton (line 180 to 190). Finally, the PopMatrix (line 175)
was added to the canvas.after. Let's review the execution order of the instructions
sets (Canvas instances) using as an example the ToolButton that contains the circle
(line 180). the following is its execution order:

1. The canvas of the ToolButton base class which has the PushMatrix and the
Translate (line 170).

2. The canvas of the ToolButton subclass which has the circle (line 181).
3. The canvas.after of the base class which has the PopMatrix (line 174).

What we have just implemented with the ToolButton is the behind the curtains
technique of the RelativeLayout.

The RelativeLayout internally contains a PushMatrix and
a PopMatrix instruction. This is why we can add instructions
safely inside it without affecting the rest of the interface.

Let's scale our StickMan in the DrawingSpace and illustrate one more thing about
the execution order of the canvas sets of instructions. The following is the code of
drawingspace.kv:

191. # File name: drawingspace.kv
192. <DrawingSpace@RelativeLayout>:
193. StickMan:
194. pos_hint: {'center_x':.5,'center_y':.5}
195. canvas.before:
196. Translate:
197. xy: -self.width/2, -self.height/2
198. Scale:
199. xyz: 2,2,0
200. StickMan:

Graphics – The Canvas

[48]

You might wonder why the second StickMan was neither scaled nor translated by
the lines 196 and 198 in the previous screenshot (Comic creator)? The answer is not
obvious. According to what we have studied before, the coordinate space context
is global, so it should affect the second Stickman. The answer is not related to the
PushMatrix and PopMatrix instructions inside the canvas of the Stickman class
(lines 146 and 164) because both instructions are inside of the same set of instructions.

The solution is that the way we implemented the ToolButton follows the way
RelativeLayout is implemented. Stickman inherits from RelativeLayout, so there
is actually another PushMatrix in the canvas.before and its respective PopMatrix
in the canvas.after of the Stickman class. The instructions in lines 196 to 199
are added after the PopMatrix. Therefore, the context is restored correctly on the
PushMatrix. The instructions must be in the canvas.before because they are added
after the existents instructions. In other words, if we were to add them in the canvas,
the StickMan would be drawn before the translation and scaling.

In this section, we didn't change the comiccreator.kv, generaloptions.kv, and
statusbar.kv files, so we are not presenting them again.

The context and vertex instructions are easy to understand. However, we must be
very careful with the order of execution, and make sure to leave the coordinate space
context in its original state after executing the desired vertex instructions. Finally, you
should be aware that all you see on the screen is drawn by instructions within Canvas
instances. For example, this includes Label texts and the Button backgrounds.

Summary
In this chapter we introduced many topics related to the use of the canvas. We
covered the use of vertex and context instructions and how to manipulate the order
of execution of instructions. You learned how to deal with transformation of the
Canvas, either reversing all the transformations or using RelativeLayout. The
following is a summary of components that you learned to use in this chapter:

• The VertexInstructions subclasses (and some of its properties):
Rectangle (pos and size), Ellipse (pos, size, angle_start, angle_end,
and segments), Triangle (points), Quad (points), Point (points and
pointsize), Line (points, ellipse, circle, rectangle, width, close,
dash_lenght, dash_offset, and cap), Bezier (points, segments, dash_
lenght, and dash_offset), and Mesh (mode, vertices, and indices)

• The source property of VertexInstructions base class

Chapter 2

[49]

• The three Canvas instances of the Widget: canvas.before, canvas, and
canvas.after

• The context instructions (with some of their properties): Color (rgba and
rgb), Rotate (angle, axis, and origin), Translate (x, y, and xy), Scale
(xyz), PushMatrix, and PopMatrix

This list is comprehensive but there are still some remaining components. You can
explore them in the Kivy API. The important part is that you learned the concepts
behind the use of the Canvas class. The next chapter will focus on event handling
and manipulating the Kivy objects directly from Python. This will allow us to
connect the graphical user interface components with Python code and perform the
desired actions on the comic creator.

Widget Events – Binding
Actions

In this chapter you will learn how to integrate actions into the graphical user
interface components; some of the actions will be associated with the canvas and
others with the Widget management. We are going to control the user interaction
with the interface, so we will have to handle actions dynamically. In this chapter, you
will acquire the following skills:

• Connect different parts of the GUI through IDs and properties
• Override, bind, unbind, and create Kivy events
• Add widgets to other widgets dynamically
• Add vertex and context instructions to canvas dynamically
• Translate relative and absolute coordinates between the Widget, its parent

and its window
• Use properties to keep the GUI updated with the changes

This is a very exciting chapter because you will start to see things happening on
our screen and you will put together all the concepts acquired in the previous two
chapters. All the basic functionality of our Comic Creator project will be ready by
the end. This includes stickmen that can be dragged, circles and lines, sizeable circles
and lines, clearing the widget space, removing the last added figure, grouping
several widgets to drag them together, and keeping the status bar updated according
to the last actions of the user.

Widget Events – Binding Actions

[52]

Attributes, id and root
In Chapter 1, GUI Basics – Building an Interface, we distinguished between four main
components for our Comic Creator: toolbox, drawing space, general options, and
status bar. In this chapter these components will start to interact with each other and,
therefore, we need to add some attributes to the classes of the project we created in
the previous chapters. These attributes will reference different parts of the interface
so they can interact. For example, the Toolbox class needs to have a reference to
the DrawingSpace instance, so the ToolButton instances can draw their respective
figures inside of it. The following diagram shows all the relationships that are
created in the comiccreator.kv file:

Toolbox

ComicCreator

StatusBar

GeneralOptions

DrawingSpace

Internal References of the Comic Creator

We also learned in Chapter 1, GUI Basics – Building an Interface that id lets us
reference other widgets in the Kivy language.

However, ids by themselves are not intended to be used outside
of the Kivy language: that is the Python code. We need to create
some attributes in order to use the elements in the Python Code.

The following is the comiccreator.kv file of the ComicCreator project with some
modifications:

1. File Name: comiccreator.kv
2. <ComicCreator>:
3. AnchorLayout:
4. anchor_x: 'left'
5. anchor_y: 'top'
6. ToolBox:
7. id: _tool_box
8. drawing_space: _drawing_space
9. comic_creator: root
10. size_hint: None,None
11. width: 100
12. AnchorLayout:
13. anchor_x: 'right'

Chapter 03

[53]

14. anchor_y: 'top'
15. DrawingSpace:
16. id: _drawing_space
17. status_bar: _status_bar
18. general_options: _general_options
19. tool_box: _tool_box
20. size_hint: None,None
21. width: root.width - _tool_box.width
22. height: root.height - _general_options.height - _
status_bar.height
23. AnchorLayout:
24. anchor_x: 'center'
25. anchor_y: 'bottom'
26. BoxLayout:
27. orientation: 'vertical'
28. GeneralOptions:
29. id: _general_options
30. drawing_space: _drawing_space
31. comic_creator: root
32. size_hint: 1,None
33. height: 48
34. StatusBar:
35. id: _status_bar
36. size_hint: 1,None
37. height: 24

IDs in lines 7, 16, 29, and 35 have been added. Following the previous diagram
(Internal References of the ComicCreator), the ids are used to create the attributes in
lines 8, 17, 18, 19, and 30.

The names of the attribute and the id don't have to be different.
In the previous code, we just added a '_' to the ids to distinguish
them from the attributes. For instance, _status_bar is an id
intended to be used in the Kivy language, and status_bar is an
attribute intended to be used in Python. Both could have had the
same name without causing a name conflict.

As an example, line 8 creates the attribute drawing_space which references the
DrawingSpace instance. This means that the Toolbox instance can now access the
DrawingSpace instance in order to draw figures on it. We can create attributes to
other components of the Kivy language. One common component that we often
want to have access is root. Lines 9 and 31 complete the referencing using the root
to have access to it through the comic_creator attribute.

Widget Events – Binding Actions

[54]

No more changes are needed in any other Comic Creator project file to create the
attributes. Actually, at this point you can run the project as usual with python
comicreator.py and obtain the same result of Chapter 2, Graphics – The Canvas. In
the following sections, we are going to constantly use the created attributes to access
or modify different parts of the interface.

Basic widget events – dragging the
stickman
Basic Widget events correspond to touches on the screen. However, the concept
of touch in Kivy is broader than might be intuitively assumed. It includes mouse
events, finger touches, and magic pen touches. For the sake of simplicity, we will
often assume in this chapter that we are using a mouse but it doesn't matter if we
were using a touch screen (and the finger or magic pen instead). The following are
the three basic Widget events:

• on_touch_down: When a new touch starts. For example, the action of
pressing a button of the mouse or touching the screen.

• on_touch_move: When the touch is moved. For example, dragging the mouse
or slide the finger over the screen.

• on_touch_up: When the touch ends. For example, releasing the mouse
button or lift a finger from the screen.

Notice that an on_touch_down takes place each time before an on_touch_move and
on_touch_up happens the bullet list also reflects the necessary execution order.
Finally, on_touch_move could not happen at all if there was no dragging action.
These events allow us to add drag capability to our Stickman so we can place it
wherever we want. We have modified the header of comicwidgets.kv as follows:

38. # File name: comicwidgets.kv
39. #:import comicwidgets comicwidgets
40. <DraggableWidget>:
41. size_hint: None, None
42.
43. <StickMan>:
44. size: 48,48
45. ...

Chapter 03

[55]

The code now includes a rule for a new Widget called DraggableWidget. Line 41
DraggableWidget just deactivates the size_hint, so that we can use fixed sizes
(line 44). The size_hint: None, None instruction has been removed from the
StickMan because it will inherit from DraggableWidget in the Python Code. Line 39
is responsible for importing the respective comicwidgets.py file:

46. # File name: comicwidgets.kv
47. from kivy.uix.relativelayout import RelativeLayout
48. from kivy.graphics import Line
49.
50. class DraggableWidget(RelativeLayout):
51. def __init__(self, **kwargs):
52. self.selected = None
53. super(DraggableWidget, self).__init__(**kwargs)

The comicwidgets.py file contains the new DraggableWidget. This class inherits
from RelativeLayout (line 50). The attribute selected in line 52 will indicate if the
DraggableWidget instance is selected or not (__init__ is the constructor in Python
and the right place to define class object attributes, this ofeten causes confusion to
Java programmers). We have overloaded the 3 methods associated with the events
we just studied (on_touch_down, on_touch_move, and on_touch_up). Each of these
methods receives a MotionEvent as a parameter (touch) which contains useful
information related with the event such as the coordinates of the touch.

Let's start with on_touch_down:

54. def on_touch_down(self, touch):
55. if self.collide_point(touch.x, touch.y):
56. self.select()
57. return True
58. return super(DraggableWidget, self).on_touch_down(touch)

In line 55 we are using one of the most common methods in Kivy: collide_
point. It allows us to detect if the event actually happens inside of a specific
DraggableWidget by checking the coordinates of the touch.

This means that in principle every active Widget receives all the touch events
(MotionEvent) that happen inside the window (coordinate space). It is up to the
programmer to implement the logic that will discriminate between the possibility
of a particular Widget doing something (in this case the select in line 56) with the
event, or whether it will just let it pass (line 58).

Widget Events – Binding Actions

[56]

The most common way of handling an event is using collide_point, but that
doesn't mean that other criteria could be used. Kivy gives us absolute freedom in
this. Line 55 provides the simplest case of checking whether the event occurred
inside the Widget. If the coordinate of the event was actually inside the Widget,
we call on the select() method which basically indicates that the figure has been
selected (details explained at the end).

It is important to understand the returning value of an event (line 57) and also
what calling the method of the base class means (line 58). The Kivy GUI has a
hierarchical structure, so we always have a parent Widget (except if we are the
root of the hierarchy).

The returning value tells the parent if we took care of the event or not by returning
True or False respectively. We could also have some children widgets. If we want
them to realize the event we must call on the method of the base class. If we don't
call on that method, the children cannot realize that the event happened.

This means we need to be careful because we are in control of the widgets that
receive the event. Finally, there is also the possibility to use the returning value of the
super (base class reference) to find out whether one of the children has taken care of
the event already.

The structure of lines 54 to 58 is probably the most common way of taking care of a
basic event:

1. Make sure that the event happens inside the Widget (line 55).
2. Do what has to be done (line 56).
3. Return True indicating that the event was processed (line 57).
4. If the event falls outside of the Widget, then we propagate the event to the

children and return the result (line 58).

Let's review the select method before we move on to the next event:

59. def select(self):
60. if not self.selected:
61. self.ix = self.center_x
62. self.iy = self.center_y
63. with self.canvas:
64. self.selected = Line(rectangle=(0,0,self.
width,self.height), dash_offset=2)

Chapter 03

[57]

First, we need to ensure that nothing has been selected before (line 60). If that is
the case, we save the center coordinates of DraggableWidget (lines 61 and 62) and
we dynamically draw a rectangle on its border (line 63 and 64) as illustrated in the
following screenshot cut:

In Chapter 2, Graphics – The Canvas, we used the Kivy language to add shapes to the
canvas. Now we are using Python code directly and we cannot use Kivy language
syntax anymore. Notice that we keep the line instance in the selected attribute in
line 64 because we will need to remove the rectangle. Also, the DraggableWidget
instance will be self-aware if it is selected.

Let's continue with on_touch_move:

65. def on_touch_move(self, touch):
66. (x,y) = self.parent.to_parent(touch.x, touch.y)
67. if self.selected and self.parent.collide_point(x - self.
width/2, y -self.height/2):
68. self.translate(touch.x-self.ix,touch.y-self.iy)
69. return True
70. return super(DraggableWidget, self).on_touch_move(touch)

In this event, we control the dragging of the DraggableWidget. In line 67, we make
sure that the DraggableWidget is selected. In the same line, we use collide_point
again but this time we use the parent (DrawingSpace) instead of self. This is why
the previous line (line 66) transformed the coordinates relative to the corresponding
parent. We have to check the parent (DrawingSpace) because the Stickman can be
dragged inside all the DrawingSpace and not just inside DraggableWidget itself.
Another detail of line 66 is that we are checking the left corner of the future position
of the DraggableWidget by subtracting half its width and height to the current touch
(touch.x - self.width/2, touch.y - self.height/2).

