
A Knowledge-Based Approach to Visual

Information�

Elisa Bertino� Ahmed K. Elmagarmidy Mohand-Sa��d Hacidy

�Dipartimento di Scienze dell'Informazione yDepartment of Computer Sciences
University of Milano Purdue University
Via Comelico, 39/41 20135 Milano - Italy West Lafayette, IN 47907 - USA
bertino@dsi.unimi.it fake,mshacidg@cs.purdue.edu

Abstract

We propose an approach based on description logics for the representation and retrieval
of visual information. We �rst consider objects as having shapes which are described by
means of semi-algebraic sets1. We propose a model which consists of three layers: (1)
Shape Layer, which provides the geometric shapes of image objects; (2) Object Layer, in-
tended to contain objects of interest and their description; and (3) Schema Layer, which
contains the structured abstractions of objects, i.e., a general schema about the classes
of objects represented in the Object Layer. We propose two abstract languages on the
basis of description logics: one for describing knowledge of the object and schema lay-
ers, and the other, more expressive, for making queries. Queries can refer to the form
dimension (i.e., information of the Shape Layer) or to the semantic dimension (i.e.,
information of the Object Layer). These languages employ a variable free notation.
Second, we show how this framework can be easily extended to accommodate the visual
layer (e.g., color and texture). Queries in this framework may be time-consuming, and
resorting to the use of materialized2 views to process and optimize such queries may be
useful. For that, we propose a formal framework for testing containment of a query in
a view expressed in our query language.

Keywords : Multimedia Databases, Shape Representation, Content-based Access,
Query Containment, Query Optimization, Semi-algebraic Sets, Reasoning, Description
Logics.

1 Introduction

Interacting with visual content is essential to visual information retrieval [6]. New tools
and interaction paradigms should permit the searching for visual data by referring to both
visual content and textual descriptions. There are two essential questions associated with

�This work is supported by the National Science Foundation under grants 9972883-EIA, 9974255-IIS and
9983249-EIA; grants from HP, IBM, Intel, Telcordia and CERIAS; and Indiana 21st Century grant from the
State of Indiana.

1i.e., equalities and inequalities between integer polynomials in several indeterminates. That is, a rela-
tional approach as opposed to feature-vector approach and shape through transformation approach.

2A materialized view is a query whose a physical copy of each instance, answer to the query, is stored
and maintained.

1

content-based query systems for visual data: (1) How to specify queries, and (2) How to
access the intended data eÆciently for given queries. These queries may be formulated in
terms of a number of di�erent features, and can be grossly classi�ed into three categories
[20]: (1) form queries, addressing visual objects on the basis of color, texture, sketch, or
shape speci�cations; (2) content queries, focusing on domain concepts, spatial constraints,
or various types of attributes; (3) mixed queries, which combine the two previous categories.
In order to deal with these questions, formal representations of information to enable users
and query optimizers to take explicit advantage of the nature of image data are required.

Possible visual elements are color, texture and shapes. However, among these features,
shape is the most important because it represents signi�cant regions or relevant objects (in
images for example). Ideally, shape segmentation would be automatic and eÆcient, but it
is either impossible or diÆcult and human intervention is needed to give a few orientations.
After obtaining relevant objects, suited representations must be chosen among multiple ex-
isting models. In the sequel, we �rst consider shape representation and retrieving objects
by making reference, in queries, to that component. Then, we extend our framework to
accommodate the other visual features (i.e., color and texture).

We take a new look at the problem of modeling and querying visual data and �nd that
knowledge representation and reasoning techniques for concept languages developed in Arti-
�cial Intelligence, appropriately extended, provide an interesting angle to attack such prob-
lems. These techniques also provide a nice basis for semantic query optimization in visual
databases. We exploit the possibility of using two languages: one for de�ning the schema
(i.e. the structure) of a database and populating it, and the other, more expressive, for
querying the database through the schema. These languages are equipped with sound, com-
plete, and terminating inference procedures, that allow various forms of reasoning to be
carried out on the intensional level of the database. We believe that the use of a formal
language for describing visual data can provide several bene�ts. First of all, it seman-
tically clari�es the process of visual information retrieval. Secondly, it allows to express
complex queries to a visual database. Third, it allows a compilation of recognition3 (e.g.,
images can be classi�ed along known categories as soon as they are entered in the database).

The contributions of this paper are developed in a step-wise fashion, as follows: First, based
on the scheme developed in [3] we show how to handle semi-algebraic sets in description
logics. Semi-algebraic sets are used to represent geometric shapes associated with objects.
Second, we show that this framework can easily accommodate the content based access of
visual objects (e.g., by color or texture). Third, we show that query containment in our
query language is decidable. Containment4 of queries is the problem of checking whether
the result of one query is contained in what another query produces [1, 26]. Containment is
mainly concerned with query optimization.

Paper outline: In Section 2, we develop our languages and give their Tarski-style exten-
sional semantics. Section 3 explains how the visual aspect (i.e., color and texture) of objects
can be taken into account in our framework. Section 4 provides a logical calculus for query
containment. Section 5 discusses related work. We conclude in Section 6.

3Mainly with a description logic based language.
4Also called implication.

2

2 The Languages

2.1 Preliminaries

As the representational formalisms presented in the following belong to the family of de-
scription logics, we �rst briey introduce these logics. Description logics (also called concept
logics, terminological logics, or concept languages) [9, 21, 7] are a family of logics designed
to represent the taxonomic and conceptual knowledge of a particular application domain
on an abstract, logical level. They are equipped with well-de�ned, set-theoretic semantics.
Furthermore, the interesting reasoning problems such as subsumption and satis�ability are,
for most description logics, decidable (see, for example, [15]).
Starting from atomic concepts and roles5, complex concepts (and roles) are built by using a
set of constructors. For example, from atomic concepts Human and Female and the atomic
role child we can build the expression Human u 8child:Female which denotes the set of all
Human whose children are (all) instances of Female. Here, the symbol u denotes conjunction
of concepts, while 8 denotes (universal) value restriction.
A knowledge base in a description logic system is made up of two components: (1) the
TBox is a general schema concerning the classes of individuals to be represented, their gen-
eral properties and mutual relationships; (2) the ABox contains a partial description of a
particular situation, possibly using the concepts de�ned in the TBox. It contains descrip-
tions of (some) individuals of the situation, their properties and their interrelationships.
Retrieving information in a knowledge base system based on description logics is a deductive
process involving both the schema (TBox) and its instantiation (ABox). In fact, the TBox is
not just a set of constraints on possible ABoxes, but contains intensional information about
classes. This information is taken into account when answering queries to the knowledge
base. The following reasoning services are the most important ones provided by knowledge
representation systems based on description logics (See [16] for an overview):

� Concept satis�ability: Given a knowledge base and a concept C, does there exist at
least one model of the knowledge base assigning a non-empty extension to C?

� Subsumption: Given a knowledge base and two concepts C and D, is C more general
than D? That is, is each instance of D also an instance of C in all models of the
knowledge base?

� Knowledge base satis�ability: Are an ABox and a TBox consistent with each other?
That is, does the knowledge base admit a model?

� Instance checking: Given a knowledge base, an individual o, its (partial) description,
and a concept C, is o an instance of C in any model of the knowledge base?

Various database applications for which these reasoning services are useful are mentioned,
e.g., in [2, 10].

In the following, we are interested in concept satis�ability and subsumption. An unsatis�-
able query is suggestive of an empty answer. A query containment problem will be reduced
to a subsumption problem for concepts described in an appropriate description logic.

Before we give the syntax and semantics of our abstract languages, we introduce some useful
de�nitions.

5A concept is interpreted as a class of objects in the domain of interest, and then can be considered as
an unary predicate. Roles are interpreted as binary relations on individuals, and then considered as binary
predicates.

3

De�nition 1 (Concrete Domains) A concrete domain D = (dom(D); pred(D)) consists
of:

� the domain dom(D),

� a set of predicate symbols pred(D), where each predicate symbol P 2 pred(D) is asso-
ciated with an arity n and an n-ary relation PD � dom(D)n,

In many applications (in particular when querying databases), one would like to be able to
refer to concrete domains and predicates on these domains when de�ning queries. An exam-
ple of such a concrete domain could be the set of (nonnegative) integers with comparisons
(=; <;�;�; >).

Concrete domains are used to incorporate application-speci�c domains (i.e., strings, integers,
reals, etc.) into the abstract domain of individuals (objects). In [3], concrete domains are
restricted to so-called admissible concrete domains in order to keep the inference problems6

decidable. We recall that, roughly spoken, a concrete domain D is called admissible i� (1)
pred(D) is closed under negation and contains a unary predicate name >D for dom(D), and
(2) satis�ability of �nite conjunctions over pred(D) is decidable. For example, semi-algebraic
sets de�ned by a �nite number of polynomial equations or inequalities as de�ned in [4] are
admissible concrete domains.

De�nition 2 (Real Formula) A real formula is a well-formed �rst-order logic formula
built from equalities and inequalities between integer polynomials in several indeterminates,
i.e.,

� if p is a polynomial with real coeÆcients over the variables x1; : : : ; xm over the real
numbers, then p(x1; : : : ; xm) � 0 is a real formula with � 2 f=; <;�; >;�; 6=g;

� if ' and are real formulas, then so are ' ^ , ' _ , and :'; and

� if x is a real variable and ' is a real formula in which x occurs free, then 9x'(x) is a
real formula.

If ' is a real formula with m free variables x1; : : : ; xm, then it de�nes a subset 'IRm of the
m-dimensional Euclidean space IRm, namely the set of points satisfying ':

'IRm := f(u1; : : : ; um) 2 IRm j '(u1; : : : ; um)g:

De�nition 3 (Semi-algebraic sets [4]) Point-sets de�ned by real formulas are called
semi-algebraic sets.

For example, the set V = f(x; y) 2 IR2 j x2 + y2 = 1g is semi-algebraic.
Note that semi-algebraic sets of IRm make the smallest family of subsets of IRm such that:

1. it contains all the sets of the form f(u1; : : : ; um) 2 IRm j P (u1; : : : ; um) � 0g;

2. it is closed with respect to the set-theoretic operations of �nite union, �nite intersection
and complementation.

In the following, we denote the domain of semi-algebraic sets, i.e., dom(semi-algebraic sets),
by >SAS . Furthermore, it is considered as a particular concrete domain.

Every real formula can e�ectively be transformed into a quanti�er-free real formula [25, 14].
As a consequence, it is decidable whether a real sentence is valid or satis�able in the ordered

6Such as subsumption, instantiation, and consistency.

4

�eld of the real numbers.

Figure 1 shows a part of geographical information about intercity highways and railroads.
The names are �ctitious. In this example, linear constraints (see tables 1 , 2 and 3), which
can be seen as linear restrictions of the polynomial constraints are used to specify spatial
representations of the di�erent objects (i.e., cities, highways, and railroads). Dotted lines
represent intercity railroads while plain lines represent intercity highways. The positions
of the objects are given in a 2-dimensional space in the map co-ordinate system. In this
example, the position of all objects is described by linear (dis)equations, hence this sim-
ple formalism is expressive enough for the representation of cities and transportation ways.
Simple theoretically, it is interesting from a practical point of view.

The linear data model is particularly suited to model spatial data in applications in which
geometrical information is required and in which this information can be approximated by
linear geometrical spatial objects. This model is opposed to the topological one which is
suitable for applications in which rather than exact geometrical information, the relative
position of spatial objects is of importance. With regard to the expressive power and com-
plexity of linear constraint query languages, see [18, 27].

2

1

3

4

5

6

7

8

9

 11

 10

 12

 13

 14

 15

 16

 17

18

 19

20

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20321

C4

C2

C5

 C6

.

 C3

.

C
7

 C
1

C8

C9
. .

. .

.
..

.

.

 C

10

C11

Figure 1: Example of a geographical multimedia information about intercity highways and railroads

Table 1: City
Oid Name Population Geometry

id1 C1 250.000 (x = 3:5) ^ (y = 2:5)
id2 C2 290.800 (x = 6:4) ^ (y = 2:5)
id3 C3 1.004.928 (x = 6) ^ (y = 5:3)
: : : : : : : : : : : :

5

Table 2: Highway
Oid Name Geometry

id
0

1 H-C1-C3 (y � 5:3) ^ (y � 2:5)^
(140x� 110y � 201)

id
0

2 H-C2-C3 (y � 5:3) ^ (y � 2:5)^
(140x+ 10y � 893)

: : : : : : : : :

Table 3: Railroad
Oid Name Geometry

id
00

1 R-C1-C3 (y � 5:3) ^ (y � 2:5)^
(140x� 110y � 201)

id
00

2 R-C2-C3 (y � 5:3) ^ (y � 2:5)^
(140x+ 10y � 893)

: : : : : : : : :

2.2 The Schema Language (SL)

We now introduce a simple description logic that will be used for describing the schema part
of a database. Starting from atomic concepts and roles, complex concepts are built by using
the universal quanti�cation (8) and the existential quanti�cation (9) constructors.

The syntax and the semantics of this description logic are given below.

De�nition 4 (Syntax) Let NC ; NR; Nf be three pairwise disjoint sets of concept names,
role names, and feature (i.e., functional role) names respectively, D1; : : : ;Dk be concrete
domains, and >SAS be the set of semi-algebraic sets. Let P be a role name, f be a feature
name, A be a concept name, A0 be a concept name or a concrete domain name, and A00 be
a concrete domain name or the universal concept (>). Concept terms C, D are de�ned by
the following rules:

C;D �! A j (primitive concept)
8P:A j (typing of role)
8f:A0 j (typing of feature)
9P:> j (necessary role)
9f:A00 j (necessary feature)
9f:>SAS (necessary spatial feature)

Let A, A1, and A2 be concept names, A3 be a concept name, a concrete domain name or
>SAS , D be a concept term, P be a role name, and f be a feature name. Then
A _�D (and we say A is a sub� concept of D), P _�A1�A2, f _�A1�A3 are called axioms.

A _� D is called a primitive concept speci�cation, where D gives necessary conditions for
membership in A. The axioms P _� A1 � A2; f _� A1 � A3 give the de�nition of the role P
and the feature f respectively. Domain and range of a role or a feature are restricted by
concepts or concrete domains.

A SL schema S consists of a �nite set of axioms.

Figure 2 shows a fragment of a database schema. Concrete domains needed here are STRING,
INTEGER, and >SAS .

6

Country _�8continent:Continent
Country _�8population:INTEGER
Country _�8political situation:STRING
Country _�8area:INTEGER
Country _�8average summer temperature:INTEGER

City _�8name:STRING
City _�8in country:Country
City _�8accommodation:Accommodation
City _�9location:>SAS
: : : : : :

Highway _�9name:STRING
Highway _�9spatial description:>SAS

Railroad _�9name:STRING
Railroad _�9spatial description:>SAS

River _�9name:STRING
River _�9spatial description:>SAS
: : : : : :

Figure 2: A fragment of a geographical database schema

De�nition 5 (Semantics) The semantics is given by an interpretation J = (�J ; �J),
which consists of an (abstract) interpretation domain �J , and an interpretation function �J .
The abstract domain has to be disjoint from any given concrete domain, i.e., �J \dom(Di) =
; for all concrete domain Di (i 2 [1; k]), the concrete domains are pairwise disjoint, and
pred(Di)\ pred(Dj) = ; for i 6= j. The interpretation function �J associates each concept C
with a subset CJ of �J , each role P with a binary relation PJ on �J , and each feature
name f with a partial function fJ : �J ! (�J [(

Sk
i=1 dom(Di)) [>SAS). Additionally,

J has to satisfy the following equations:

(8P:A)J = fd 2 �J j 8d0

(dJ ; d0J) 2 PJ ! d0J 2 AJ g
(8f:A0)J = fd 2 �J j if fJ (dJ) is de�ned then

fJ (dJ) 2 A0J g
(9f:A00)J = fd 2 �J j fJ (dJ) is de�ned and

fJ (dJ) 2 A00J g

(9P:>)J = fd 2 �J j 9d0 : (dJ ; d0J) 2 PJ g

(9f:>)J = fd 2 �J j 9d0 : fJ (dJ) = d0
J g

(9f:>SAS)
J = fd 2 �J j fJ (dJ) is de�ned as

a satis�able real formulag

An interpretation J satis�es the axiom A _�D i� AJ � DJ , the axiom P _� A1 � A2 i�
PJ � AJ1 � AJ2 , and the axiom f _� A1 � A3 i� fJ � AJ1 � AJ3 . Here, A

J
3 stands for the

domain of A3 (i.e., dom(A3)) for all J .
In the following: (1) individuals of the abstract domain are called abstract individuals, and
those of a concrete domain are called concrete individuals; (2) we assume the Unique Name
Assumption for abstract individuals but not for concrete individuals. If we want to treat a
unique name assumption for the concrete individuals we have to require that the concrete
domain contains a predicate name equality.