If the conditions are True, we call on the translate method:

71. def translate(self, x, y):
72. self.center_x = self.ix = self.ix + x
73. self.center_y = self.iy = self.iy + y

Widget Events – Binding Actions

[58]

The method moves the DraggableWidget (x, y) pixels by assigning new values to
center_x and center_y. It also updates the ix and iy that we created in the select
method before. The translate method implementation might seem unnecessary
but it will simplify translating several figures at a time with the Group Button of the
general option area.

The last two lines (lines 69 and 70) of the on_touch_move method follow the same
approach of that on_touch_down and the on_touch_up method (lines 77 and 78),
presented as follows:

74. def on_touch_up(self, touch):
75. if self.selected:
76. self.unselect()
77. return True
78. return super(DraggableWidget, self).on_touch_up(touch)

The on_touch_up event undoes the on_touch_down status. First, it checks if it is
selected (instead of collide_point). If it is, then it calls the unselected() method:

79. def unselect(self):
80. if self.selected:
81. self.canvas.remove(self.selected)
82. self.selected = None

This method will dynamically remove the line instruction from the canvas (line 81)
and set the variable selected back to None (line 82). Notice the different ways in
which we add (line 63 and 64) and remove the line (line 81). Line 81 is a convenience
based on the with Python statement, which allows us to simply add instructions to
the canvas. It is equivalent to the call on self.canvas.add(Rectantle(…)) with the
advantage that it allows us to add many instructions at the same time. For example:

with self.canvas:
 Color(rgb=(1,0,0))
 Line(points=(0,0,5,5))
 Rotate()
 ...

There are two more lines of code in comicwidgets.py:

83. class StickMan(DraggableWidget):
84. pass

Lines 83 and 84 just define our StickMan which now inherits from DraggableWidget
(line 83) instead of from RelativeLayout.

Chapter 03

[59]

In this section, you have learned the three basic Kivy events of any Widget. They
are strongly dependent on the coordinates and so it is necessary to have a good
control over them. For example, we couldn't avoid this in line 66 where we localized
a coordinate relative to the parent. The next section explores the topic of localizing
coordinates in much more detail.

Localizing coordinates – adding stickmen
In the last section, we used the to_parent() method (line 66) to translate the
coordinates relative to the DrawingSpace to its parent.

Please note, that we were inside DraggableWidget
and the coordinates we received were relative to the
parent (DrawingSpace).

These coordinates are convenient for DraggableWidget because we position it
in the parent's coordinates. It allows us to use the coordinates in the parent's
collide_point. This is no longer convenient when we want to check the coordinates
on the parent's parent space or when we need to draw something directly on the
canvas of a Widget.

Before studying more examples, let's summarize the theory.You learned that
RelativeLayout is very useful because it is easier to think inside of a constraint
space to localize our objects. The problems start when we need to translate the
coordinates to other Widget area. Let us consider the following screenshot of
a Kivy program:

Three Embedded Relative Layouts

The code to generate this example is simple. It consists of three RelativeLayouts
embedded into each other. The blue is parent of the green and the green is parent
of the red. The a (on the top-right) is a Label inside the red RelativeLayout and
it is located at the position (0, 0). The blue layout is of the size of the window
(150x75 pixels).

Widget Events – Binding Actions

[60]

The preceding screenshot includes some measures that help to explain the four
methods of localizing coordinates that the Widget class provides:

• to_parent(): This method transforms the coordinates of the current Widget
to the parent. For example, a.parent.to_parent(a.x, a.y) returns the
coordinate of x relative to the green layout, which is (50,25).

• to_local(): This method transforms the coordinates of the parent to the
current widget. For example, a.parent.to_local(50,25) returns (0,0),
the coordinate of a relative to the red layout.

• to_window(): This method transforms the coordinates of the current Widget
to the window. For example, a.to_window(a.x, a.y) returns the absolute
coordinate of a which is(100,50).

• to_widget(): This method transforms the absolute coordinates to the
current widget. For example, a.to_widget(100,50) returns (0,0), again
the coordinate of a relative to the red layout.

The last two don't use the parent because Kivy assumes that the coordinates are
always relative to the parent. There is also a Boolean parameter (called relative)
which controls whether the coordinates are relative inside the Widget.

Let's study a real example in the Comic Creator project. We are going to add events
to the tool box buttons, so that we can add figures to the drawing space. In this
process, we will tackle a real case scenario in which we have to use one of the
before-mentioned methods to localize our coordinates correctly to the Widget.

This code corresponds to the header of the toolbox.py file:

85. # File name: toolbox.py
86. import kivy
87. kivy.require('1.7.0')
88. import math
89. from kivy.uix.togglebutton import ToggleButton
90. from kivy.graphics import Line
91. from comicwidgets import StickMan, DraggableWidget
92.
93. class ToolButton(ToggleButton):
94. def on_touch_down(self, touch):
95. ds = self.parent.drawing_space
96. if self.state == 'down' and ds.collide_point(touch.x,
touch.y):
97. (x,y) = ds.to_widget(touch.x, touch.y)
98. self.draw(ds, x, y)
99. return True

Chapter 03

[61]

100. return super(ToolButton, self).on_touch_down(touch)
101.
102. def draw(self, ds, x, y):
103. pass

The structure in lines 94 to 100 is already familiar. Line 96 makes sure that
the ToolButton is in the 'down' state and that the event happened in the
DrawingSpace instance (referenced by ds). Remember that the parent of the
ToolButton is ToolBox, and that we added an attribute that references the
DrawingSpace instance in comiccreator.kv at the beginning of the chapter.

The draw method is called in line 98 and it will draw the respective shapes according
to the derived classes (ToolStickMan, ToolCircle, and ToolLine). We need to
be sure that we send the right coordinates to the draw method. Therefore, before
calling on it we need to translate the absolute coordinates of the event to relative
coordinates with the to_widget event (line 97). We know that the coordinates
we received (touch.x and touch.y) are absolute because ToolStickman is not a
RelativeLayout, whereas the DrawingSpace (ds) is.

Let's continue studying the toolbox.py file and see how ToolStickMan actually
adds the StickMan instances:

104. class ToolStickman(ToolButton):
105. def draw(self, ds, x, y):
106. sm = StickMan(width=48, height=48)
107. sm.center = (x,y)
108. ds.add_widget(sm)

We create an instance of Stickman (line 106), we use the translated coordinates
(line 97) that were sent to the draw method in order to localize the center of the
Stickman and finally we add it to the DrawingSpace instance with the add_widget
method (line 108). At this point, we are able to add stickmen to the drawing space
and also drag them over it. We have the basics now. Let's learn how to bind and
unbind events dynamically.

Widget Events – Binding Actions

[62]

Binding and unbinding events – sizing
limbs and heads
In the previous two sections we override basic events to perform actions we wanted.
In this section you will learn how to bind and unbind events dynamically. It was
quite an easy job to add our Stickman because it is a Widget, but what about the
graphics, the circle and the rectangle? We could create some widgets for them just
as we did with the Stickman class but let's attempt something braver. Instead of just
clicking on the drawing space, let's drag the mouse on its border to decide the size of
the circle or line:

Using mouse to set the size

Once we finish the dragging (and we are satisfied with the size), let's dynamically
create a DraggableWidget instance which contains the figures, so we can also drag
them over the DrawingSpace instance. The following class diagram will help us to
understand the whole inheritance structure of the toolbox.py file:

ToolButton
on_touch_down(self,event)
draw(self, ds, event)

draw(self, ds, event)
ToolStickman

create_figure(self,ix,iy,fx,fy)
create_widget(self,ix,iy,fx,fy)

ToolLine
create_figure(self,ix,iy,fx,fy)
create_widget(self,ix,iy,fx,fy)

ToolCircle

draw(self, ds, event)
update_figure(self, ds, event)
end_figure(self, ds, event)
widgetize(self,ds,event)
create_figure(self,ix,iy,fx,fy)
create_widget(self,ix,iy,fx,fy)

ToolFigure

Class diagram of the tool buttons

The diagram includes the ToolButton and ToolsStickman which was explained in
the last section but it also includes three new classes called ToolFigure, ToolLine,
and ToolCircle.

Chapter 03

[63]

The ToolFigure class has six methods. Let's start with a quick overview of these
methods and then highlight the important and new parts:

1. draw: This method overrides the draw of ToolButton (lines 102 and Error!
Reference source not found). The position where we touch down indicates
the starting point of our figure, either the center for a circle or one of the
ends for a line.
109. class ToolFigure(ToolButton):
110. def draw(self, ds, x, y):
111. (self.ix, self.iy) = (x,y)
112. with ds.canvas:
113. self.figure=self.create_figure(x,y,x+1,y+1)
114. ds.bind(on_touch_move=self.update_figure)
115. ds.bind(on_touch_up=self.end_figure)

2. update_figure: This method updates the end point of the figure when
we are dragging. Either the end for a line or the radius (distance from the
starting point to the end point) for the circle.
116. def update_figure(self, ds, touch):
117. if ds.collide_point(touch.x, touch.y):
118. (x,y) = ds.to_widget(touch.x, touch.y)
119. ds.canvas.remove(self.figure)
120. with ds.canvas:
121. self.figure = self.create_figure(self.ix,
self.iy,x,y)

3. end_figure: This method indicates the final end point of the figure with the
same logic as in update_figure. Also, we can put the final figure inside a
DraggableWidget (see widgetize).
122. def end_figure(self, ds, touch):
123. ds.unbind(on_touch_move=self.update_figure)
124. ds.unbind(on_touch_up=self.end_figure)
125. ds.canvas.remove(self.figure)
126. (fx,fy) = ds.to_widget(touch.x, touch.y)
127. self.widgetize(ds,self.ix,self.iy,fx,fy)

4. widgetize: This method creates DraggableWidget and places the figure
into it. It uses four coordinates that have to be localized correctly with the
localization methods.
128. def widgetize(self,ds,ix,iy,fx,fy):
129. widget = self.create_widget(ix,iy,fx,fy)
130. (ix,iy) = widget.to_local(ix,iy,relative=True)
131. (fx,fy) = widget.to_local(fx,fy,relative=True)
132. widget.canvas.add(self.create_figure(ix,iy,fx,fy))
133. ds.add_widget(widget)

Widget Events – Binding Actions

[64]

5. create_figure: This method is overridden by ToolLine (lines 139 to 140)
and ToolCircle (lines 148 to 149). It creates the respective figure given
four coordinates.
134. def create_figure(self,ix,iy,fx,fy):
135. pass

6. create_widget: This method is also overridden by ToolLine (lines 142 to
145) and ToolCircle (lines 151 to 155). It creates a respective positioned and
sized DraggableWidget given four coordinates.
136. def create_widget(self,ix,iy,fx,fy):
137. pass

Most of the statements of the preceding methods have already been covered.
The new topic on this code is the dynamically bind/unbind of events. The main
problem we needed to solve is that we didn't want the on_touch_move and
on_touch_up events active all the time. We needed to activate (bind) them from the
moment the user start drawing (on_touch_down of ToolButton that calls on the
method draw) until the user decides the size and do a touch up. Therefore, we have
bound update_figure and end_figure respectively to the on_touch_move and
on_touch_up event of the DrawingSpace when the method draw is called (lines 114
and 115). Also, we have unbound them when the user ends the figure on method
end_figure (lines 123 and 124). Notice that we can unbind the same method that is
being executed (end_figure) from the on_touch_up event. What we want to avoid
is that the method is called on again.

There are a few other interesting things on this code that deserve some attention.
In line 111 we have created two class attributes (self.ix and self.iy) to keep the
coordinates of the initial touch. We use those coordinates each time we update the
figure (line 121) and when we put the figure into a Widget (line 127).

We also use some of the localizing methods that we learned in the previous section.
In lines 118 and 126 we have used to_widget to translate the coordinates to the
DrawingSpace instance. The lines 130 and 131 use to_local for translating the
coordinates to the DraggableWidget.

DraggableWidget is instructed to translate the coordinates to its
inner relative space with the parameter relative=True because
DraggableWidget is relative and we are trying to draw inside it
and not inside the parent: the drawing space.

Chapter 03

[65]

There is some basic math involved in the calculation of the position and sizes of the
figures and widgets. We have intentionally moved it to the deepest classes of the
inheritance: ToolLine and ToolCircle. Following is their code, the last part
of toolbox.py.

138. class ToolLine(ToolFigure):
139. def create_figure(self,ix,iy,fx,fy):
140. return Line(points=[ix, iy, fx, fy])
141.
142. def create_widget(self,ix,iy,fx,fy):
143. pos = (min(ix, fx), min(iy, fy))
144. size = (abs(fx-ix), abs(fy-iy))
145. return DraggableWidget(pos = pos, size = size)
146.
147. class ToolCircle(ToolFigure):
148. def create_figure(self,ix,iy,fx,fy):
149. return Line(circle=[ix,iy,math.hypot(ix-fx,iy-fy)])
150.
151. def create_widget(self,ix,iy,fx,fy):
152. r = math.hypot(ix-fx, iy-fy)
153. pos = (ix-r, iy-r)
154. size = (2*r, 2*r)
155. return DraggableWidget(pos = pos, size = size)

The math involves concepts of geometry that escapes the scope of the book.

Finally, we are applying some changes to the toolbox.kv:

156. # File name: toolbox.kv
157. #:kivy 1.7.0
158. #:import toolbox toolbox
159. <ToolButton>:
160. size_hint: None,None
161. size: 48,48
162. group: 'tool'
163. canvas:
164. PushMatrix:
165. Translate:
166. xy: self.x,self.y
167. canvas.after:
168. PopMatrix:
169.
170. <ToolBox@GridLayout>:
171. cols: 2
172. padding: 2

Widget Events – Binding Actions

[66]

173. tool_circle: _tool_circle
174. tool_line: _tool_line
175. tool_stickman: _tool_stickman
176. ToolCircle:
177. id: _tool_circle
178. canvas:
179. Line:
180. circle: 24,24,14
181. ToolLine:
182. id: _tool_line
183. canvas:
184. Line:
185. points: 10,10,38,38
186. ToolStickman:
187. id: _tool_stickman
188. StickMan:
189. pos_hint: {'center_x':.5,'center_y':.5}

The new classes ToolCircle (line 176), ToolLine (line 181), and ToolStickMan (line
186) have replaced the previous ToolButton instances. We have also created some
attributes (lines 173, 174, and 175) that will be useful in Chapter 4, Improving the User
Experience, when we use gestures to create figures.

Before we close up this section, let's take a deeper look to the import syntax in line
158. The word toolbox is repeated twice to tell Kivy to import all the classes of the
toolbox.py file.

We could have imported a specific class with the syntaxes
#:import Name package.ClassName which is equivalent
to the Python version: from package.ClassName import
ClassName as Name.

Please note that it is the Kivy language file that is importing the Python file. This
would be unnecessary if the Python file (toolbox.py) is imported first somewhere
else. For example, we could also have imported the file in the comicreator.py file
(where the Builder is calling this file).

Chapter 03

[67]

Binding events in the Kivy language
In this section you will learn to bind events in the Kivy language. Potentially,
we could have done this since the very beginning of the chapter when we started
working with DraggableWidget but there is a difference. The difference is that if we
use the Kivy language we can easily add the event to a specific instance and not to all
the instances of the same class. For example, when we add the touch basic events to
the DraggableWidget, all the instances created from it receive the implementation.
In this sense, it resembles to externally binding an instance to its callback with the
bind method. All that said, we can still make this binding of the class definition, if
we added the code directly to the rule (<DraggableWidget>:) that defines the class.
In any case, we are going to concentrate on new events specific for Button
and ToggleButton.

The following is the code for generaloption.kv:

190. # File name: generaloptions.kv
191. #:import generaloptions generaloptions
192. <GeneralOptions>:
193. orientation: 'horizontal'
194. padding: 2
195. Button:
196. text: 'Clear'
197. on_press: root.clear(*args)
198. Button:
199. text: 'Remove'
200. on_release: root.remove(*args)
201. ToggleButton:
202. text: 'Group'
203. on_state: root.group(*args)
204. Button:
205. text: 'Color'
206. on_press: root.color(*args)
207. ToggleButton:
208. text: 'Gestures'
209. on_state: root.gestures(*args)

Widget Events – Binding Actions

[68]

Button has two extra events: on_press and on_release. The former is similar to
on_touch_down and the latter to on_touch_up. However, in this case. we don't need
to worry about calling on the collide_point method. We use on_press for the
Clear Button (line 197) and the Color Button (line 206) and on_release for the
Remove Button (line 200). The on_state event is specific to the ToggleButton class.
This event is triggered every time the state of ToogleButton changes from 'normal'
to 'down' and vice versa. The on_state is used in lines 203 and 209. All the events
are bound to methods in the root which are defined in the generaloptions.py file:

210. # File name: generaloptions.py
211. from kivy.uix.boxlayout import BoxLayout
212. from kivy.properties import NumericProperty, ListProperty
213.
214. class GeneralOptions(BoxLayout):
215. group_mode = False
216. translation = ListProperty(None)
217.
218. def clear(self, instance):
219. self.drawing_space.clear_widgets()
220.
221. def remove(self, instance):
222. ds = self.drawing_space
223. if len(ds.children) > 0:
224. ds.remove_widget(ds.children[0])
225.
226. def group(self, instance, value):
227. if value == 'down':
228. self.group_mode = True
229. else:
230. self.group_mode = False
231. self.unselect_all()
232.
233. def color(self, instance):
234. pass
235.
236. def gestures(self, instance, value):
237. pass
238.
239. def unselect_all(self):
240. for child in self.drawing_space.children:
241. child.unselect()
242.
243. def on_translation(self,instance,value):
244. for child in self.drawing_space.children:
245. if child.selected:
246. child.translate(*self.translation)

Chapter 03

[69]

The GeneralOptions methods are quite straightforward but they illustrate some
other methods of Widget. The clear method removes all the widgets from the
DrawingSpace instance through the clear_widgets method (line 219). The remove
method removes the last added Widget instance accessing the children list (line 224).
The state method modifies the group_mode attribute of line 215 according to the
'down' or 'normal' ToggleButton state. It also calls on the unselect_all method
as defined in line 239.

Because of the group mode, the user is able to select several DraggableWidgets at the
same time and drag them. The unselect_all method traverse over the list of children
calling the internal method unselect of each DraggableWidget (line 79). The color
and gestures methods will be completed in Chapter 4, Improving the User Experience.

Lastly, the on_translation method also traverse the children list on the internal
translate method (line 71) of each DraggableWidget. The question is who calls
the on_translation method? One of the most useful features of Kivy provides the
answer to this question: this will be explained in the next section.

Creating your own events – the magical
properties
This section covers the use of Kivy properties. A Kivy property triggers an event
every time we modify it. There are different types of properties, from the simple
NumericProperty or StringProperty to much more complex versions like
ListProperty, DictProperty, or ObjectProperty. For example, if we define a
StringProperty, called text, then an on_text event is going to be triggered each
time text is modified.

The on_translation method (line 243) is associated with
the ListProperty in line 216 called translation. Once
we define a Kivy property, Kivy internally creates an event
associated with that property. The property name is generated
adding the prefix on_ to the name of the property.

All the properties work in the same way. For example, the state property of
ToogleButton is actually a property which creates the on_state event. We already
used this event in line 203. We define the property and Kivy creates the event for us.

Widget Events – Binding Actions

[70]

In the context of this book, a property will always refer to a Kivy
property and it should not be confused with a Python property,
which is a different concept. An attribute is used to describe
variables (references, objects, instances) that belong to the
class. A property is always an attribute but an attribute is not
necessarily a property.

In this section, we implement the group_mode. The group mode offers the user the
possibility of selecting and dragging several figures (DraggableWidgets instances)
at the same time by pressing the Group Button (line 201).

In order to do this, we can take advantage of the relation between the translation
property and the on_translation method. Basically, every time we modify the
translation property then the on_translation event is triggered. Suppose that
we are dragging three figures at the same time (with the group mode) as shown in
following screenshot:

 The three figures are selected, but the events are handled by the circle, since it is the
one that has the pointer on top. The circle needs to tell the line and the stickman to
translate. Instead of calling on the on_translation method, it only needs to modify
the translation property and the on_translation method is called on. Let's
include these changes in the comicwidgets.py. We need four modifications.

First, we need to add the touched attribute (line 249) to indicate which of the
selected figures is receiving the event (for example, the circle in the previous
screenshot). We do this in the constructor:

247. def __init__(self, **kwargs):
248. self.selected = None
249. self.touched = False
250. super(DraggableWidget, self).__init__(**kwargs)

Chapter 03

[71]

Second, we need to set the touched attribute to True (Line 253) when one
of the DraggableWidget instances receives the event. We do this in the
on_touch_down method:

251. def on_touch_down(self, touch):
252. if self.collide_point(touch.x, touch.y):
253. self.touched = True
254. self.select()
255. return True
256. return super(DraggableWidget, self).on_touch_down(touch)

 Third, we need to check that the DraggableWidget is the one that is currently
being touched (received the on_touch_down event previously). We add this to the
condition in line 259.

The most important change is the line 261. Instead of calling on the translate
method directly, we modify the translation property of general options
(self.parent.general_options) setting on the property the number of pixels
the widget has been translated. This will trigger the on_translation method of
GeneralOptions that at the same time calls the translate method for each selected
DraggableWidget. The following is the code for the on_touch_move:

257. def on_touch_move(self, touch):
258. (x,y) = self.parent.to_parent(touch.x, touch.y)
259. if self.selected and self.touched and self.parent.
collide_point(x - self.width/2, y -self.height/2):
260. go = self.parent.general_options
261. go.translation=(touch.x-self.ix,touch.y-self.iy)
262. return True
263. return super(DraggableWidget, self).on_touch_move(touch)

Fourth, we need to set the touched attribute to False (line 265) on the
on_touch_up event and also avoid calling the unselect method when we are
using the group_mode (line 267). Here is the code for the on_touch_up method:

264. def on_touch_up(self, touch):
265. self.touched = False
266. if self.selected:
267. if not self.parent.general_options.group_mode:
268. self.unselect()
269. return super(DraggableWidget, self).on_touch_up(touch)

Widget Events – Binding Actions

[72]

This example could be considered artificial since we theoretically could have called
on the on_translation method from the start. In order to achieve consistency of
the internal state of a variable and the screen display of it, however, properties are
crucial. The example from the next section should improve understanding of this.

Kivy and properties
Even though we have only touched on explanations of properties in the section,
the truth is that we have been using them since the beginning of this chapter.Kivy's
internals are full of properties. They are almost everywhere. For example, when we
implemented DraggableWidget, we simply modified the property center_x and
center_y (line 72) and the whole Widget was updated because there are properties
involved in the use of center_x.

The last example in this chapter illustrates how powerful the Kivy properties are.
Here is the code for statusbar.py:

270. # File name: statusbar.py
271. from kivy.uix.boxlayout import BoxLayout
272. from kivy.properties import NumericProperty, ObjectProperty
273.
274. class StatusBar(BoxLayout):
275. counter = NumericProperty(0)
276. previous_counter = 0
277.
278. def on_counter(self, instance, value):
279. if value == 0:
280. self.msg_text = "Drawing space cleared"
281. elif value - 1 == self.__class__.previous_counter:
282. self.msg_text = "Widget added"
283. elif value + 1 == self.previous_counter:
284. StatusBar.msg_text = "Widget removed"
285. self.previous_counter = value

Sometimes, the way Kivy properties work can be perceived as confusing by some
advanced Python or Java programmers. In order to disentangle the problem,
remember that we need to distinguish between the static attribute of a class, and the
attribute of a class instance.

Chapter 03

[73]

In Python, the previous_counter (line 276) is a static
attribute of the StatusBar class. This means that it
is shared among all the StatusBar instances, and it
can be accessed in any of the ways shown in lines 281,
283, and 285 (however line 281 is recommended). In
contrast, the selected variable (line 248) is an attribute
of a DraggableWidget instance. This means that
there is a selected variable per StatusBar object. It
is not shared among them. They are created until the
constructor (__init__) is called on. The only way to
access it is through obj.selected (line 248).

The confusion happens when a programmer assumes that the counter is a static
attribute of the StatusBar class, because counter is defined in an equivalent way
of the Python static attributes (for example, the previous_counter). The assumption
is incorrect.

Kivy properties are declared as static attribute classes (so as if they
belong to the class) but they are always internally "transformed"
to attribute instances. They actually belong to the object as if we
would have declared them in the constructor.

After this being clarified, we can move on to study the example. The counter is
defined as a NumericProperty in line 275. Its corresponding on_counter method
(line 278) modifies a Label (msg_text) defined in the statusbar.kv file:

286. # File name: statusbar.kv
287. #:import statusbar statusbar
288. <StatusBar>:
289. msg_text: _msg_label.text
290. orientation: 'horizontal'
291. Label:
292. text: 'Total Figures: ' + str(root.counter)
293. Label:
294. id: _msg_label
295. text: "Kivy started"

Note that we are using an id (line 294) again in order to define msg_text (line 289).
Also, we are using the counter defined in line 275 to update the Total Figures
message in line 292. The specific part (str(root.counter)) of text is updated
automatically when the counter is modified.

Widget Events – Binding Actions

[74]

So, we just need to modify counter. This is done in drawingspace.py:

296. # File name: drawingspace.py
297. from kivy.uix.relativelayout import RelativeLayout
298.
299. class DrawingSpace(RelativeLayout):
300. def on_children(self, instance, value):
301. self.status_bar.counter = len(self.children)

We have updated the counter with the length of the DrawingSpace's children
in the method on_children. Then, on_children is called on every time we add
(line 108 or 133) or remove (line 219 or 224) widgets from the children list of the
DrawingSpace because children is also a Kivy property.

Don't forget to import this file into drawingspace.py in the drawingspace.kv file:

302. # File name: drawingspace.kv
303. #:import drawingspace drawingspace
304. <DrawingSpace@RelativeLayout>:

The following diagram shows the chain of elements (properties, methods, and
widgets) that are associated with the children property:

children
property

on_children
method

counter
property

Total Figures
text

on_counter
method

msg_text
Label

It is important to compare again the way we have to gain access to the counter
property and the msg_label attribute. We define the counter property in the
StatusBar (line 275) and use it in the Label through the root (line 292). In the
msg_label case, we started defining the id (line 294) and then the attribute of the
Kivy language (line 289). We could also make the msg_label an ObjectProperty if
we for example, define something like msg_label = ObjectProperty(None) in
the header StatusBar.

Remember that an attribute is not necessarily a Kivy property.
An attribute is an element of the class whereas a Kivy property
associates the attribute with an event.

Chapter 03

[75]

You can find the complete list of available properties in the Kivy API (http://kivy.
org/docs/api-kivy.properties.html). There are two specific properties that, at
least, should be mentioned: BoundedNumericProperty and AliasProperty. The
BoundedNumericProperty property allows setting maximum and minimum values.
If the value is beyond the range, an Exception is thrown. The AliasProperty
property allows us to create our own properties in the case that the necessary
property does not exist.