De�nition 6 (Model) An interpretation J = (�J ; :J) is a model, also called a valid
interpretation, of a schema S i� it satis�es every axiom in S.

An interpretation J that satis�es all axioms in S is called an S-interpretation.

The language introduced previously allows to describe knowledge about classes of individuals
and relationships between these classes. We can now turn our attention to the extensional
level, which we call the ABox. The ABox essentially allows one to specify instance-of

7

relations between individuals and concepts, and between pairs of individuals and roles or
features.

De�nition 7 Let NI and ND be two disjoint alphabets of symbols, called abstract individual
names and concrete individual names respectively. Instance-of relationships are expressed in
terms of membership assertions of the form:

a : C; (a; b) : P; (a; b) : f; (a; z) : f; (z1; : : : ; zn) : Pr

where a and b are abstract individual names, z; z1; : : : ; zn are concrete individual names, C
is a concept name or an arbitrary concept, P is a role name, Pr is an n-ary predicate name
of a concrete domain, and f is a feature name. Intuitively, the �rst form states that a is an
instance of C, and the second form states that a is related to b by means of the role P (we
also say b is a P -successor of a).

In order to assign a meaning to membership assertions, the extension function :I of an
interpretation I is extended to individuals by mapping them to elements of �I in such a
way that aI 6= bI if a 6= b (Unique Name Assumption). For concrete individuals, the unique
name assumption does not hold.
An interpretation I satis�es the assertion:

a : C i� aI 2 CI ; (a; b) : P i� (aJ ; bJ) 2 PJ ; (a; b) : f i� fI(aI) = bI

(a; z) : f i� fI(aI) = zI ; (z1; : : : ; zn) : Pr i� (zI1 ; : : : ; z
I
n) 2 P

D
r

An ABox A is a �nite set of membership assertions.
An interpretation I is a model for an ABox A i� I satis�es all the assertions in A.

For example, the following facts can be considered as a fragment of an image database main-
tained by a traveling agency which sells stays on resorts:

paris : City, (paris;N1) : name, N1 :="PARIS", (paris;P) : population,
P :=10000000, (paris; I) : image, I :=picturep01 , ei�el tower : Monument, (ei�el tower;N2) : name,
N2 :="Tour Ei�el", (ei�el tower;Z) : location,
(Z) : 2 � X � 17 ^ 22 � Y � 53, : : :

The �rst statement says that paris is an individual, instance of the concept City. The last
two assertions say that ei�el tour has a location in a space (de�ned by a map's co-ordinate
system) given by 2 � X � 17 ^ 22 � Y � 53.

2.3 The Query Language (QL)

Querying a database means retrieving stored objects that satisfy certain conditions and
hence are interesting for a user. In the case of relational databases, queries are constructed
by means of algebra expressions de�ned on relations from the database. As a property, an-
swers are also relations (i.e., sets of tuples). This correspondence between database entities
and answer formats presents advantages that lead to the design and development of query
optimization techniques. In object-oriented databases, classes are used to represent sets of
objects. By analogy with the relational approach, classes can be used for describing query
results. If such a possibility exists, then we can consider some kind of reasoning on the
structure7 of classes that will lead to reveal, for example, containment relationships between
queries.

7And hence the semantics of class hierarchies.

8

In our framework, we follow this approach. Queries are represented as concepts in our
abstract language.
In the following, we give the syntax and semantics of a concept language for making queries.

De�nition 8 (Syntax) Let A be a concept name, P be an atomic role, a be an abstract
individual name, u; u1; u

0

1; : : : be feature chains8, Pr 2 pred(Di) for some i 2 [1; k] be an n-
ary predicate name (called ordinary predicate name), Ps be a binary spatial predicate name,
Posi for i 2 [1;m] be spatial or ordinary binary predicate names, and � be a real formula.
Concepts C, D and roles R can be formed by means of the following syntax:

C;D �! > j fag j A j C uD j 9R:C j Pr(u1; : : : ; un) j

P
(�)
s (u) j �(C;D; fhu1; Pos1 ; u

0

1i; : : : ; hum; Posm ; u
0

mig)

R �! P j P� j f j f�

For example, the following simple query �nds all cities located in the area (x � 8) ^ (x �
2) ^ (y � 6) ^ (y � 1) which are crossed by a river.

in((x�8)^(x�2)^(y�6)^(y�1))(location)u

�(City;River; fhlocation; intersect; spatial descriptionig)

In this example, the binary predicate name intersect stands for the spatial intersection be-
tween two shapes.

De�nition 9 (Semantics) The semantics is given by an interpretation J = (�J ; �J),
which consists of an (abstract) interpretation domain �J , and an interpretation function �J .
The abstract domain has to be disjoint from any given concrete domain, i.e., �J \dom(Di) =
; for all concrete domain Di (i 2 [1; k]), the concrete domains are pairwise disjoint, and
pred(Di) \ pred(Dj) = ;, for i 6= j. The interpretation function �J associates each concept
C with a subset CJ of �J , each role P with a binary relation PJ on �J , and each feature

name f with a partial function fJ : �J ! (�J [(
Sk
i=1 dom(Di)) [>SAS). Additionally,

J has to satisfy the following equations:

>J = �J

fagJ = faJ g
(C uD)J = CJ \DJ

(9R:C)J = fd 2 �J j 9d0 : (dJ ; d0J) 2 RJ^

d0J 2 CJ g
Pr(u1; : : : ; un)J = fd 2 �J j 9z1; : : : ; zn 2 dom(D)

uJ1 (dJ) = zJ1 ; : : : ; uJn (dJ) = zJn and

(zJ1 ; : : : ; zJn) 2 PDr g

P
(�)
s (u)J = fd 2 �J j uJ (dJ) satis�es P

(�)
s in >SASg

(�(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig))
J =

fd 2 �J j d 2 CJ and 9d0; d0 2 DJ such that

(uJ1 (d); u
0

1

J
(d0)) satis�es Pos1 in DPos1

and : : : and

(uJm(d); u
0

m

J
(d0)) satis�es Posm in DPosm

g

3 Extension to the Visual Layer

So far, we have presented both a data model for specifying structural associations and spatial
representation of objects and a query language allowing to retrieve objects based on these

8A feature chain is a composition of features.

9

structural associations and spatial relationships. The result of a query is a set of objects
identi�ers (those satisfying the conditions of the query). In this section, we show how to
consider the visual aspect. For example, a query may include a condition concerning the
color of objects to be retrieved. Color is a visual feature which is immediately perceived
when looking at a visual object. Retrieval by color similarity requires that models of color
stimuli are used, such that distances in the color space correspond to human perceptual
distances between colors.

The extension to visual features can be done through the use of the interface between an
abstract domain and a concrete domain de�ned previously. The visual layer of objects can
be seen as a concrete domain whose elements are visual objects and whose predicates are
similar-to predicates.

As an example, consider a traveling agency which sells stays on resorts. This agency has a
database containing both textual information and images (compact representations) about
resorts (such as cities, art galleries, lodging, etc.). Before selling a traveling to a customer,
he/she is invited to virtually discover his tour by referring to information contained in the
database. Figure 3 shows a simple fragment of the structure of such a database. Each
inclusion assertion (introduced by _�) imposes a constraint on the instances of the class
it refers to. The concrete domains required here are INTEGER, STRING, and IMAGE. The
domain IMAGE is a set of images structured by a set of predicates (e.g., similar-to predicates).

Country _�8continent:Continent
Country _�8population:INTEGER
Country _�8political situation:STRING
Country _�8area:INTEGER
Country _�8image:IMAGE
Country _�8ast:INTEGER

City _�8name:STRING
City _�8in country:Country
City _�8accommodation:Accommodation
City _�8image:IMAGE

Hotel _�Accommodation
Hotel _�8price single:INTEGER
Hotel _�8price double:INTEGER
Hotel _�8image:IMAGE

Room _�Accommodation
Room _�8price:INTEGER
: : :

Camping _�Accommodation
Camping _�8price:INTEGER
Camping _�8image:IMAGE
Camping _�8in city:City

Site _�8name:STRING

Monument _� Site
Monument _�8opening hour:INTEGER
Monument _�8closing hour:INTEGER
Monument _�8opening days:Day
Monument _�8image:IMAGE
Monument _�8price:INTEGER

Amusement parc _� Site
Amusement parc _�8price:INTEGER
Amusement parc _�8image:IMAGE

Art galery _� Site
Art galery _�8price:INTEGER

Beach _�8image:IMAGE
Beach _�8awt:INTEGER

: : :

Figure 3: An image database structure

Given the schema of �gure 3, the query:

�(Camping; fdexampleg;
fhimage; same� texture; imagei; himage; same� color; imageig)u

9in city:(="Germany" (name) u <100 (price))

10

would be "Find a set of camping in Germany, with a price below 100, and the picture (i.e.,
the �ller for the feature image) of each camping object in the answer set is similar to the
picture associated with the individual dexample regarding texture and color". Here image is
an attribute which links an abstract individual to a picture in the Feature & Content Layer.
The predicates same-texture and same-color belong to this layer.