One last thing that deserves attention is that attributes of the vertex instructions are
used as properties when we create them with Kivy language. For example, if we
change the position of the line inside the ToolLine, it will be updated automatically.
However, this just applies inside the Kivy language, not when we add the vertex
instructions dynamically, as we did in toolbox.py. In our case, we had to remove and
create a new vertex instruction every time we needed to update the figures (line 119 to
121). However, we could have created our own properties to handle the updates.

Summary
We have covered most of the topics related to event handling in this chapter.
You have learned how to override different kind of events, dynamic binding and
unbinding, assigning events in the Kivy language, and creating our own. You also
learned about Kivy properties, how to manage the localization of coordinates to
different widgets, and many methods related to adding, removing, and updating
objects of the Kivy Widget and canvas. Here are the events, methods, properties,
and attributes that were covered:

• The events: on_touch_up, on_touch_move and on_touch_down (of Widget);
on_press and on_release (of Button) and on_state (of ToggleButton)

• The attributes x and y of a MotionEvent (touch); center_x, center_y,
canvas, parent, children of Widget and state of ToggleButton.

• The following methods of Widget:
 ° bind and unbind to attach events dynamically
 ° collide_points, to_parent, to_local, to_window, and

to_widget to work with coordinates
 ° add_widget, remove_widget, and clear_widgets to dynamically

modify the children widgets

• The methods add and remove of canvas to dynamically add and remove
vertex and context instructions

• Kivy properties: NumericProperty and ListProperty

Widget Events – Binding Actions

[76]

In general, all the properties that we have used with the Kivy language are accessible
from Python. For example, we accessed the text of a Label but we could also
have accessed the size or pos of a Widget. However, we cannot access all the
properties of the instructions. For example, the ellipse of line is protected. Also,
the MotionEvent (touch event) has many more attributes than the x and y used
in this chapter. For example, type of touch, the number of taps (or clicks),
duration, the input device, and many more that we can use for advanced tasks
(http://kivy.org/docs/api-kivy.input.motionevent.html#kivy.input.
motionevent.MotionEvent).

Finally, there were two other important types of events related to the clock and the
keyboard. This chapter was focused on Widget and property events but we will learn
how to use other events in Chapter 5, Invaders Revenge – An Interactive Multi-touch
Game. The next chapter is going to introduce a list of interesting topics of Kivy in
order to improve the user experience with our Comic Creator.

Improving the
User Experience

This chapter gives and overview over selected components that Kivy provides to
make the programmer's life easier when it is time to improve the user experience.
Most of them are related to specific widgets that already include the functionality; in
this case, you are going to learn the basic techniques to control them. Others facilitate
a deeper comprehension of the drawing context of Kivy or the use of classes to
handle gestures.

The following are the knowledge you will acquire in the chapter:

• Switching between different screens
• Using pre-build complex widgets to select colors
• Controlling the visible area of the canvas
• Rotate and scale with multi-touch gestures
• Creating single gestures to draw on the screen

More importantly, we will learn how to incorporate them into a current working
project. This will reinforce your previously acquired knowledge and understanding
of how Kivy works. At the end of this chapter, you should feel comfortable to
face possible problems that you may find developing with Kivy. Moreover, we
should be able to dig into the Kivy API and quickly understand the use of different
components and widgets.

Improving the User Experience

[78]

Screen manager – selecting colors for
the figures
The ScreenManager class lets us handle different screens in the same window. In
Kivy, screens are preferred over windows because we are programming for different
devices with different screen sizes. Therefore, it is difficult (if not impossible) to have
windows that adapt properly to all devices.

So far, all our figures have been of the same color and that is boring. So, let us allow
the user to add some color to make the Comic Creator more fun. Kivy provides us
with a Widget called ColorPicker, which is displayed in the following screenshot:

Kivy Color Picker

As you can see, this Widget requires a wide space, so it is difficult to accommodate
it in our current interface. Let's use a ScreenManager instance to solve this problem.
This basically allows us to have multiple screens instead of just one Widget
(ComicCreator) and switch easily between them. The following is a new Kivy file
(comicscreenmanager.kv) that contains the ComicScreenManager class definition:

1. # File name: comicscreenmanager.kv
2. #:import FadeTransition kivy.uix.screenmanager.FadeTransition
3. <ComicScreenManager>:
4. transition: FadeTransition()
5. color_picker: _color_picker
6. ComicCreator:
7. Screen:
8. name: 'colorscreen'
9. ColorPicker:
10. id: _color_picker

Chapter 4

[79]

11. Button:
12. text: "Select"
13. pos_hint: {'center_x': .75, 'y': .05}
14. size_hint: None, None
15. size: 150, 50
16. on_press: root.current = 'comicscreen'

In line 5, there is an attribute color_picker that points to our instance of
ColorPicker in line 9. However, notice that we haven't added a ColorPicker
instance directly to ComicScreenManager. Instead we have embedded the
ColorPicker instance inside a Screen Widget. In line 6, we added an instance
of our ComicCreator.

A ScreenManager instance must contain the widgets of
the Screen base class. No other types of Widget (Label,
Button or layouts) are allowed.

We need to change our ComicCreator, so it inherits Screen. We do this in the
comiccreator.kv header:

17. # File name: comiccreator.kv
18. <ComicCreator@Screen>:
19. name: 'comicscreen'
20. AnchorLayout:…

We assigned the name 'comicscreen' to identify the screen (line 19). This name
is used in the Button instance that we added to the ColorPicker (line 11). In
line 16, we bind the method on_press with the Python code root.current =
'comicscreen'. Please note we are adding Python code directly instead of calling
on a method as we did in Chapter 3, Widget Events – Binding Actions. In this case, the
root is actually the ScreenManager class and the current property tells it which the
active Screen is. The value 'comicscreen' is the name as just explained.

We indentify the ColorPicker Screen instance with the name 'colorscreen' on
line 8. This name is used to activate the ColorPicker in the GeneralOptions area.
We need to modify the color method of generaloptions.py:

21. def color(self, instance):
22. self.comic_creator.manager.current = 'colorscreen'

The Color Button now switches the Screen in order to display the ColorPicker.
Remember that the GeneralOptions class has a reference (comic_creator) to
the ComicCreator instance. Since ComicCreator is a Screen, it can access its
corresponding ScreenManager through the manager attribute. Therefore, it also
can change the current Screen, analogous to line 16.

Improving the User Experience

[80]

The ComicScreenManager instance becomes the main Widget of the comic creator
project so the comicreator.py file has to change accordingly:

23. # File name: comiccreator.py
24. from kivy.app import App
25. from kivy.lang import Builder
26. from kivy.uix.screenmanager import ScreenManager
27.
28. Builder.load_file('toolbox.kv')
29. Builder.load_file('comicwidgets.kv')
30. Builder.load_file('drawingspace.kv')
31. Builder.load_file('generaloptions.kv')
32. Builder.load_file('statusbar.kv')
33. Builder.load_file('comiccreator.kv')
34.
35. class ComicScreenManager(ScreenManager):
36. pass
37.
38. class ComicScreenManagerApp(App):
39. def build(self):
40. return ComicScreenManager()
41.
42. if __name__=="__main__":
43. ComicScreenManagerApp().run()

Since we have changed the name of the App to ComicScreenManagerApp (line 43), we
are explicitly loading the comiccreator.kv file (line 33). One last interesting thing
about the ScreenManager is that we can use transitions. Just as an example, the lines
2 and 4 import and use a simple FadeTransition.

Kivy provides a set of transitions (FadeTransition,
SwapTransition, SlideTransition, and WipeTransition)
for switching between the Screen instances of a ScreenManager.
Check the Kivy API for more information on how to customize
them with different parameters at http://kivy.org/docs/
api-kivy.uix.screenmanager.html.

After these changes, we can switch between the two screens: ColorPicker and
ComicCreator. However, the selection of the color still has no effect on the drawing
process. The next section covers how to add the color to the figures we draw.

Chapter 4

[81]

Color Control on the canvas – coloring
figures
The previous section focused on the selection of colors. Now, we are going to actually
use the selected color. Assigning a color can be tricky if we are not careful. The main
issue is that there isn't a color property neither for the widgets nor for the graphics
(Line, Rectangle) inside the canvas. If you recall, in Chapter 3, Widget Events – Binding
Actions, Color is a context instruction that we must add to the canvas.

Moreover, we have to be sure that we add the instruction before we draw the actual
figure. Something like PushMatrix and PopMatrix could be the solution but they
only apply for transform instructions (Translate, Rotate, and Scale).

Another way to do it could be to add a color property to the DraggableWidget
and then have a temporary variable that keeps the previous color. After we draw,
we use the temporary variable to reset the previous color. That is quite a hassle for
something that should be simple.

It is such a hassle that Kivy doesn't worry too much about it. Kivy ensures that the
elements inside any widget are painted as the corresponding color, but doesn't care
about cleaning the context state. Let us study a small example (out of the Comic
Creator project) to understand this concept:

44. # File name: color.py
45. from kivy.app import App
46. from kivy.uix.gridlayout import GridLayout
47. from kivy.lang import Builder
48.
49. Builder.load_string("""
50. <GridLayout>:
51. cols:2
52. Label:
53. color: 1,0,0,1
54. canvas:
55. Line:
56. points: self.x, self.y, self.x + self.width,
 self.y + self.height
57. Widget:
58. canvas:
59. Line:
60. points: self.x, self.y, self.x +self.width,
 self.y + self.height
61. """)
62.
63. class LabelApp(App):

Improving the User Experience

[82]

64. def build(self):
65. return GridLayout()
66.
67. if __name__=="__main__":
68. LabelApp().run()

Notice that we use the load_string method of the Builder
class instead of load_file. This method allows us to embed
Kivy language statements inside a Python code file.

One of the properties of Label is called color. It changes the color of the Label text.
We change this color to red (line 53) on the first Label but doesn't clean the context.
Observe the result in the following screenshot:

Color property of Label

Not only the Line of the Label (added first) but also the Line of the Widget
(added second), so when the context has changed, it stays changed.

 "When in Rome, do as Romans do". Kivy tries to keep all its components as simple
as possible to avoid overloading instructions. We will follow this approach for the
colors and just worry about the color each time we need to use it, and the rest of the
components should care of their own color. This is of course not the only solution,
but it is simple and consistent with Kivy.

We can now implement the changes. There are only three methods where we draw
in the drawing space (all of them are in the toolbox.py file). Here are those methods
with the corresponding new lines highlighted:

• Method draw in ToolStickman:
69. def draw(self, ds, x, y):
70. sm = StickMan(width=48, height=48)
71. sm.center = (x,y)
72. screen_manager = self.parent.comic_creator.manager
73. color_picker = screen_manager.color_picker
74. sm.canvas.before.add(Color(*color_picker.color))
75. ds.add_widget(sm)

• Method draw (class ToolFigure):
76. def draw(self, ds, x, y):
77. (self.ix, self.iy) = (x,y)

Chapter 4

[83]

78. screen_manager = self.parent.comic_creator.manager
79. color_picker = screen_manager.color_picker
80. with ds.canvas:
81. Color(*color_picker.color)
82. self.figure=self.create_figure(x,y,x+1,y+1)
83. ds.bind(on_touch_move=self.update_figure)
84. ds.bind(on_touch_up=self.end_figure)

• Method widgetize (class ToolFigure):
85. def widgetize(self,ds,ix,iy,fx,fy):
86. widget = self.create_widget(ix,iy,fx,fy)
87. (ix,iy) = widget.to_local(ix,iy,relative=True)
88. (fx,fy) = widget.to_local(fx,fy,relative=True)
89. screen_manager = self.parent.comic_creator.manager
90. color_picker = screen_manager.color_picker
91. widget.canvas.add(Color(*color_picker.color))
92. widget.canvas.add(self.create_figure(ix,iy,fx,fy))
93. ds.add_widget(widget)

All three methods have a pair of specific instructions in common; you can find them
in lines 72 and 73, 78 and 79, 89 and 90. These are reference chains to get access to
the ColorPicker instance. After that we just add a Color instruction to the canvas
(as we learned in Chapter 2, Graphics – The Canvas) using the selected color in the
color_picker.

We also use canvas.before in the draw method of the ToolStickman class (line 74).
This is used to ensure that the Color instruction is executed before the instructions
we added in the canvas of the Stickman (comicwidgets.kv file). This is not
necessary in the other two methods because we have full control of the canvas order
inside those methods.

Lastly, please don't forget to import the Color class in the header of the file: from
kivy.graphics import Line, Color. We can now take a break, and enjoy the
result of our hard work with our Comic Creator:

At a later point in time, we can discuss whether our drawing is just an avid Comic
Creator fan or a narcissistic alien. For now, it seems more useful that you learn how
to limit the drawing space to the specific area that occupies in the window.

Improving the User Experience

[84]

StencilView – limiting the drawing space
In Chapter 3, Widget Events – Binding Actions, we avoided drawing outside of the
drawing space by using simple mathematics and collide_points. It was far from
perfect (for example, it fails in the group mode or when we are resizing) and it was
tedious and prone to programming mistakes.

StencilView is the way to go here. With a StencilView instance , you can
avoid drawing outside of the area that is defined by it. First, let's modify the file
drawingspace.py with the following header:

94. # File name: drawingspace.py
95. from kivy.uix.stencilview import StencilView
96.
97. class DrawingSpace(StencilView):
98. ...

We have substituted RelativeLayout with StencilView. The StencilView
class doesn't use relative coordinates (as the RelativeLayout class does) but we
would like to keep that behavior in the drawing space. We can fix this problem
modifying the top-right AnchorLayout, so the DrawingSpace instance is inside
a RelativeLayout instance. We do this in comiccreator.kv:

99. AnchorLayout:
100. anchor_x: 'right'
101. anchor_y: 'top'
102. RelativeLayout:
103. size_hint: None,None
104. width: root.width - _tool_box.width
105. height: root.height -
 _general_options.height - _status_bar.height
106. DrawingSpace:
107. id: _drawing_space
108. general_options: _general_options
109. tool_box: _tool_box
110. status_bar: _status_bar

The DrawingSpace instance (line 108) is now embedded inside a RelativeLayout
instance (line 104) keeping its id (line 109) and attributes (lines 110 to 112). Since we
have a new level of indentation and the DrawingSpace class is not relative itself, this
affects the way we are localizing the coordinates in the ToolBox instance, specifically,
in update_figure and end_figure of the class ToolFigure. Following is the new
code for those methods in toolbox.py:

111. def update_figure(self, ds, touch):
112. ds.canvas.remove(self.figure)

Chapter 4

[85]

113. with ds.canvas:
114. self.figure = self.create_figure(self.ix,
 self.iy,touch.x,touch.y)
115.
116. def end_figure(self, ds, touch):
117. ds.unbind(on_touch_move=self.update_figure)
118. ds.unbind(on_touch_up=self.end_figure)
119. ds.canvas.remove(self.figure)
120. self.widgetize(ds,self.ix,self.iy,touch.x,touch.y)

We have removed some instructions. First off, we don't need to use the
to_widget method anymore since we are already getting the coordinates from the
RelativeLayout parent. And secondly, we don't need to worry about collide_
points in the update_figure method because StencilView will be in charge of it.

With just a few changes we have ensured that nothing will be drawn outside of the
drawing space. Please note that by default (size_hint: 1, 1) the DrawingSpace
instance occupies all the area of the RelativeLayout parent. The next section will
teach you how to drag, rotate, and scale the figures.

Scatter – multitouching to drag, rotate,
and scale
In the previous chapter you learned how to use events to drag widgets. You
learned how to use the on_touch_up, on_touch_move and on_touch_down events.
However, the Scatter class already provides that functionality and also lets us scale
and rotate using two fingers. All the functionality is included inside the Scatter
class, however, we need to apply a few changes to keep our project consistent. In
particular, we still want our group mode to work, so that translating, scaling, and
rotating can be happening at the same time. Let us implement the changes in four big
steps in the comicwidgets.py file:

1. Substitute in the DraggableWidget base class. Let's use Scatter instead of
RelativeLayout (line 122 and 125):
121. # File name: comicwidgets.py
122. from kivy.uix.scatter import Scatter
123. from kivy.graphics import Line
124.
125. class DraggableWidget(Scatter):

Both, Scatter and RelativeLayout use relative coordinates.

Improving the User Experience

[86]

2. Make sure that the on_touch_down event is propagated to the base class
(Scatter) by calling the super method (line 130) before return True (line
131) inside the condition. If we don't do that the Scatter will never receive
the event on_touch_down and nothing will happen:
126. def on_touch_down(self, touch):
127. if self.collide_point(touch.x, touch.y):
128. self.touched = True
129. self.select()
130. super(DraggableWidget, self).on_touch_down(touch)
131. return True
132. return super(DraggableWidget, self).on_touch_down(touch)

The super method is for the base class (Scatter), the
return method for the parent (DrawingSpace)

3. Remove the on_touch_move method and add an on_pos method. Since the
Scatter will be responsible for the dragging we don't need on_touch_move
anymore. Instead we are going to use the pos property that is modified by
the Scatter. Remember that the properties trigger an event that will call the
on_pos method:
133. def on_pos(self, instance, value):
134. if self.selected and self.touched:
135. go = self.parent.general_options
136. go.translation = (self.center_x- self.ix,
 self.center_y - self.iy)
137. self.ix = self.center_x
138. self.iy = self.center_y

4. Scatter has other two properties: rotation and scale. So, we can
use the same idea of pos and on_pos, and add the .on_rotation
and on_scale methods.
139. def on_rotation(self, instance, value):
140. if self.selected and self.touched:
141. go = self.parent.general_options
142. go.rotation = value
143.
144. def on_scale(self, instance, value):
145. if self.selected and self.touched:
146. go = self.parent.general_options
147. go.scale = value

Chapter 4

[87]

5. The on_rotation and on_scale methods simply modify a couple of new
properties we added to General Options that will help us to keep the group
mode working. Following is the header of generaloptions.py:
148. # File name: generaloptions.py
149. from kivy.uix.boxlayout import BoxLayout
150. from kivy.properties import NumericProperty, ListProperty
151.
152. class GeneralOptions(BoxLayout):
153. group_mode = False
154. translation = ListProperty(None)
155. rotation = NumericProperty(0)
156. scale = NumericProperty(0

6. Next, we are importing NumericProperty together with ListProperty
(line 143); and we are creating the two missing properties: rotation and
scale (lines 148 and 149). We are also adding the on_rotation (line 150)
and on_scale (line 155) methods associated with the rotation and scale
properties), which will ensure that all the selected components are rotated
or scaled at once:
157. def on_rotation(self, instance, value):
158. for child in self.drawing_space.children:
159. if child.selected and not child.touched:
160. child.rotation = value
161.
162. def on_scale(self, instance, value):
163. for child in self.drawing_space.children:
164. if child.selected and not child.touched:
165. child.scale = value

A final modification is necessary. We have changed the on_translation method
to check that the current child in the loop is not the one being touched. This way,
we avoid an infinite recursion (with the modification of pos inside the translate
method). Here is the new on_translation method on generaloptions.py:

166. def on_translation(self,instance,value):
167. for child in self.drawing_space.children:
168. if child.selected and not child.touched:
169. child.translate(*self.translation)

Improving the User Experience

[88]

At this point, we are able to translate, rotate, or scale the figures with our fingers,
even in the group mode.

Kivy provides a way to simulate multitouch with the mouse.
It is limited, but you can still test this section with your
one-mouse laptop. All you have to do is right click on the
figure you want to rotate. A translucent red circle will
appear on the screen. Then you can use the normal left
dragging as if it were a second finger to rotate or scale.

The next screenshot cut shows our StickMan, being rotated and scaled at the same
time as the line next to him. The small StickMan on the right is just a reference for
the original size. The simulated multitouch gesture is being applied to the line on
the right and that is why you can see a red dot:

In Chapter 1, GUI Basics: Building an Interface, we postponed ScatterLayout
explanation to this chapter. Here it is:

ScatterLayout is a Kivy layout that inherits from Scatter and
containsFloatLayout. This allows you to use the size_hint
and pos_hint properties when you add widgets inside to it.
ScatterLayout also uses relative coordinates.

That doesn't mean you cannot add other widgets inside a simple Scatter, it just
means that Scatter doesn't honor size_hint or pos_hint.

Chapter 4

[89]

Recording gestures – line, circles, and
cross
What about drawing with one finger? Can we recognize gestures? It is possible
to do this with Kivy, but first we need to record the gestures that we want to use.
A gesture is represented as a long string that contains the points of a stroke over
the screen. The following code is not part of the project and can be run with
python gesturerecorder.py:

170. # File Name: gesturerecorder.py
171. from kivy.app import App
172. from kivy.uix.floatlayout import FloatLayout
173. from kivy.graphics import Line, Ellipse
174. from kivy.gesture import Gesture, GestureDatabase
175.
176. class GestureRecorder(FloatLayout):
177.
178. def on_touch_down(self, touch):
179. self.points = [touch.pos]
180. with self.canvas:
181. Ellipse(pos=(touch.x-5,touch.y-5),size=(10,10))
182. self.line = Line(points=(touch.x, touch.y))
183.
184. def on_touch_move(self, touch):
185. self.points += [touch.pos]
186. self.line.points += [touch.x, touch.y]
187.
188. def on_touch_up(self, touch):
189. self.points += [touch.pos]
190. gesture = Gesture()
191. gesture.add_stroke(self.points)
192. gesture.normalize()
193. gdb = GestureDatabase()
194. print "Gesture:", gdb.gesture_to_str(gesture)
195.
196. class GestureRecorderApp(App):
197. def build(self):
198. return GestureRecorder()
199.
200. if __name__=="__main__":
201. GestureRecorderApp().run()

Improving the User Experience

[90]

The previous code prints the gesture string representations using the Gesture and
GestureDatabase classes (line 174). The on_touch_down, on_touch_move, and
on_touch_up methods collects the points of the stroke lines 179, 185 and 189. The
following screenshot are examples of strokes collected with gesturerecorded.py:

The small Circle in the preceding figures (lines 180 and 181) indicates the starting
point and the line indicates the path that the stroke follows. The most relevant part
is coded in lines 190 to 194. We create a Gesture (line 190), add the points for the
stroke (line 191), normalize to a default number of points (line 192) and create a
GestureDatabase instance (line 193) that we use in line 194 to generate the string
and print it on the screen.

The following screenshot shows the terminal output for the stroke line
(corresponding to the first left figure in the preceding figures set):

In the preceding screenshot, the text output starting with 'eNq1Vktu…' is the gesture
string representation. We use those long strings as descriptors of the gestures that
Kivy understands and uses to associate the stroke with any action we want to
perform. The last section explains how to achieve this.

Chapter 4

[91]

Simple gestures – drawing with the finger
The previous section explained how to obtain string representation from gestures.
The current section explains how to use those string representations to recognize
the gestures. We have copied the strings that were generated by the strokes in the
previous section into a new file called gestures.py. The strings are assigned to
different variables. The following code corresponds to gestures.py:

202. # File Name: gestures.py
203. line45_str = 'eNq1VktuI0cM3fdFrM0I...
204. circle_str = 'eNq1WMtuGzkQvM+P2JcI/Sb5A9rrA...
205. cross_str = 'eNq1V9tuIzcMfZ8fSV5qiH...

Only the first few characters of the strings are shown in the previous code because of
space concern, but you can use the previous section to generate your own strings.

Next, we are going to use this string in the drawingspace.py file. Let's start with its
header first:

206. # File name: drawingspace.py
207. from kivy.uix.stencilview import StencilView
208. from kivy.gesture import Gesture, GestureDatabase
209. from gestures import line45_str, circle_str, cross_str
210.
211. class DrawingSpace(StencilView):

In the preceding code we import the Gesture and GestureDatabase classes together
with the gesture string representations added to gestures.py. . We have added
several methods to the DrawingSpace class. Let's quickly review each of them and at
the end we review the new parts:

• __init__: This method creates the attributes of the class and fills the
GestureDatabase:
212. def __init__(self, *args, **kwargs):
213. super(DrawingSpace, self).__init__()
214. self.gdb = GestureDatabase()
215. self.line45 = self.gdb.str_to_gesture(line45_str)
216. self.circle = self.gdb.str_to_gesture(circle_str)
217. self.cross = self.gdb.str_to_gesture(cross_str)
218. self.line135 = self.line45.rotate(90)
219. self.line225 = self.line45.rotate(180)
220. self.line315 = self.line45.rotate(270)
221. self.gdb.add_gesture(self.line45)
222. self.gdb.add_gesture(self.line135)
223. self.gdb.add_gesture(self.line225)

Improving the User Experience

[92]

224. self.gdb.add_gesture(self.line315)
225. self.gdb.add_gesture(self.circle)
226. self.gdb.add_gesture(self.cross)

• activate and deactivate: This method binds and unbinds the methods
to the touch events in order to start the gesture recognition mode. These
methods are called on by the gesture Button of the GeneralOptions:
227. def activate(self):
228. self.bind(on_touch_down=self.down,
229. on_touch_move=self.move,
230. on_touch_up=self.up)
231.
232. def deactivate(self):
233. self.unbind(on_touch_down=self.down,
234. on_touch_move=self.move,
235. on_touch_up=self.up)

down, move and up: These methods record the points of the stroke
in a very similar way to the previous section:
236. def down(self, ds, touch):
237. if self.collide_point(*touch.pos):
238. self.points = [touch.pos]
239. self.ix = self.fx = touch.x
240. self.iy = self.fy = touch.y
241. return True
242.
243. def move(self, ds, touch):
244. if self.collide_point(*touch.pos):
245. self.points += [touch.pos]
246. self.min_and_max(touch.x, touch.y)
247. return True
248.
249. def up(self, ds, touch):
250. if self.collide_point(*touch.pos):
251. self.points += [touch.pos]
252. self.min_and_max(touch.x, touch.y)
253. gesture = self.gesturize()
254. recognized = self.gdb.find(gesture, minscore=0.50)
255. if recognized:
256. self.discriminate(recognized)
257. return True

Chapter 4

[93]

• gesturize: This creates a Gesture instance from the collected points on the
previous methods:
258. def gesturize(self):
259. gesture = Gesture()
260. gesture.add_stroke(self.points)
261. gesture.normalize()
262. return gesture

• min_and_max: This keeps track of the extreme points of the stroke:
263. def min_and_max(self, x, y):
264. self.ix = min(self.ix, x)
265. self.iy = min(self.iy, y)
266. self.fx = max(self.fx, x)
267. self.fy = max(self.fy, y)

• discriminate: This decides which method to call according to the
recognized gesture:
def discriminate(self, recognized):
268. if recognized[1] == self.cross:
269. self.add_stickman()
270. if recognized[1] == self.circle:
271. self.add_circle()
272. if recognized[1] == self.line45:
273. self.add_line(self.ix,self.iy,self.fx,self.fy)
274. if recognized[1] == self.line135:
275. self.add_line(self.ix,self.fy,self.fx,self.iy)
276. if recognized[1] == self.line225:
277. self.add_line(self.fx,self.fy,self.ix,self.iy)
278. if recognized[1] == self.line315:
279. self.add_line(self.fx,self.iy,self.ix,self.fy)

• add_circle, add_line, add_stickman: These use the corresponding
ToolButton of ToolBox to add a figure according to the recognized gesture:
281. def add_circle(self):
282. cx = (self.ix + self.fx)/2.0
283. cy = (self.iy + self.fy)/2.0
284. self.tool_box.tool_circle.widgetize
 (self, cx, cy, self.fx, self.fy)
285.
286. def add_line(self,ix,iy,fx,fy):
287. self.tool_box.tool_line.widgetize(self,ix,iy,fx,fy)
288.