4 A Calculus for Deciding Query Containment

In this section we provide a calculus for deciding the containment of a query in a view
(which is a query as well). In particular we present the calculus and state its correctness
and completeness.
A query Q is S-satis�able if there is an S-interpretation J such that QJ 6= ;. We say that
a query Q is S-subsumed by a view V (or Q is S-contained in a view V) (written Q _�SV)
if QJ � V J for every S-interpretation J .

De�nition 10 (Containment) Given a SL schema S, a query Q and a view V in the
QL language, are the answers to Q also answers to V for any database state obeying the
schema S.

The basic idea for deciding the containment of a query Q in a view V is drawn from [11].
We take an object o and transform Q into a prototypical database state where o is an an-
swer to Q. We do so by generating individuals, entering them into concepts in the schema,
and relating them through roles and features. If o belongs to the answer of V , then Q is
contained in V . If not, we have a state where an individual is in the answer to Q but not in
the answer to V and therefore V does not contain Q.

In the following, we make three assumptions:

� The schema S is acyclic.

� Given a concept name A and a role (or a feature) name R, we do not allow axioms
of the form A _�9R:A0; A _�9R:A00 in the schema S, where A0 and A00 are two di�erent
concept names.

� We do not allow sub-expressions of the form 9R:C1 u : : :u9R:Cn for the same role (or
feature) name R in a query, but we allow sub-expressions of the form 9R:(C1u: : :uCn).

4.1 Propagation Rules

According to the syntax of our concept languages, concepts describing queries make refer-
ence (through roles and features) to abstract individual names and/or concrete individual
names. In the following, a and b are abstract individual names, x; y are variables denoting
abstract individuals. The only di�erence between variables and abstract individual names
is that for variables, the unique name assumption does not hold, hence two di�erent vari-
ables can be interpreted as the same individual|in contrast to what was said for abstract
individual names. In the sequel, we refer to abstract individual names and variables as ab-
stract individuals, denoted by the letters s; t; s0; t0; s1; t1; : : :. The unique name assumption
does not hold for concrete individual names and we use z; z0; z1; z

0

1; z2; z
0

2; : : : as names for
concrete individuals. Finally, we use v; v0; v1; v

0

1; : : : to refer to abstract individual names,
variables, or concrete individual names.

For the sake of simplicity, we do not distinguish between individual names denoting arbi-
trary concrete individuals (i.e., INTEGER, STRING, etc.) and individual names denoting real

11

formulas (from >SAS).

The calculus works on syntactic entities called constraints which are of the form:

s : C, (s; t) : R, (s; t) : f , (s; z) : f , (z1; : : : ; zn) : Pr, (z) : P
(�)
s , (z1; z2) : Pos, a 6

:
= b

where s; t are abstract individuals, a; b are abstract individual names, z; z1; : : : ; zn are con-
crete individual names, R is a role name, f is a feature name, Pr is an ordinary n-ary

predicate name, P
(�)
s is an unary spatial predicate name, Pos is an ordinary binary predi-

cate name or a spatial binary predicate name, and C is a QL concept or a SL concept name.
Intuitively, the �rst form states that s is an instance of C, and the second form states that
s is related to t by means of the role R (we also say t is a R-successor of s).

A constraint system ~S is a �nite set of constraints.

The semantics is extended to constraints. An interpretation J maps a variable x to an
element xJ of the abstract domain �J of J and a concrete individual name z to an element
of its concrete domain. An interpretation J satis�es a constraint

s : C i� sJ 2 CJ , (s; t) : R i� (sJ ; tJ) 2 RJ ,
(s; t) : f i� fJ (sJ) = tJ , a 6

:
= b i� a 6= b,

(s; z) : f i� fJ (sJ) = zJ ,
(z1; : : : ; zn) : Pr i� (zJ1 ; : : : ; z

J
n) 2 P

D
r ,

(z) : P
(�)
s i� zJ satis�es P

(�)
s in >SAS ,

(z1; z2) : Pos i� (zJ1 ; z
J
2) satis�es Pos in DPos

A constraint system ~S is satis�able if there is an interpretation J that satis�es every con-
straint in ~S.

Let c and c0 be constraints and S be a schema. we write

c j=S c
0

if every S-model of c is also an S-model of c0.

Proposition 1 Let S be a schema, Q be a query and V be a view, and x0 be a variable.
Then

Q _�SV i� x0 : Q j=S x
0 : V

Proof See Appendix.

Hence, to test Q and V for containment, we have to check the constraints x0 : Q and x0 : V
for entailment.

Let V be a view. We call the constraint x0 : V a goal.
As in [11], our method makes use of four kinds of rules: decomposition, schema, goal, and
composition rules. Given a query Q and a view V , the rules work on pairs of constraint
systems Q:V . We call Q (built from Q) the facts and V (built from V) the goal. To
decide whether Q _�SV , we take a variable x0 and start with the facts fx0 : Qg [fa 6

:
=

b for all pairs of abstract individual names appearing in Qg, and the goal fx0 : V g.

The role of the propagation rules is to make explicit (by adding constraints to Q or V) the
part of the knowledge which is implicitly contained in Q, V and the schema S. They add

12

facts and goals until no rule applies. Intuitively, the view V contains the query Q if and
only if the �nal set of facts contains the constraint x0 : V .

Given a pair of constraint systems Q:V, more than one rule might be applicable to it. we
de�ne the following strategy for the application of rules:

1. apply the decomposition rules as long as possible;

2. apply the schema rules as long as possible;

3. apply the goal rules as long as possible;

4. apply the composition rules.

Before we can formulate the propagation rules we need a technical de�nition.

De�nition 11 (Fork) Let ~S be a constraint system, f be a feature name, s and t be abstract
individuals (i.e., abstract individual names or variables), z1 and z2 be concrete individual
names, and x be a variable. ~S may contain the following constraints, which we call a fork:

� (s; t) : f , and (s; x) : f . Since f is interpreted as a partial function, such a fork means
that t and x have to be interpreted as the same abstract individual. This fork can be
deleted by replacing all occurrences of x in ~S by t.

� (s; z1) : f and (s; z2) : f . This fork is due to the fact that we do not handle unique
name assumption for concrete individuals. This fork can be deleted by replacing all
occurrences of z2 in ~S by z1.

Let R be a role name (resp. f be a feature name). In the following, we write equally sRt
or (s; t) : R (resp. sfv or (s; v) : f) to denote the fact that t is a R-successor (resp. v is a
f -successor) of s.

Decomposition Rules

These rules add constraints to the constraint system Q. They break up the initial fact x0 : Q
into constraints involving primitive concepts.
D1) Q:V �!u fs : C1; s : C2g [Q:V

if s : C1 u C2 is in Q and
s : C1 and s : C2 are not both in Q

D2) Q:V �!9 fsRy; y : Cg [Q:V
if s : 9R:C is in Q and

y is a new variable and
there is no t such that t is an
R�successor of s in Q and t : C is in Q

D3) Q:V �!Pr f: : : ; (s; yi1) : fi1 ; : : : ; (yini�1; zi) : fini ; : : : ;

(z1; : : : ; zn) : Prg [Q:V
if s : Pr(u1; : : : ; un) is in Q; and
z1; : : : ; zn are new concrete individual names
and : : : ; yi1 ; : : : ; yini�1; : : : ; are new variables

and the following does not hold
For the feature chains ui = fi1 : : : fini ;

i 2 [1; n]; there are abstract individual
names ti1 ; : : : ; tini�1

and

a concrete individual name z
0

i ; such that
Q contains constraints (s; ti1) : fi1 ; : : : ;

(tini�1
; z
0

i) : fini ; : : : ; (z
0

1; : : : ; z
0

n) : Pr

13

We may have created forks by this rule. If this is the case, we delete them as described
before.