Improving the User Experience

[94]

289. def add_stickman(self):
290. cx = (self.ix + self.fx)/2.0
291. cy = (self.iy + self.fy)/2.0
292. self.tool_box.tool_stickman.draw(self,cx,cy)

• on_children: This just keeps the counter of the status bar updated:
293. def on_children(self, instance, value):
294. self.status_bar.counter = len(self.children)

The new elements are presented in the __init__ (lines 212 to 226) and up (lines 249
to 257) methods. In the __init__ method, we create the GestureDatabase instance
(line 214) and use it to create the gestures from the strings (lines 215 to 217). We rotate
90° the line 45 gesture (lines 218 to 220) gesture four times, so the GestureDatabase
instance will recognize the gestures in different directions. Then, the method charges
the GestureDatabase with the generated gestures (lines 221 to 226).

In the up method, we search into the GestureDatabase instance with the find
method (line 254). The minscore parameter is used to indicate the precision of
the search. We are using a low level since we know that the strokes are very
different and that a mistake can be easily undone. The found gesture is kept in the
recognized variable. This variable is a pair where the first element is the score of the
recognition and the second value is the actual recognized gesture. Then, the method
discriminate (lines 268 to 280) is called on. This method uses the recognized
gesture information to decide which figure is drawn. In the case of the lines, it also
decides the order in which to send the coordinates to match the direction.

One last change is required in the generaloptions.py file. That definition of the
gestures method:

295. def gestures(self, instance, value):
296. if value == 'down':
297. self.drawing_space.activate()
298. else:
299. self.drawing_space.deactivate()

When the Gestures ToggleButton is in the 'down' state, the GeneralOptions buttons
continue working but the Tool Box is mostly frozen. The reason for this is the order
in which we added the widgets to the screen in the comiccreator.kv file and the
events triggering order. Luckily, this behavior is acceptable since we don't use those
buttons to draw with the fingers.

Chapter 4

[95]

Summary
This chapter has covered some specific and useful topics that improve the user
experience. We have added several screens and switch between them with
ScreenManager. You have learned how to use colors in the canvas and you should
now have a good understanding of how this works internally. You also learned
how to limit the drawing area to the drawing space with the StencilView. We
used Scatter to add rotating and scaling capabilities to our DraggablWidget and
expanded the functionality through the use of properties and associated events.

Finally, we introduced the use of gestures to make the interface more dynamic. Here
is a review of all the classes with their respective methods, properties, and attributes
that you have learned to use in this chapter:

• ScreenManager: The transistion and current properties
• The FadeTransition, SwapTransition, SlideTransition, and

WipeTransition transitions
• Screen: The name and manager properties
• ColorPicker: The color property
• StencilView

• Scatter: The rotate and scale properties; and the on_translate,
on_rotate and on_scale methods (events)

• ScatterLayout: The size_hint and pos_hint properties
• Gesture: The add_stroke, normalize, and rotate methods
• GestureDatabase: The gesture_to_str, str_to_gesture, add_gesture,

and find methods

These are all useful components that help us to create more interactive and dynamic
applications. Only the basic usage has been explained here, however, you can always
check the Kivy API for a more comprehensive list of properties and methods.

The next chapter will introduce personalized multitouch-control, animations, as well
as the clock and keyboard events. We are going to create a new interactive project, a
game that resembles the arcade game Space Invaders.

Invaders Revenge – An
Interactive Multitouch Game

This chapter introduces a collection of components and strategies to make
animated and dynamic applications. Most of them are particularly useful for game
development. This chapter is full of examples of how to combine the components
and teaches strategies to control many events happening at the same time. The
examples are all integrated in a completely new project, a version of the classic
Space Invaders game. The following is a list of the main components that we will be
working on within this chapter:

• Atlas: A Kivy package that allows us to loads images efficiently
• Sound: Classes that allows sound management
• Animations: Transitions, time control, events, and operations that can be

applied to animate widgets.
• Clock: A class that allows us to schedule events
• Multitouch: A strategy that allows us to control different actions according

to touches
• Keyboard: The Kivy strategy of capturing keyboard events

The first section presents an overview of the project, the GUI and game rules of
the game. After that, we will follow a bottom-up approach. The simple classes that
refer to individual components of the game will be explained, and additional topics
of the chapter will then be introduced one after another. We will finish with the
classes that have the main control over the game. By the end of this chapter, you
should be able to start any game application you've always wanted to implement for
your mobile device.

Invaders Revenge – An Interactive Multitouch Game

[98]

Invaders Revenge – an animated
multitouch game
Invaders Revenge is the name of our Kivy version of Space Invaders©. The
following screenshot shows you the game we are going to build in this chapter:

There are several markers in yellow and cyan color in the screenshot. They help
identify the structure of our game; the game will consist of a Shooter (the player)
which shoots (Shot) at a number of Invaders whose mission is to destroy the Shooter
with their Missiles. The Invaders are organized in a Fleet (which moves horizontally)
and sometimes an individual Invader can break out of the grid formation and fly
around the screen before they go back to their corresponding Dock.

The cyan line across the screen indicates an internal division of the screen into the
Enemy Area and the Shooter Area. This division is used to discriminate the actions
that should occur according to touches that happen in different sections of the screen.

The skeleton of the game is presented in invasion.kv:

1. # File name: invasion.kv
2. <Invasion>:
3. id: _invasion
4. shooter: _shooter
5. fleet: _fleet

Chapter 5

[99]

6. AnchorLayout:
7. anchor_y: 'top'
8. anchor_x: 'center'
9. FloatLayout:
10. id: _enemy_area
11. size_hint: 1, .7
12. Fleet:
13. id: _fleet
14. invasion: _invasion
15. shooter: _shooter
16. cols: 8
17. spacing: 40
18. size_hint: .5, .4
19. pos_hint: {'top': .9}
20. x: root.width/2-root.width/4
21. AnchorLayout:
22. anchor_y: 'bottom'
23. anchor_x: 'center'
24. FloatLayout:
25. size_hint: 1, .3
26. Shooter:
27. id: _shooter
28. invasion: _invasion
29. enemy_area: _enemy_area

Basically, there are two AnchorLayout instances. The top one is the Enemy Area that
contains the Fleet and the bottom one is the Shooter Area that contains the Shooter.

Enemy Area and Shooter Area are very important for
the logic of the game in order to distinguish the types of
touches on the screen.

Atlas – efficient management of images
When it comes to applications that use many images, it is important to reduce their
loading time, especially when they are requested from a remote server.

One strategy to reduce the loading time is using an Atlas
(also known as sprites). This reduces loading time because all
the images are packed into one image, so it only needs to be
requested once.

Invaders Revenge – An Interactive Multitouch Game

[100]

Here is the atlas image we use for the Invaders Revenge:

Instead of requesting five images for Invaders Revenge, we will just request the atlas
image. We are also going to need a json file that tells us the exact coordinates of each
image. The good news is that we don't need to do this manually. Kivy provides a
simple command to create both the atlas image and the json file. Assuming that all
the images are in a directory called img, we just need to open a terminal, go to the
img directory and run the following command in the terminal:

python -m kivy.atlas invasion 100 *.png

In order to execute the previous command you need
to install the Python Imaging Library (PIL) from
https://pypi.python.org/pypi/PIL.

The command contains three parameters, namely basename, size, and images list.
The basename parameter is the prefix of the json (invasion.json) file and the atlas
image (invasion-0.png). However, none of the images should be bigger than the size
of the atlas. The next parameter is the images list that will be added to the atlas.

We employ the format atlas://path/to/atlas/atlas_name/id to use the
atlas. The id file refers to the image file name without the extension. For example,
normally we would have referenced the Shooter image like source: 'img/shooter.
png'. After generating the atlas, it becomes source: 'atlas://images/invasion/
shooter'. The following image.kv file presents the code for all the images of the
Invaders Revenge:

30. # File name: images.kv
31. <Invader@Image>:
32. source: 'atlas://img/invasion/invader'
33. size_hint: None,None
34. size: 40,40
35. <Shooter@Image>:
36. source: 'atlas://img/invasion/shooter'
37. size_hint: None,None
38. size: 40,40
39. pos: self.parent.width/2, 0

Chapter 5

[101]

40. <Boom@Image>:
41. source: 'atlas://img/invasion/boom'
42. size_hint: None,None
43. size: 26,30
44. <Shot@Ammo>:
45. source: 'atlas://img/invasion/shot'
46. size_hint: None,None
47. size: 12,15
48. <Missile@Ammo>:
49. source: 'atlas://img/invasion/missile'
50 size_hint: None,None
51. size: 12,27

Missile and Shot inherit from the same class called Ammo, which also inherits from
Image. There is also the Boom class that will create the effect of explosion when any
Ammo is triggered. Apart from the image (a star in the atlas), Boom will be associated
with a sound that we are going to add in the next section.

Boom – simple sound effects
Adding sound effects in Kivy is very simple. Here is the code for boom.py, which is
going to produce a sound every time a Shot or Missile is fired:

52. # File name: boom.py
53. from kivy.uix.image import Image
54. from kivy.core.audio import SoundLoader
55.
56. class Boom(Image):
57. sound = SoundLoader.load(boom.wav')
58. def boom(self, **kwargs):
59. self.__class__.sound.play()
60. super(Boom, self).__init__(**kwargs)

Reproducing a sound involves the use of two classes, Sound and SoundLoader
(line 54). SoundLoader loads an audio file (.wav) and returns a Sound instance
(line 57) that we keep in the sound reference (a static attribute of the Boom class).
We play sound every time a new Boom instance is created.

Invaders Revenge – An Interactive Multitouch Game

[102]

Ammo – simple animation
This section explains how to animate Shots and Missiles, which show very similar
behavior. They move from their original point to a destiny, constantly checking
whether a target has been hit. The following is the code for the ammo.py class:

61. # File name: ammo.py
62. from kivy.animation import Animation
63. from kivy.uix.image import Image
64. from boom import Boom
65.
66. class Ammo(Image):
67. def shoot(self, tx, ty, target):
68. self.target = target
69. self.animation = Animation(x=tx, top=ty)
70. self.animation.bind(on_start = self.on_start)
71. self.animation.bind(on_progress = self.on_progress)
72. self.animation.bind(on_complete = self.on_stop)
73. self.animation.start(self)
74.
75. def on_start(self, instance, value):
76. self.boom = Boom()
77. self.boom.center=self.center
78. self.parent.add_widget(self.boom)
79.
80. def on_progress(self, instance, value, progression):
81. if progression >= .1:
82. self.parent.remove_widget(self.boom)
83. if self.target.collide_ammo(self):
84. self.animation.stop(self)
85.
86. def on_stop(self, instance,value):
87. self.parent.remove_widget(self)
88.
89. class Shot(Ammo):
90. pass
91. class Missile(Ammo):
92. pass

For the Ammo animation, we require a simple Animation (line 69). We send x and top
as parameters. The parameters can be any property of the Widget to which we apply
the animation. In this case, the x and top properties belong to Ammo itself. That is
enough to set Animation of the Ammo from its original position to tx, ty.

By default, the execution period of Animation is one second.

Chapter 5

[103]

We need Ammo to do a few more things in its trajectory.

The Animation class includes three events, which are
triggered when the animations starts (on_start), during its
progress (on_progress), and when it stops (on_stop).

We bind those events (line 70 to 72) to our own methods. The on_start method (line
75) displays (line 41) a Boom when the animation starts. The on_progress (line 80 to
84) method removes the Boom after 10 percent of progression (line 81 and 82). Also
it is constantly checking the target (line 83). When the target is hit, the animation is
stopped (line 84). Once the animation ends (or is stopped), the Ammo is removed from
the parent (line 87).

Lines 89 to 92 define two classes, Shoot and Missile. Shot and Missile inherit from
Ammo and their only difference is in the images.kv.

Invader – transitions for animations
The previous section uses the default Animation transition. This is a Linear
transition, which means that the Widget instance moves from one point to another in
a straight line. Invaders trajectories can be more interesting. For example, there could
be accelerations, or changes of direction, as the following screenshot shows with the
yellow line:

Invaders Revenge – An Interactive Multitouch Game

[104]

The following is the code of the invader.py:

93. # File name: invader.py
94. from kivy.core.window import Window
95. from kivy.uix.image import Image
96. from kivy.animation import Animation
97. from random import choice, randint
98. from ammo import Missile
99.
100. class Invader(Image):
101. pre_fix = ['in_','out_','in_out_']
102. functions = ['back','bounce','circ','cubic',
103. 'elastic','expo','quad','quart','quint','sine']
104. formation = True
105.
106. def solo_attack(self):
107. if self.formation:
108. self.parent.unbind_invader()
109. animation = self.trajectory()
110. animation.bind(on_complete = self.to_dock)
111. animation.start(self)
112.
113. def trajectory(self):
114. fleet = self.parent.parent
115. area = fleet.parent
116. x = choice((-self.width,area.width+self.width))
117. y = randint(round(area.y), round(fleet.y))
118. t = choice(self.pre_fix) + choice(self.functions)
119. return Animation(x=x, y=y,d=randint(2,7),t=t)
120.
121. def to_dock(self, instance, value):
122. self.y = Window.height
123. self.center_x = Window.width/2
124. animation = Animation(pos=self.parent.pos, d=2)
125. animation.bind(on_complete =
 self.parent.bind_invader)
126. animation.start(self)
127.
128. def drop_missile(self):
129. missile = Missile()
130. missile.center = (self.center_x, self.y)
131. fleet = self.parent.parent
132. fleet.invasion.add_widget(missile)
133. missile.shoot(self.center_x,0,fleet.shooter)

Chapter 5

[105]

Sometimes, an Invader can break formation from the Fleet and proceed into
a solo_attack (line 106 to 111) method. The Invader's Animation is created
(lines 113 and 119) by randomizing the final point of the Invaders trajectory
(a point outside of the screen next to the Enemy Area) on lines 116 and 117.