D4) Q:V �!� fs : C; y : D; : : : ; (s; xi1) : fi1 ; : : : ;

(xini�1; zi) : fini ; (y; x
0

i1
) : f

0

i1
; : : : ;

(x
0

i
n
0

i

�1; z
0

i) : f
0

i
n
0

i

; (zi; z
0

i) : Posi ; : : :g [Q:V

if s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig)

is in Q; and z1; z
0

1; : : : ; zm; z
0

m are new concrete
individual names and y is a new variable

and : : : ; xi1 ; : : : ; xini�1; x
0

i1
: : : ; x

0

i
n
0

i

�1; : : : ; are

new variables and the following does not hold
For the feature chains ui = fi1 : : : fini ; and

u
0

i = f
0

i1
: : : f

0

i
n
0

i

i 2 [1;m] there are abstract individual

names ti1 ; : : : ; tini�1; t
0

i1
; : : : ; t

0

i
ni
0�1 and

concrete individual name vi; v
0

i ; such that
Q contains constraints (s; ti1) : fi1 ; : : : ;

(tini�1
; vi) : fini ; (s

0

; t
0

i1
) : f

0

i1
; : : : ;

(t
0

i
n
0

i

�1; v
0

i) : f
0

i
n
0

i

; (vi; v
0

i) : Psi

We may have created forks by this rule. If this is the case, we delete them as described
before.

D5) Q:V �!� ftRsg [Q:V
if sR�t is in Q and tRs is not in Q

D6) Q:V �![] [y=a]Q:V[y=a]
if y : fag is in Q

D6 is a substitution rule. We read [y=a] as "a replaces y". This substitution applies to both
constraint systems, i.e., Q and V .

D7) Q:V �!
P
(�)
s

f: : : ; (s; y1) : f1; : : : ; (yn�1; z) : fn; : : : ;

(z) : P
(�)
s g [Q:V

if s : P
(�)
s (u) is in Q; and

z is a new concrete individual name
and y1; : : : ; yn�1 are new variables
and the following does not hold
For the feature chain u = f1 : : : fn;
there are abstract individual
names t1; : : : ; tn�1 and

a concrete individual name z
0

; such that
Q contains constraints (s; t1) : f1; : : : ;

(tn�1; z
0

) : fn; (z
0

) : P
(�)
s

We may have created a fork by this rule. If this is the case, we delete it as described before.

Schema Rules

These rules add constraints to the constraint system Q. They add information derivable

14

from the schema S and current facts contained in Q.

S1) Q:V �!
1: _�

fs : Dg [Q:V

if s : A is in Q; A _�D is in S and
s : D is not in Q

S2) Q:V �!8 fv : A0g [Q:V

if s : A; s P v are in Q; A _�8P:A0 is in S
(resp: s : A; sfv are in Q and

A _�8f:A0 is in S) and v : A0 is not in Q

S3) Q:V �!2: _� fs : A; v : A0g [Q:V

if sPv is in Q and P _�A�A0 is in S

(respectively sfv is in Q and f _�A� A0 is in S)
and s : A; v : A0 are not both in Q

S4) Q:V �!9 fs P y; y : Cg [Q:V

if s : A is in Q; A _�9P:> is in S; s : 9P:C is in V
and there is no v0 such that s P v0; v0 : C
are in Q and y is a new variable

S5) Q:V �!1:9 fs f v; v : Cg [Q:V

if s : A is in Q; A _�9f:> is in S; s : 9f:C is in
V and there is no v0 such that
s fv0; v0 : C are in Q and
v is a new variable if C is a concept and
v is a new concrete individual name if C
is a concrete domain name

We may have created a fork by this rule. If this is the case, we delete it as described
before.

S6) Q:V �!2:9 fs f v; v : C; v : A0g [Q:V

if s : A is in Q; A _�9f:A0 is in S; s : 9f:C
is in V and there is no v0 such that s fv0; v0 : C;

v0 : A0 are in Q and
v is a new variable if C is a concept and
v is a new concrete individual name if C
is a concrete domain name

We may have created a fork by this rule. If this is the case, we delete it as described
before.

Goal Rules

These rules add constraints to the constraint system V . They guide the evaluation of V
by deriving subgoals from the original goal x0 : V .

G1) Q:V �!u Q:V [fs : C1; s : C2g
if s : C1 u C2 is in V and

s : C1; s : C2 are not in Q [V

G2) Q:V �!9 Q:V [ft : Cg
if s : 9R:C is in V and sRt is in Q and

t : C is not in Q[V

G3) Q:V �!1:� Q:V [fs : Cg

if s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ;

hum; Posm ; u
0

mig)
is in V and s : C is not in Q [V

15

G4) Q:V �!2:� Q:V [ft : Dg

if s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ;

hum; Posm ; u
0

mig) is in V and
: : : ; (s; xi1) : fi1 ; : : : ; (xini�1; zi) : fini ;

(y; x
0

i1
) : f

0

i1
; : : : ; (x

0

i
n
0

i

�1; z
0

i) : f
0

i
n
0

i

;

(zi; z
0

i) : Posi ; : : : for i 2 [1; n] are
in Q and t : D is not in Q[V

Composition Rules

These rules add constraints to the constraint system Q. They compose9 complex facts
from simpler ones directed by the goals.

C1) Q:V �!u fs : C1 uC2g [Q:V
if s : C1; s : C2 are in Q; and

s : C1 u C2 is in V; but not in Q

Let D be a concrete domain, u1; : : : ; un be feature chains, and Pr, P
0
r be predicate names

in pred(D). P 0r(u1; : : : ; un) entails Pr(u1; : : : ; un) i� 8e1; : : : ; en 2 dom(D); (e1; : : : ; en) 2

P 0r
D) (e1; : : : ; en) 2 Pr

D: We are able to decide this because we have supposed that the
implication between �nite conjunctions over pred(D) is decidable.

C2) Q:V �!Pr fs : Pr(u1; : : : ; un)g [Q:V
if s : P 0r(u1; : : : ; un) is in Q and
s : Pr(u1; : : : ; un) is in V but not in Q; and

P 0r(u1; : : : ; un) entails Pr(u1; : : : ; un)

C3) Q:V �!� fs : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ;

hum; Posm ; u
0

mi)g [Q:V
if s : C and t : D are in Q and

(s; xi1) : fi1 ; : : : ; (xini�1; zi) : fini ;

(t; x
0

i1
) : f

0

i1
; : : : ; (x

0

i
n
0

i

�1; z
0

i) : f
0

i
n
0

i

;

(zi; z
0

i) : Posi are in Q for each i 2 [1;m]

where ui = fi1 : : : fini and u
0

i = f
0

i1
: : : f

0

i
n
0

i

and

s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mi)
is in V but not in Q

C4) Q:V �!> fs : >g [Q:V
if s : > is in V but not in Q

C5) Q:V �!9 fs : 9R:Cg [Q:V
if s : 9R:C is in V but not in Q and

sRt; t : C are in Q

All rules are deterministic. Moreover, rules D2, D3, D4, D7, S4, S5, S6 are generating
ones, since they generate variables or concrete individual names.

A constraint system ~S is complete if no propagation rule applies to it. A constraint system
contains a clash if it displays one of the following situations:

� It contains the constraints

9This can be seen as a bottom up evaluation of V over Q.

16

(z
(1)
1 ; : : : ; z

(1)
n1) : Pr1 ; : : : ; (z

(k)
1 ; : : : ; z

(k)
nk) : Prk and

k̂

i=1

PDri (�z
(i)) is not satis�able in a concrete domain D:

� It contains the constraints s : ftg; s 6
:
= t.

� It contains the constraints sft; sfz, where t is an abstract individual and z is a concrete
individual name.

� It contains the constraint s : dom(D), where s is an abstract individual.

� It contains the constraint z : A where z is a concrete individual name and A a concept
name.

Therefore, any constraint system containing a clash is unsatis�able.

In the following, x0 is a variable, FQ:GV is the completion of fx0 : Qg:fx0 : V g, and o is an
abstract individual name such that o : V is in GV .

Let FQ:GV be a complete pair derivable from an initial pair fx0 : Qg:fx0 : V g. By construc-
tion, GV contains exactly one constraint of the form s : V . In addition, as goal rules are
not generating ones and by examining all other rules, we observe that if s : V 2 GV then
s : Q 2 FQ.

Proposition 2 (Invariance) Suppose F :G has been derived from fx0 : Qg:fx0 : V g, and
F 0:G0 is obtained from F :G by applying a rule. Then F is satis�able if and only if F 0 is
satis�able.

Proof See Appendix.