We also randomize the transition (line 118) and the duration (line 119).

Kivy currently includes 31 transitions. They are represented
by a string like 'in_out_cubic', where in_out is a
prefix that describes the way in which the function (cubic)
is used. There are three possible prefixes (in, out, and
in_out), and 10 functions (line 102), such as cubic,
exponential, sin, quadratic. Please visit the Kivy API
for a description of all of them (http://kivy.org/docs/
api-kivy.animation.html).

Line 118 selects one of the transitions randomly. The transition is applied to the
progress, and therefore to x and y at the same time, which produces an interesting
effect on the trajectories.

When the Animation class ends its trajectory (line 110), the to_dock method
(lines 121 to 126) brings the Invader back to its original position starting from
the top-center part of Window. We use the Window class to get height and width.
Sometimes it is clearer than to traverse the chain of parents. When the Invader
reaches the Dock, it is bound back to it (line 125). The last method (drop_missile
on lines 128 to133) shoots one Missile that follows a vertical line starting from the
Invader's bottom center position (line 130) to the bottom of the screen (line 133).

Dock – automatic binding in the
Kivy language
You might realize from previous chapters that Kivy language does more than simply
transforming its rules to Python instructions. For instance, you might see that when
it creates properties, it also binds them.

When we do something common like pos: self.parent.
pos inside a layout, then the property of the parent is bound
to its child. The child always moves to the parent position
when the parent moves.

Invaders Revenge – An Interactive Multitouch Game

[106]

This is usually desirable but not all the time. Think about the solo_attack of the
Invader. We need it to break formation and follow a free trajectory on the screen. While
this happens, the whole formation of Invaders continues moving from right to left and
vice versa. This means that the Invader will receive two orders at the same time. One
from the moving parent and another from the trajectory's Animation.

That means that we need a placeholder (the Dock) for each Invader. This will secure
the space for the Invader when it comes back from executing a solo attack, otherwise
the GridLayout will automatically reconfigure the formation, reallocating the fleet to
fill the empty space. Second, the Invader needs to free itself from the parent (the Dock)
so it can float to any location on the screen. The following code (dock.py) explains how
to manually bind (lines 145 to 147) and unbind (lines 149 to 151) the Invader:

134. # File name: dock.py
135. from kivy.uix.widget import Widget
136. from invader import Invader
137.
138. class Dock(Widget):
139. def __init__(self, **kwargs):
140. super(Dock, self).__init__(**kwargs)
141. self.invader = Invader()
142. self.add_widget(self.invader)
143. self.bind_invader()
144.
145. def bind_invader(self, instance=None, value=None):
146. self.invader.formation = True
147. self.bind(pos = self.on_pos)
148.
149. def unbind_invader(self):
150. self.invader.formation = False
151. self.unbind(pos = self.on_pos)
152.
153. def on_pos(self, instance, value):
154. self.invader.pos = self.pos

We use knowledge from Chapter 3, Widget Events – Binding Actions, for this code, but
the important part is the strategy that we apply. There will be situations in which
we want to avoid using the Kivy language, because it is preferable to have complete
control. That doesn't mean that it is impossible to solve this using Kivy language. For
example, one common approach is to switch the Invader's parent (Dock) to, let's say,
the root Widget of the application that unbinds the position of the Invader from its
current parent. It doesn't really matter which approach we follow, as long as we are
aware that we are taking complete control of it.

Chapter 5

[107]

Fleet – infinite concatenation of
animations
In the last section we studied how we can concatenate two animations. What
happens if we want to have an object that is constantly moving from right to left and
vice versa? This is the case of the Fleet: we want it constantly moving from left to
right, like the yellow arrows of the following screenshot cut show:

We can concatenate two animations with the
on_complete event.

The following code fragment 1 (of 2) of fleet.py shows how to concatenate
these events:

155. # File name: fleet.py (Fragment 1)
156. from kivy.uix.gridlayout import GridLayout
157. from kivy.properties import ListProperty
158. from kivy.animation import Animation
159. from kivy.clock import Clock
160. from kivy.core.window import Window
161. from random import randint, random
162. from dock import Dock
163.
164. class Fleet(GridLayout):
165. survivors = ListProperty(())
166.
167. def __init__(self, **kwargs):
168. super(Fleet, self).__init__(**kwargs)
169. for x in range(0, 32):
170. dock = Dock()

Invaders Revenge – An Interactive Multitouch Game

[108]

171. self.add_widget(dock)
172. self.survivors.append(dock)
173. self.center_x= Window.width/4
174.
175. def start_attack(self, instance, value):
176. self.invasion.remove_widget(value)
177. self.go_left(instance, value)
178. self.schedule_events()
179.
180. def go_left(self, instance, value):
181. animation = Animation(x = 0)
182. animation.bind(on_complete = self.go_right)
183. animation.start(self)
184.
185. def go_right(self, instance, value):
186. animation = Animation(right=self.parent.width)
187. animation.bind(on_complete = self.go_left)
188. animation.start(self)

The go_left method (lines 180 to 183) binds the on_complete (line 182) event to
the go_right method (lines 185 to 188). Similarly, the go_right method binds the
go_left method to the new Animation (line 187). With this strategy, we create an
infinite loop of two animations.

The fleet.py class also overloads the constructor to add 32 Invaders (lines 169
to 173) to the children of Fleet. These Invaders are added to the survivors
ListProperty that we use to keep track of the Invaders that haven't been shot down.
The start_attack method starts the Fleet animation calling on go_left and the
schedule_events method. The latter makes use of the Clock, which is explained in
the next section.

Scheduling events with the Clock
You might have noticed that Animation has a duration parameter that establishes
the time in which an animation should take place. A different time-related problem
is the scheduling of a particular task to start at a certain time, or during an interval
of n seconds. In these cases, we use the Clock class. Let's analyze the following code,
fragment 2 of fleet.py:

189. # File name: fleet.py (Fragment 2)
190. def schedule_events(self):
191. Clock.schedule_interval(self.solo_attack, 2)
192. Clock.schedule_once(self.shoot,random())
193.

Chapter 5

[109]

194. def solo_attack(self, dt):
195. if len(self.survivors):
196. rint = randint(0, len(self.survivors) - 1)
197. child = self.survivors[rint]
198. child.invader.solo_attack()
199.
200. def shoot(self, dt):
201. if len(self.survivors):
202. rint = randint(0,len(self.survivors) - 1)
203. child = self.survivors[rint]
204. child.invader.drop_missile()
205. Clock.schedule_once(self.shoot,random())
206.
207. def collide_ammo(self, ammo):
208. for child in self.survivors:
209. if child.invader.collide_widget(ammo):
210. child.canvas.clear()
211. self.survivors.remove(child)
212. return True
213. return False
214.
215. def on_survivors(self, instance, value):
216. if len(self.survivors) == 0:
217. Clock.unschedule(self.solo_attack)
218. Clock.unschedule(self.shoot)
219. self.invasion.end_game("You Win!")

The schedule_events method (lines 190 to 192) schedules actions for a particular
time. Line 191 schedules the solo_attack method every two seconds. Line 192
schedules the shoot just once at random (between 0 and 1) seconds.

The schedule_interval method schedules actions
periodically, whereas the schedule_once method
schedules an action just once.

The solo_attack method randomly selects one of the survivors to perform the
solo attack that we studied for the Invaders (lines 195 to 198). The shoot method
randomly selects one survivor to fire a Missile at the Shooter (lines 201 to 204).
After that, the shoot method schedules another shoot (line 205).

Invaders Revenge – An Interactive Multitouch Game

[110]

We've used collide_ammo from the start to verify whether Ammo hits any of the
Invaders (line 83 of ammo.py), in which case it is hidden and removed from the
survivors list. The on_survivors is an event, triggered every time we modify the
survivors ListProperty. When there are no survivors left, we unschedule the events
(lines 217 and 218) and end the game by displaying a You Win message.

Shooter – multitouch control
Kivy supports multitouch interactions. This feature has been there since the very
beginning but we didn't pay attention to it until now. We did use the multitouch
Kivy features with Scatter in the previous chapter, however, we didn't clarify that
the whole screen and GUI components are already multitouch, and Kivy handles the
events accordingly.

Kivy handles multitouch actions internally. This means
that all the Kivy widgets and components support
multitouch behavior; we don't have to worry about
them. Kivy solves all the possible conflicts of ambiguous
situations that are common in multitouch control, for
example, touch two buttons at the same time.

However, it is up to us to control particular implementations. Multitouch
programming introduces logic problems that we need to solve as programmers
rather than a new set of tools that you have to learn. Nevertheless, Kivy provides the
data related to each particular touch so we can work on the logic. The main problem
is that we need to constantly distinguish one touch from another, and then take the
respective actions.

With Invaders Revenge, we need to distinguish between two actions that are
triggered by the same type of touch. The first action is the Shooter's horizontal
movement in order to avoid the invaders' Missiles. The second is to fire at the
Invaders. The following screenshot illustrates these two actions with the wide
yellow arrows (sliding touch) and the dotted yellow arrow (shot action).

Chapter 5

[111]

The following code (shooter.py) controls these two actions by using the two areas
indicated in cyan color:

220. # File name: shooter.py
221. from kivy.clock import Clock
222. from kivy.uix.image import Image
223. from ammo import Shot
224.
225. class Shooter(Image):
226. reloaded = True
227.
228. def on_touch_down(self, touch):
229. if self.parent.collide_point(*touch.pos):
230. self.center_x = touch.x
231. touch.ud['move'] = True
232. elif self.enemy_area.collide_point(*touch.pos):
233. self.shoot(touch.x,touch.y)
234. touch.ud['shoot'] = True
235.
236. def on_touch_move(self, touch):
237. if self.parent.collide_point(*touch.pos):
238. self.center_x = touch.x
239. elif self.enemy_area.collide_point(*touch.pos):
240. self.shoot(touch.x,touch.y)
241.
242. def on_touch_up(self, touch):
243. if 'shoot' in touch.ud and touch.ud['shoot']:
244. self.reloaded = True
245.
246. def shoot(self, fx, fy):
247. if self.reloaded:
248. self.reloaded = False
249. Clock.schedule_once(self.reload_gun, .5)
250. shot = Shot()
251. shot.center = (self.center_x, self.top)
252. self.invasion.add_widget(shot)
253. (fx,fy) =
 self.project(self.center_x,self.top,fx,fy)
254. shot.shoot(fx,fy,self.invasion.fleet)
255.
256. def reload_gun(self, dt):
257. self.reloaded = True
258.

Invaders Revenge – An Interactive Multitouch Game

[112]

259. def collide_ammo(self, ammo):
260. if self.collide_widget(ammo) and self.parent:
261. self.parent.remove_widget(self)
262. self.invasion.end_game("Game Over")
263. return True
264. return False
265.
266. def project(self,ix,iy,fx,fy):
267. (w,h) = self.invasion.size
268. if ix == fx: return (ix, h)
269. m = (fy-iy) / (fx-ix)
270. b = iy - m*ix
271. x = (h-b)/m
272. if x < 0: return (0, b)
273. elif x > w: return (w, m*w+b)
274. return (x, h)

The on_touch_down (lines 228 to 234) and on_touch_move (lines 236 to 240) methods
distinguish between two actions (moving and shooting) by using the Shooter Area
(lines 229 and 237) and the Enemy Area (lines 232 and 239) widgets to collide the
coordinates of the event.

The touch coordinates are the most common strategy to identify
specific touches. However, touches have many other attributes
that could help to distinguish between them, for example,
timing, a double (or triple) tap, or the input device.

The on_touch_up method follows a different approach. It uses the ud attribute of a
touch to distinguish if the touch down that started the event was a movement or a
shoot. We set the touch.ud (lines 231 and 234) previously on on_touch_down.

Kivy keeps the touch event associated with the three
basic touch events (down, move, and up), so the touch
references we get for on_touch_down, on_touch_move,
and on_touch_up are the same, and we can distinguish
between touches.

We implement an interesting behavior for the on_touch_move method with the
shoot method (lines 246 to 254). Instead of shooting as fast as possible, we delay the
next shoot by 0.5 seconds because the gun needs to be reloaded (line 249) and it
would be unfair towards the Invaders if we didn't. When we use the on_touch_up
method, the gun is reloaded immediately so we can always shoot faster with a touch-
down and touch-up sequence.

Chapter 5

[113]

The collide_ammo method (lines 259 to 264) is almost equivalent to the collide_
ammo method of the Fleet (lines 207 to 213). The only difference is that there is just
one Shooter instead of a set of Invaders. And if the Shooter is hit, then the game is
over and the message Game Over is displayed. The project method (lines 266 to
273) extents (project) the touch coordinates to the border of the screen, so the Shot
will continue its trajectory until the end of the screen and not stop exactly at the
touch coordinate.

Invasion – moving the shooter with the
keyboard
This section offers a second possibility of how to move the Shooter. If you don't have
a multitouch device, you will need to use something else to control the position of
the Shooter easily while you use the mouse to shoot. The following code presents
fragment 1 (of 2) of main.py:

275. # File name: main.py (Fragment 1)
276. from kivy.app import App
277. from kivy.lang import Builder
278. from kivy.core.window import Window
279. from kivy.uix.floatlayout import FloatLayout
280. from kivy.uix.label import Label
281. from kivy.animation import Animation
282. from kivy.clock import Clock
283. from fleet import Fleet
284. from shooter import Shooter
285.
286. Builder.load_file('images.kv')
287.
288. class Invasion(FloatLayout):
289.
290. def __init__(self, **kwargs):
291. super(Invasion, self).__init__(**kwargs)
292. self._keyboard = Window.request_keyboard(self.close,
 self)
293. self._keyboard.bind(on_key_down=self.press)
294. self.start_game()
295.
296. def close(self):
297. self._keyboard.unbind(on_key_down=self.press)
298. self._keyboard = None
299.

Invaders Revenge – An Interactive Multitouch Game

[114]

300. def press(self, keyboard, keycode, text, modifiers):
301. if keycode[1] == 'left':
302. self.shooter.center_x -= 30
303. elif keycode[1] == 'right':
304. self.shooter.center_x += 30
305. return True
306.
307. def start_game(self):
308. label = Label(text='Ready!')
309. animation = Animation (font_size = 72, d=2)
310. animation.bind(on_complete=self.fleet.start_attack)
311. self.add_widget(label)
312. animation.start(label)

The code we just saw illustrates the keyboard event control. The __init__
constructor (lines 290 to 294) will request keyboard (line 292) and bind (line 293) the
on_keyboard_down method to the press method. One important parameter of the
Window._request_keyboard method is the method that is called on when keyboard
is closed (lines 296 to 298). There are many reasons why this can happen, including
when another widget is requesting it. The press method (lines 300 to 305) is the one
in charge of handling the keyboard input, the pressed key. The pressed key is kept
in the keycode parameter and it is used in lines 301 and 303 to decide whether the
Shooter should move left or right.

The keyboard binding in the game is for testing purposes. If
you want to try it on your mobile device, you should comment
in lines 292 and 293 to deactivate the keyboard binding.

The line 294 calls the start_game method (lines 307 to 312). The method displays a
Label with the text Ready! Notice that we applied Animation to font_size in line
309. So far, we have been using the animations to move widgets around with x, y, or
pos properties. However, we said animations work with any property (that supports
arithmetic operators). For example, we could even use them to animate the rotation
or scaling of Scatter.

Chapter 5

[115]

Combining animations with '+' and '&'
You have already learned that you can add several properties to the same animation
so that they are modified together (line 69 of ammo.py).

We can combine animations by using the '+' and '&' operators.
The '+' operator is used to create sequenced animations (one
after another). The '&' operator lets us execute two animations
at the same time.

The '+' operator is similar to what we do when we bind the Animation on_complete
event to a method that creates another Animation in the Invader (line 110 of
invader.py). The difference is that when we use the '+' operator, there is no chance
to reset the Widget properties. In the Invader case, we relocated the Invader to the
top-center (lines 122 and 123) of the screen before going back to the Dock.

The '&' operator is similar to sending two properties as parameters; the difference
here is that they share neither the same duration, nor the same transition. For
example, we could have used one transition for the x property and another for
the y property of the Invader, instead of one for both (line 119 of invader.py),
by joining two individual animations per property.

The following code is fragment 2 of main.py, and illustrates the use of these
two operators:

313. # File name: main.py (Fragment 2)
314. def end_game(self, message):
315. label = Label(markup=True, size_hint = (.2, .1),
316. pos=(0,self.parent.height/2), text = message)
317. self.add_widget(label)
318. self.composed_animation().start(label)
319.
320. def composed_animation(self):
321. animation = Animation (center=self.parent.center)
322. animation &= Animation (font_size = 72, d=3)
323. animation += Animation(font_size = 24,y=0,d=2)
324. return animation
325.
326. class InvasionApp(App):
327. def build(self):
328. return Invasion()
329.
330. if __name__=="__main__":
331. InvasionApp().run()

Invaders Revenge – An Interactive Multitouch Game

[116]

The end_game method (line 314 to 318) displays a final message to indicate how the
game ended (You Win on line 219 of fleet.py or Game Over on line 262 of shooter.
py). This method uses the composed_animation method (lines 320 to 324) to create a
composed Animation, in which we use all the possibilities to combine animations.
Line 321 is a simple Animation that is joined (with the '&' operator) to execute at the
same time with another simple Animation of a different duration (line 322). In line
323, an Animation containing two properties (font_size and y) is attached to the
previous one with the '+' operator.

The resulting animation does the following: it takes one second to move the message
from left to middle, while the font size increases in size. When it gets to the middle,
the increase of the size continues for two more seconds. Once the font reaches its full
size (72 points), the message moves to the bottom and keeps decreasing in size at the
same time. The following is one last screenshot which shows how the invaders have
finally taken their revenge:

Chapter 5

[117]

Summary
This chapter covered the whole construction process of an interactive and animated
application. You learned how to integrate various Kivy components and you should
now be able to comfortably build a 2D animated game.

Let's review all the new classes and components we used in this chapter:

• Atlas

• Image: source property
• SoundLoader and Sound: load and play methods respectively
• Window: height and width properties; request_keyboard, remove_widget,

and add_widget method
• Animation: properties as parameters; d and t parameters; start, stop, and

bind methods; on_start, on_progress, and on_complete events; and '+'
and '&' operators

• Touch: ud attribute
• Clock: schedule_interval and schedule_once methods
• Keyboard: bind and unbind methods, on_key_down event

The information contained in this chapter delivers tools and strategies to start with
the development of highly interactive applications. In combination with the previous
chapters, and the provided insights into the use of properties, binding events, and
further understanding of the Kivy language, you should be able to quickly start using
all other components of the Kivy API (http://kivy.org/docs/api-kivy.html).

The beginning is at the end. Now it's your turn to start your own application.

Index
Symbols
__init__ method 91
--size parameter 9

A
activate method 92
add_circle method 93
add_line method 93
add_stickman method 93
add_widget method 61
AliasProperty property 75
Ammo 101 102
ammo.py class code 102
AnchorLayout 21, 23
anchor_x property 21
anchor_y property 21
angle_end property 34
animations

combining, with + and & operators 115, 116
App class 9
Atlas 99-101

B
basename parameter 100
Bezier

about 35
URL 35

binding events
about 62
in Kivy language 67-69

boom.py code 101
BoxLayout 17, 21, 23
Boom 101

C
canvas

about 31
context_instructions 32, 33
vertex_instructions 32, 33

canvas.after 41
canvas.before 48, 83 41
center_x property 15
center_y property 15
clear method 69
clear_widgets method 69
collide_ammo method 113
collide_point 56
color control

on canvas 81-83
ColorPicker 78
color_picker attribute 79
color property 81
colors

adding, to graphics 38-41
cols property 17
comic creator

PopMatrix 44-47
PushMatrix 44-47

ComicCreator 24
comic_creator attribute 53
comiccreator.kv file 48, 52
comic creator project 22-27
comicwidgets.py file 55
composed_animation method 116
context_instructions 31, 33
coordinates

localizing 59
counter property 74

[120]

create_figure method 64
create_widget method 64

D
dash_length 35
dash_offset 35
deactivate method 92
discriminate method 93
Dock 105, 106
down method 92
DraggableWidget 55, 57, 64, 67
DraggableWidget instance 55
drawing.kv code 41
drawing.kv file 40
DrawingSpace

about 27, 52, 64, 84
limiting 84, 85

drawing_space attribute 53
DrawingSpace subclass 32
draw method 61, 63

E
Ellipse 34
end_figure method 63
end_game method 116
Enemy Area 99
events

creating 69-71
scheduling, clock used 108-110

events policy 54

F
finger

gestures, drawing with 91
Fleet

about 107
fleet.py code 107, 108

FloatLayout
about 17, 20, 88
example 14

font_size property 13

G
GeneralOptions 52

GeneralOptions class 27
generaloptions.kv file 48
GeneralOptions method 69
gestures

drawing, with finger 91-94
recording 89, 90

gesturize method 93
go_left method 108
go_right method 108
graphical user interface (GUI) 7
graphics

colors, adding 38-41
images, adding 38-41

GridLayout 17, 23

H
Height property 17
Hello World program 8-11

I
images

adding, to graphics 39-41
inheritance

URL 8
instances

and classes, differences URL 8
Invader

about 103
invader.py code 104, 105

Invaders Revenge 98, 99
invasion.kv 98

K
Kivy

about 7
and properties 72-75
URL, for installing 8

Kivy API
URL 75

Kivy language 7
kivy.uix

URL 11

[121]

L
labels 11
layouts

about 14-16
BoxLayout 17
embedding 18-21
FloatLayout 17
GridLayout 17
RelativeLayout 17
StackLayout 17

Line 35, 37

M
main.py code 115
min_and_max method 93
minscore parameter 94
MotionEvent 55
move method 92
msg_label attribute 74
multi-touch control 110
MyButton class 13
MyGridLayout 20
MyWidget 12, 14

O
Object-Oriented Programming

URL 8
on_children method 94
on_keyboard_down method 114
on_progress method 103
on_start method 103
on_touch_down method 54, 112
on_touch_move method 54, 57, 58 112
on_touch_up event 54, 58
on_touch_up method 58
on_translation method 69, 72
orientation property 21
origin property 43

P
padding property 22
points property 35
PopMatrix 46
pos_hint property 16, 18

Pos property 17
PushMatrix 46
PyMT 7
Python Imaging Library (PIL)

URL 100

Q
Quad 35

R
relative 60
RelativeLayout 17-20, 23, 32, 44, 47
rgba property 43
right property 15
root variable 14
rotate 41
rows property 17

S
scale 41
scatter 85-88
ScatterLayout 18 88
schedule_events method 109 108
schedule_interval method 109
screen manager 78-80
segments property 34
select method 56
select() method 56
self.height property 14
shapes

about 32
Bezier 35
line 35
Quad 35
rectangle 34
triangle 35

shooter
about 110
moving, with keyboard 113, 114

Shooter Area 99
shoot method 109
size_hint property 16, 18
size_hint_x property 16
size_hint_x property 18
size_hint_y property 16, 18

[122]

Size property 17
solo_attack method 105, 109
SoundLoader 101
spacing property 20
StackLayout 17, 21
start_attack method 108
start_game method 114
StatusBar 52
statusbar.kv file 27, 48
StencilView 84, 85
StickMan 45

T
text property 11
to_dock method 105
ToggleButton 94
to_local() method 60
Toolbox 52
ToolButton 46, 47
ToolButton class 26
ToolButton object 52
ToolCircle 62, 66
ToolFigure class

about 63
create_figure method 64
create_widget method 64
draw methods 63
end_figure method 63
update_figure method 63
widgetize method 63

ToolLine 62
to_parent() method 59, 60
top property 15
to_widget() method 60
to_window() method 60
translate 41
translate method 57
triangle 34, 35
triangle_fan 36

U
unbinding events 62
unselect_all method 69
update_figure method 63
up method 92, 94

V
vertex_instructions 31, 33
vertices property 36

W
widget 32
Widget: ToggleButton 26
widget events

on_touch_down 54
on_touch_move 54
on_touch_up 54

widgetize method 63
Widget subclass 14
Width property 15, 17
Window class 105
Window._request_keyboard method 114

X
x property 15
x, right, or center_x property 17

Y
y property 15

Thank you for buying
Kivy: Interactive Applications in Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

web2py Application Development
Cookbook
ISBN: 978-1-849515-46-7 Paperback: 364 pages

Over 100 recipes to master this full-stack Python web
framework

1. Take your web2py skills to the next level by
dipping into delicious, usable recipes in this
cookbook Learn advanced web2py usage from
building advanced forms to creating PDF
reports Written by developers of the web2py
project with plenty of code examples for
interesting and comprehensive learning

Sencha Architect App
Development
ISBN: 978-1-782169-81-9 Paperback: 120 pages

Develop your own Ext JS and Sencha Touch
application using Sencha Architect

1. Use Sencha Architect's features to improve
productivity

2. Create your own application in Ext JS and
Sencha Touch

3. Simulate, build, package and deploy your
application using Sencha Command and
Sencha Architect

Please check www.PacktPub.com for information on our titles

PhoneGap 2.x Mobile Application
Development Hotshot
ISBN: 978-1-849519-40-3 Paperback: 388 pages

Create exciting apps for mobile using PhoneGap

1. Ten apps included to help you get started on
your very own exciting mobile app

2. These apps include working with localization,
social networks, geolocation, as well as the
camera, audio, video, plugins, and more

3. Apps cover the spectrum from productivity
apps, educational apps, all the way to
entertainment and games

4. Explore design patterns common in apps
designed for mobile devices

Developing Web Applications
with Oracle ADF Essentials
ISBN: 978-1-782170-68-6 Paperback: 270 pages

Quickly build attractive, user-friendly web
applications using Oracle's free ADF Essentials toolkit

1. Quickly build compete applications with
business services, page flows, and data-bound
pages without programming

2. Use Java to implement any business rule or
application logic

3. Choose the right architecture for high
productivity and maintainability

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: GUI Basics: Building
an Interface
	Hello World!
	Basic widgets – labels and buttons
	Layouts
	Embedding Layouts
	Our Project – comic creator
	Summary

	Chapter 2: Graphics: The Canvas
	Basic shapes
	Images, colors, and backgrounds
	Rotating, translating, and scaling
	Comic creator – PushMatrix and PopMatrix
	Summary

	Chapter 3: Widget Events – Binding Actions
	Attributes, id and root
	Basic widget events – dragging the stickman
	Localizing coordinates – adding stickmen
	Binding and unbinding events – sizing limbs and heads
	Binding events in the Kivy language
	Creating your own events – the magical properties
	Kivy and Properties
	Summary

	Chapter 4: Improving the
User Experience
	Screen manager – selecting colors for the figures
	Color Control on the canvas – coloring figures
	StencilView – limiting the drawing space
	Scatter – multitouching to drag, rotate, and scale
	Recording gestures – line, circles, and cross
	Simple gestures – drawing with the finger
	Summary

	Chapter 5: Invaders Revenge – An Interactive Multitouch Game
	Invaders Revenge – an animated multitouch game
	Atlas – efficient management of images
	Boom – simple sound effects
	Ammo – simple animation
	Invader – transitions for animations
	Dock – automatic binding in the
Kivy language
	Fleet – infinite concatenation of animations
	Scheduling events with the Clock
	Shooter – multitouch control
	Invasion – moving the shooter with the keyboard
	Combining animations with '+' and '&'
	Summary

	Index