Corollary 1 Every S-model J of x0 : Q can be turned into an S-model J 0 of FQ by
modifying the interpretation of variables and concrete individual names. Moreover, J 0 can
be chosen such that oJ

0

= x0
J
.

Proof It follows by induction from the preceding Proposition. �

Corollary 2 Let FQ be the complete constraint system derived from fx0 : Qg, and let o be
an abstract individual name. The following holds:

x0 : Q j=S x
0 : V , FQ j=S o : V

Proof See Appendix.

Let ~S be a clash-free constraint system. We de�ne the canonical interpretation J ~S as follows:

� Because the clash rule related to concrete domains is not applicable, there is an
assignment � that satis�es the conjunction of all occurring constraints of the form
Pr(z1; : : : ; zn). The interpretation J ~S interprets a concrete individual name z as �(z).

� the domain �J ~S consists of all abstract individuals occurring in ~S.

� Let A be a primitive concept name. Then we set s 2 AJ i� s : A occurs in ~S.

17

� Let R be a role or a feature name. Then we set (s; v) 2 RJ ~S i� (a; v) : R occurs in
~S. This is well de�ned even if R is a feature, because there is no clash related to the
features. Here v is an abstract individual or a concrete individual name.

Proposition 3 Let FQ:GV be a complete pair that has been derived from fx0 : Qg:fx0 : V g.
If FQ is clash-free, then the canonical interpretation JFQ is an S-model of FQ.

Proof See Appendix.

Proposition 4 Let JFQ be the canonical interpretation of FQ and s : C be a constraint in
GV . If FQ is clash-free, then

JFQ satis�es s : C =) s : C 2 FQ

Proof See Appendix.

De�nition 12 (Size of a feature chain) Let u = f1 : : : fr be a feature chain. Then
juj = r.

De�nition 13 (Size of a concept) For a concept C, the size jCj is inductively de�ned
as:

� jPr(u1; : : : ; un)j =
Pn

i=1 juij for all n-ary predicates of the concrete domains and fea-
tures u1; : : : ; un.

� jP
(�)
s (u)j = juj.

� j�(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig)j = jCj+ jDj+�m
i=1juij+�m

i=1ju
0

ij.

� jAj = 1,

� j>j = 1,

� j9R:Cj = 1 + jCj.

� j9R:Cj = 1 + jCj,

� jfagj = 1,

� jC uDj = jCj+ jDj.

The size of a schema S is given by the number of axioms in S.

Proposition 5 (Termination) Let Q and V be a query and a view respectively. Then
there is no in�nite chain of completion steps issuing from fx0 : Qg and fx0 : V g.

Proof See Appendix.

Theorem 1 (Soundness and Completeness)

Q _�S V i� o : V 2 FQ or FQ contains a clash

Proof See Appendix.

Now we turn to the complexity of deciding S-containment.

Proposition 6 (Number of individuals) The number of individuals occurring in FQ:GV
is bounded by jQj:jV j.

18

Proof See Appendix.

Theorem 2 S-containment of a query Q in a view V can be decided in time polynomial to
the size of Q, V , and S.

Proof See Appendix.

5 Comparisons with other works

Our work relates to several aspects of modeling and retrieval of visual information. We
shortly discuss the relationship to shape representation for image retrieval and knowledge
representation approaches to visual information retrieval.

Shape representation for image retrieval. In [8], the authors have proposed to capture
objects shapes in image databases by means of two complementary methods namely, Free-
man code and Fourier descriptors. The �rst one applies to closed shapes by approximation
of the continuous contour with a sequence of numbers, each number corresponding to a seg-
ment direction. This approach is not suited for complex shapes. The second method rests
on the use of complex coeÆcients called Fourier descriptors. These coeÆcients represent the
shape of an object in the frequency domain where the lower frequencies symbolize its general
contour, and where the higher frequencies represent the details of its contour. Clearly, these
two methods are not suitable for large databases. [22] has proposed a two-block data model
for images: The image block and the salient object bloc. The image block is made up of two
layers: the image layer and the image representation layer. The geometric primitives used
to specify objects shapes are the conventional ones, namely, point, segment, polyline, el-
lipse, circle, polygon, triangle, and square. It is clear that the constraint-based approach we
presented for representing objects shapes generalizes [22] since all the geometric primitives
can be naturally de�ned by means of our constraints. In [5], a constraint-based approach10

is used for shape management in multimedia databases. The advantage of this approach is
that approximation-based query processing, combined with data-driven approaches can be
used to retrieve shapes based on similarity. However, reasoning about queries (containment
and emptyness) is not considered.

Knowledge representation approaches to visual information retrieval. Meghini et
al. [12] have investigated the use of a description logic as a conceptual tool for modeling and
querying image data. Their language is a fragment of ALC[23] extended to accommodate
fuzzy aspects. The visual part in a query is captured through a mechanism of procedural
attachment which is a kind of logical interface between the conceptual part and the visual
part of an image. The problem with this language is that subsumption between concepts
is PSPACE-complete. Hsu et al. [13] proposed a knowledge-based approach for retrieving
images by content. The knowledge-based query processing is based on a query relaxation
technique which exploits a Type Abstraction Hierarchy of image features. Goble et al. [17]
proposed a description logic, called, GRAIL, for describing the image and video semantic
content. A set of dedicated constructors are used to capture the structural part of these
media objects. The aim is to support the coherent and incremental development of a coarse
index on the semantic annotations of media documents. In these proposals, the underlying
query languages support only queries based on the structure of the documents (i.e., concep-
tual queries). None of them supports visual queries. Additionally, [12] and [17] do not take

10In the sense of constraint relational calculus [19].

19

into account predicate restrictions over concrete domains, which are extremely useful when
querying multimedia repositories, and they did not address the questions of decidability and
complexity of reasoning services in their languages.

6 Conclusion

The bulk of work in image processing research has been on developing algorithms that
operate at the pixel level and are able to recognize visual objects. In our work, we have been
investigating the next stage of image processing. In other words, we are concerned with the
question of what sort of representation and processing would we like to have happen once the
low-level detectors have �nished their work. We feel that the next step involves representing
and reasoning with the aid of formal models. By increasing the level of abstraction and
allowing queries at that level, it becomes easier to express queries for �nding appropriate
data for viewing out of a large repository. An interesting problem is the investigation and
adaptation of optimization techniques for constraint query languages (see, for example, [24]).

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] Franz Baader, Martin Bucheit, Manfred Jeusfeld, and Werner Nutt. Reasoning about Struc-
tured Objects: Knowledge Representation meets Databases. In F. Baader, M. Bucheit,
M. Jeusfeld, and W. Nutt, editors, Proceedings of the 1st Workshop of KRDB'94: Rea-
soning about Structured Objects: Knowledge Representation meets Databases, Stuhlsatzen-
hausweg, Germany, D-94-11 in DFKI Documents, URL: http://SunSite.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS/Vol-1/, September 1994. CEUR. 2p.

[3] Franz Baader and Philipp Hanschke. A Scheme for Integrating Concrete Domains into Concept
Languages. In Proceedings of the 12th International Joint Conference on Arti�cial Intelligent
(IJCAI'91). Sydney, Australia, pages 452{457, 1991.

[4] Riccardo Benedetti and Jean-Jacques Risler. Real Algebraic and Semi-Algebraic Sets. Her-
mann, editeurs des sciences et des arts, 293 rue Lecourbe, 75015 Paris, 1990. 340 pages.

[5] E. Bertino and B. Catania. A Constraint-Based Approach to Shape Management in Multimedia
Databases. Multimedia Systems, 6(1):2{16, January 1998.

[6] Alberto Del Bimbo. Visual Information Retrieval. Morgan Kaufmann, 1999.

[7] Alexander Borgida. Description Logics in Data Management. IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE), 7(7):671{682, 1995.

[8] M. Bouet, A. Khenchaf, and H. Briand. Shape Representation for Image Retrieval. In Proceed-
ings of the Seventh ACM International Conference on Multimedia, Orlando, FL, USA, pages
1{4, October 30 - November 5 1999.

[9] Ronard J. Brachman and James G. Schmolze. An Overview of the KL-ONE Knowledge Rep-
resentation System. Cognitive Science, 9(2):171{216, 1985.

[10] P. Bresciani. Some Research Trends in KR&DB (position paper). In F. Baader, M. Bucheit,
M. Jeusfeld, and W. Nutt, editors, Proceedings of the 3td Workshop of KRDB'96: Reasoning
about Structured Objects: Knowledge Representation meets Databases, Budapest, Hungary,
pages 1{3, URL: http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-
4/, August 1996. CEUR.

[11] Martin Buchheit, Manfred A. Jeusfeld, Werner Nutt, and Martin Staudt. Subsumption Be-
tween Queries to Object-Oriented Databases. In Proceedings of the 4th International Confer-
ence on Extending Database Technology (EDBT'94), Cambridge, UK, March 1994. (Also in
Information Systems 19(1), pp. 33-54, 1994).

20

[12] Fabrizio Sebastiani Carlo Meghini and Umberto Straccia. The Terminological Image Retrieval
Model. In Alberto Del Bimbo, editor, Proceedings of the 9th International Conference On
Image Analysis And Processing (ICIAP'97), Florence, Italy, pages 156{163, 1997.

[13] Wesley W. Chu Chih-Cheng Hsu and Ricky K. Taira. A Knowledge-Based Approach for Re-
trieving Images by Content. IEEE Transactions on Knowledge and Data Engineering, 8(4):522{
532, 1996.

[14] George E. Collins. Quanti�er Elemination for Real Closed Fields by Cylindrical Algebraic De-
composition. In Proceedings of the 2nd Conference on Automata Theory & Formal Languages,
Kaiserslautern, Germany, pages 134{183, 1975. Volume 33 of LNCS.

[15] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The Complex-
ity of Concept Languages. Technical Report RR-95-07, Deutsches Forschunggszentrum f�ur
K�unstliche Intelligenz (DFKI), Kaiserslautern, Germany, June 1995.

[16] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning in
Description Logics. In Foundation of Knowledge Representation. Cambrige University Press,
1995.

[17] C. A. Goble, C. Haul, and S. Bechhofer. Describing and Classifying Multimedia Using the
Description Logic GRAIL. In Ishwar K. Sethi and Ramesh C. Jain, editors, Storage and
retrieval for image and video database IV (SPIE'96), San Jose, California, pages 132{143,
February 1996.

[18] St�efane Grumbach, Jianwen Su, and Christophe Tollu. Linear Constraint Query Languages
Expressive Power and Complexity. In Daniel Leivant, editor, Proceedings of the International
Workshop on Logic and Computational Complexity (LCC'94), Indianapolis, IN, USA, pages
426{446, October.

[19] Paris Kanellakis, Gabriel Kuper, and P. Revesz. Constraint Query Languages. Journal of
Computer and System Sciences (JCSS), 51(1):26{52, August 1995.

[20] Carlo Meghini. Towards a logical reconstruction of image retrieval. In Ishwar K. Sethi and
Ramesh C. Jain, editors, Storage and retrieval for image and video database IV (SPIE'96),
San Jose, California, pages 108{119, February 1996.

[21] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. volume 422 of Lecture
Notes in Computer Science, page 300. Springer-Verlag, New York, 1990.

[22] V. Oria, M.T. Ozsu, L. I. Cheng, P. J. Iglinski, and Y. Leontiev. Modeling and Querying Shapes
in Image Database System. In Proceedings of the Fifth International Workshop on Multimedia
Information Systems (MIS'99), Indian Wells, Palm Springs Desert, CA, USA, October 21 -
23 1999.

[23] Manfred Schmidt-Schau� and Gert Smolka. Attributive Concept Descriptions with Comple-
ments. Arti�cial Intelligence, 48(1):1{26, 1991.

[24] Divesh Srivastava. Subsumption and Indexing in Constraint Query Languages with Linear
Arithmetic Constraints. Annals of Mathematics and Arti�cial Intelligence, 8(3-4):315{343,
1993.

[25] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of Cali-
fornia Press. Berkeley, 1951.

[26] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems, volume I, II. Com-
puter Science Press, Rockville MD, 1989.

[27] Luc Vandeurzen, Marc Gyssens, and Dirk Van Gucht. On Query Languages for Linear Queries
De�nable with Polynomial Constraints. In Proceedings of the Second International Conference
on Principles and Practice of Constraint Programming (CP'96), Cambridge, Massachusetts,
USA, pages 468{481. Springer Verlag, August 1996. LNCS 1118.

21

Appendix

In this Appendix we give the proofs of some of the results stated in the previous sections.

Proof (Proposition 1)
") "
If Q _�SV then QJ � V J for all model J of S. This means that if x0 denotes an individual from
the interpretation domain of J such t hat x0

J
2 QJ , then x0

J
2 V J . It follows that x0 : Qj=Sx

0 : V .

"("
Suppose that x0

J
2 QJ implies x0

J
2 V J for all J model of S. It follows that QJ �S V J . Hence,

Q _�SV . �

Proof (Proposition 2)

The proof is by case analysis.

") "

Let J be an S-model of F . Then J can be turned into an S-model of F 0 by modifying the inter-
pretation of new variables and new concrete individual names. We have to consider all the rules
that alter the set of facts (i.e., decomposition, schema, and composition rules).

D1) J satis�es s : C1 uC2. That is s
J 2 (C1uC2)

J . This means that sJ 2 (CJ1 \CJ2), and then
sJ 2 CJ1 and sJ 2 CJ2 . Hence J satis�es s : C1 and s : C2. It follows that J is an S-model
for F 0.

D2) J satis�es s : 9R:C. There exists an abstract individual t such that t is an R-successor of s
and tJ 2 CJ . It follows that J is an S-model for F 0.

D3) J satis�es s : Pr(u1; : : : ; un). That is, if z1; : : : ; zn are concrete individual names such that
uJ1 (s

J) = zJ1 ; : : : ; u
J
n (s

J) = zJn we have (zJ1 ; : : : ; z
J
n) 2 Pr

D. It follows that J is an S-model
for F 0.

D4) J satis�es

s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig). Then sJ 2 CJ and there exists an abstract

individual t such that tJ 2 DJ and (uJi (s
J); u

0

i

J
(tJ)) 2 PJosi 8i 2 [1;m] where ui and u

0

i

are feature chains. It follows that J is an S-model for F 0.

D5) J satis�es sR�t. Then by de�nition it satis�es tRs. Hence J is an S-model for F 0.

D6) Obvious.

D7) J satis�es s : P
(�)
s (u). This means that uJ (sJ) satis�es P

(�)
s in >SAS , where u is a feature

chain. In other words, for u = f1 : : : fn, there exist abstract individuals t1; : : : ; tn�1, and a
concrete individual name z, such that fJ1 (sJ) = tJ1 ; : : : ; f

J
n (tJn�1) = zJ and zJ satis�es P

(�)
s

in >SAS . It follows that J is an S-model for F 0.

C1) It follows from the one of D1.

C2) J satis�es s : P 0r(u1; : : : ; un). That is, there exist concrete individual names z1; : : : ; zn such

that uJ1 (s
J) = zJ1 , : : :, u

J
n (s

J) = zJn and (zJ1 ; : : : ; z
J
n) 2 P 0r

D
. It follows that (zJ1 ; : : : ; z

J
n) 2

Pr
D for all Pr such that P 0r(u1; : : : ; un) entails Pr(u1; : : : ; un). Hence J is an S-model for F 0.

C3) J satis�es s : C, t : D, (u1(s); u
0

1(t)) : Pos1 , : : :, (um(s); u
0

m(t)) : Posm , where ui and u
0

i are fea-

ture chains 8i 2 [1; m]. Then by de�nition it satis�es s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Pos1 ; u
0

mig).
It follows that J is an S-model for F 0.

C4) Goal rules are not generating ones. Hence if s : > is in V then s appears in Q, and then in
F 0. As all abstract individuals are instances of > it follows that J is an S-model for F 0.

C5) J satis�es sRt and t : C. By de�nition it satis�es s : 9R:C. It follows that J is an S-model
for F 0.

22

S1) J satis�es s : A. As J is an S-model of F , it satis�es all the axioms in S. Hence J satis�es

A _�A0. That is, sJ 2 A0
J
. It follows that J is an S-model for F 0.

The other cases require similar reasoning and are therefore omitted.

"("

The propagation rules add (and never remove) constraints to (from) a constraint system. If F 0 is
obtained from F by applying a rule, then F 0 is a superset of F . It follows that if J is an S-model
for F 0, it is also an S-model for F . �

Proof (Corollary 2)

First, note that by examining all the rules, we remark that if s : V is in GV then s : Q is in FQ. In
addition, there is only one constraint of the form s : V in GV .

") "
Let J be an S-model of FQ. Since FQ is a complete system, it contains o : Q. Hence, J is an

S-model of o : Q. Let us consider J 0 such that x0
J 0

= oJ and J 0 coincides with J otherwise. J 0

is an S-model of x0 : Q and then of x0 : V . If J 0 is an S-model of x0 : V then it is also an S-model

of o : V . As J 0 is chosen such that x0
J 0

= oJ and J and J 0 coincide on all other symbols, we
conclude that J is an S-model of o : V .

"("
Let J be an S-model of x0 : Q. As FQ is a complete system of x0 : Q, we can build an S-model J 0

for FQ, from J , with oJ
0
= x0

J
and by modifying the interpretation of the new generated variables

and concrete individual names. By hypothesis J 0 is also an S-model of o : V . We have V J = V J
0

and oJ
0
= x0

J
. Hence we can conclude that J is also an S-model of x0 : V . �

Proof (Proposition 3)

We have to verify that JFQ satis�es every axiom in S and every constraint in FQ.

First, consider the schema axioms. Suppose that S contains A _�8P:A0. Let s 2 A
JFQ and (s; v) 2

P
JFQ . Then there is a constraint v : A0 in FQ since otherwise rule S2 would be applicable. Thus

the axiom is satis�ed. Suppose that S contains A _�9f:A0. Let s 2 A
JFQ . Then there are constraints

sfv; v : A0 in FQ since otherwise rule S4 would be applicable. Thus the axiom is satis�ed. We use
a similar reasoning for the other forms of axioms.
Next we consider the di�erent constraints in FQ. By de�nition of JFQ , every constraint s : A,
s : >, (s; t) : R is satis�ed. To prove that more complex constraints are satis�ed, we proceed by
induction. Suppose FQ contains s : Pr(u1; : : : ; un). Then because of the rule D3 it contains as
well s u1 z1; : : : ; s un zn; (z1; : : : ; zn) : Pr which are satis�ed by inductive hypothesis. Hence, JFQ
satis�es also s : Pr(u1; : : : ; un).
Suppose FQ contains
s : �(C;D; fhu1; Pos1 ; u

0

1i; : : : ; hum; Posm ; u
0

mig). Then because of the rule D4 it contains as well

s : C, y : D, : : :, (s; xi1) : fi1 , : : :, (xini�1; zi) : fini , (y; x
0

i1) : f
0

i1 , : : :, (x
0

i
n
0

i

�1; z
0

i) : f
0

i
n
0

i

,

(zi; z
0

i) : Posi , : : :, 8i 2 [1; m], with ui = fi1 : : : fini and u
0

i = f
0

i1
: : : f

0

i
n
0

i

, which are satis�ed

by inductive hypothesis. It follows that JFQ satis�es also s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ;

hum; Posm ; u
0

mig).

The remaining cases require similar reasoning and are therefore dismissed. �

Proof (Proposition 4)

The proof can be obtained by induction on the structure of the concept C. Suppose that FQ is
clash-free and that JFQ satis�es s : C.

23

Suppose C = A (i.e., a concept name), then s : A 2 FQ by de�nition of JFQ , since JFQ satis�es
s : A.
If C is of the form C1 uC2. Then, JFQ satis�es s : C1 uC2 i� JFQ satis�es both s : C1 and s : C2.
By inductive hypothesis, this is the case i� s : C1 2 FQ and s : C2 2 FQ. Since s : C1 u C2 2 GV ,
we have s : C1 u C2 2 FQ, since otherwise rule C1 would be applicable.
If C is of the form Pr(u1; : : : ; un). Then, JFQ satis�es s : Pr(u1; : : : ; un) i� JFQ satis�es (s; z1) :
u1; : : : ; (s; zn) : un; (z1; : : : ; zn) : P

0
r for some z1; : : : ; zn where P 0r(u1; : : : ; un) entails Pr(u1; : : : ; un).

By inductive hypothesis, this is the case i� (s; z1) : u1 2 FQ; : : : ; (s; zn) : un 2 FQ; (z1; : : : ; zn) :
P 0r 2 FQ. Since s : Pr(u1; : : : ; un) 2 GV , we have s : Pr(u1; : : : ; un) 2 FQ since otherwise rule C2

would be applicable.
If C is of the form fag. Recall that the calculus starts with a pair fx0 : Qg:fx0 : V g. We make
the following remarks: (1) By inspecting all the rules of the calculus we see that any individual
t occuring in a constraint t : C0 in GV occurs also in FQ. (2) By analyzing the rules we see that
if a constant (i.e., an abstract individual name) a occurs in FQ, then FQ contains a constraint of
the form t : fag. Hence, if JFQ satis�es s : fag, then by de�nition sJ = a. The remark (1) leads
to the fact that a occurs also in FQ, and the remark (2) leads to the fact that FQ contains t : fag.
It follows that tJ = a and then a : fag is in FQ.
If C is of the form
�(C;D; fhu1; Pos1 ; u

0

1i; : : : ; hum; Posm ; u
0

mig), then JFQ satis�es s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig)

i� it satis�es s : C, t : D, : : :, fi1(s) = xi1 , : : :, fini (xini�1) = zi, f
0

i1
(t) = x

0

i1
, : : :, f

0

i
n
0

i

(x
0

i
n
0

i

�1) = z
0

i

for some t. By inductive hypothesis, this is the case i� each of these constraints belongs to FQ. Since
s : �(C;D; fhu1; Pos1 ; u

0

1i; : : : ; hum; Posm ; u
0

mig) 2 GV , we have s : �(C;D; fhu1; Pos1 ; u
0

1i; : : : ; hum; Posm ; u
0

mig) 2
FQ since otherwise C3 would be applicable.
If C is of the form 9R:C, then JFQ satis�es s : 9R:C i� it satis�es sRt; t : C for some t. This is the
case i� sRt 2 FQ, and t : C 2 FQ. Since s : 9R:C 2 GV , we have s : 9R:C 2 FQ since otherwise
C5 would be applicable.
If C is of the form >, then s : > 2 FQ since otherwise C4 would be applicable.

A similar reasoning is required for the other cases.
�

Proof (Proposition 5)

The Proof follows from the following arguments.

The size of Q is �nite. Since S is acyclic and the size of Q is �nite, the number of direct successors
of an individual s is �nite. When one of the generating rules D2, D3, D4, S4, S5, S6 is applied
to a constraint of the form s : C, the number of variables or concrete individual names that are
generated is less or equal to the size of C, and if a constraint of the form y : C0 is generated then
C0 is always a strict sub-expression of C. All rules but !8 are not applied twice on the same con-
straint. The rule !8 is never applied to an individual s more than the number of direct successors
of s. The schema S is acyclic and contains a �nite number of axioms. Hence, the number of times
of application of the rule S4 is �nite.

Consider the rules that alter the goal. As the size of V is �nite the number of application of the
rules G1 and G3 is �nite. As the chain leading from fx0 : Qg to FQ is �nite, it follows that FQ
contains a �nite number of constraints, and then the number of application of the rules G2 and G4

is �nite. �

Proof (Theorem 1)

If FQ contains a clash, then FQ is unsatis�able. As x0 : Q is in FQ, according to the Proposition 2,
x0 : Q is unsatis�able. This means that Q is unsatis�able and an unsatis�able concept is subsumed
by any concept.

24

We have seen that Q _�S V i� x0 : Q j=S x0 : V . (Proposition 1)

") "
Let FQ be a clash-free constraint system and x0 : Q j=S x0 : V . According to the Corollary 2, we
have FQ j=S o : V . Let JFQ be the canonical interpretation of FQ. It follows from the Proposition
3 that JFQ is a model of FQ. In this case it satis�es o : V . We have supposed o : V 2 GV . In this
case, according to the Proposition 4 we have o : V in FQ.

"("
If o : V is in FQ, then FQ j=S o : V . According to the Corollary 2 we have x0 : Q j=S x0 : V . It
follows from the Proposition 1 that Q _�SV .

�

Proof (Proposition 6)

Any constant in the pair FQ:GV must appear in Q. The number of variables introduced by decom-
position rules is bounded by jQj. The number of variables introduced by schema rules is bounded
by jV j. �

Proof (Theorem 2)

The propagation rules can be devided in two categories: (1) rules that add constraints and (2) rules
that reduce the number of variables (i.e., D6). The number of application of the rule that reduces
the number of variables is �nite and bounded by the size of Q. The number of application of the
other decomposition rules is also �nite and bounded by the size of Q. The number of application
of the goal rules is �nite and bounded by the size of V . The number of application of composition
rules is �nite and bounded by the size of V . The number of application of schema rules is �nite
and bounded by (jQj+ jV j):jSj �

25

