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What is a knot ?

A knot is a (smooth) embedding of the circle S1 in S3. Similarly, a
link of k-components is a (smooth) embedding of a disjoint union
of k circles in S3.

Figure-8 knot Whitehead link Borromean rings

Two knots are equivalent if there is continuous deformation
(ambient isotopy) of S3 taking one to the other.

Goals: To classify knots upto equivalence.
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Knot Diagrams

A common way to describe a knot is using a planar projection of
the knot which is a 4-valent planar graph indicating the over and
under crossings called a knot diagram.

A given knot has many
different diagrams.

Two knot diagrams represent
the same knot if and only if
they are related by a sequence
of three kinds of moves on
the diagram called the
Reidemeister moves.
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Origins of Knot theory

In 1867, Lord Kelvin conjectured that atoms were knotted tubes of
ether and the variety of knots were thought to mirror the variety of
chemical elements. This theory inspired the celebrated Scottish
physicist Peter Tait to undertake an extensive study and tabulation
of knots (in collaboration with C. N. Little).

Tait enumerated knots using their
diagrammatic complexity called the
crossing number of a knot, defined as
the minimal number of crossings over
all knot diagrams.
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Knots with low crossing number



Tait Conjectures

A knot diagram is alternating if the crossings alternate under, over,
under, over, as one travels along each component of the link. A
knot is alternating if it has an alternating diagram.

A reduced diagram is a diagram
with no reducible crossings.

Tait Conjecture 1 Any reduced diagram of an alternating link has
the fewest possible crossings.

Tait made more conjectures, about relating alternating diagrams
(Flyping Conjecture), and about writhe of alternating knots.
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Knot invariants

How to tell knots apart ?

A knot invariant is a “quantity” that is equal for equivalent knots,
independent of the description, hence can be used to tell knots
apart

Knot invariants have many different forms e.g. numbers,
polynomials, groups etc and are defined using techniques from
different fields e.g. topology, graph theory, geometry, algebraic
geometry, representation theory etc.

The crossing number is a knot invariant, however very hard to
compute. Tait Conjecture 1 gives a way to compute it for
alternating knots.
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Knots invariants

In 1980s, the discovery of two different types of knot invariants
revolutionized research in knot theory.

Vaughan Jones used representation theory and
discovered the Jones polynomial, which
resulted in the theory of “quantum invariants”
of knots.

Bill Thruston used hyperbolic geometry to
introduce geometric invariants, which results
in “hyperbolic knot theory”.
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Examples of knots invariants

I Topological: Arising from topology of the S3 − K e.g.
Fundamental group, Alexander polynomial (1927), Seifert
surfaces (1934), Knot Heegaard Floer homology
(Ozsvath-Szabo-Rasmussen, 2003).

I Diagrammatic: Fox n-colorings (Fox, 1956), Jones polynomial
(1984), Kauffman bracket (1987), Khovanov homology
(1999), Turaev genus (2006).

I Geometric: Arising from the hyperbolic geometry of S3 − K :
volume, cusp shape, invariant trace field, character variety,
A-polynomial (1994).

A big problem in knot theory is to relate different kind of
invariants.
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Knots and Graphs

The Tait graph GK of a knot diagram K is a plane signed graph
arising from a checkboard coloring of K as follows: shaded regions
correspond to vertices , crossings corresponding to signed edges.

The other checkboard coloring gives the planar dual of GK .



Knots and Graphs

The Tait graph GK of a knot diagram K is a plane signed graph
arising from a checkboard coloring of K as follows: shaded regions
correspond to vertices , crossings corresponding to signed edges.

The other checkboard coloring gives the planar dual of GK .



Knots and Graphs

Thistlethwaite (1987)
(1) Jones polynomial of K can be written in terms of spanning

trees of GK : VK (t) =
∑

T⊂GK

µ(T ).

(2) If K is connected, reduced alternating diagram then
spanVK (t) = c(K )

Corollary
(1) Proves Tait Conjecture 1.
(2) If K is connected, reduced alternating diagram, Knot
determinant det(K ) = number of spanning trees of GK .
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Knots and Geometry

2-dimensional geometries

Thurston (1980s) Most knot complements i.e. S3 − K can be
modeled on the 3-dimensional negatively curved geometry i.e.
hyperbolic geometry.



Basic hyperbolic geometry I

Escher’s work using hyperbolic plane Hyperbolic plane crochet by Daina Taimina

Hyperbolic upper-half plane Hyperbolic upper-half space
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Basic hyperbolic geometry II

I The Upper Half-Space model H3 = {(x , y , t)|t > 0} with

metric ds2 = dx2+dy2+dt2

t2
. Straight lines (geodesics) are lines

or half circles orthogonal to the xy -plane.

I Geodesic planes (H2) are vertical planes or upper hemispheres
of spheres orthogonal to the xy -plane (with centers on the
xy -plane).

I Isom+(H3) = PSL(2,C) which acts as Mobius transforms on
C ∪∞ extending this action by isometries.

I Other models include Poincare ball model, Klein model and
the Hyperboloid model.
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Hyperbolic building blocks

How to build hyperbolic knots or manifolds ?

Ideal tetrahedra & polyhedra in hyperbolic 3-space can be glued
together to make knot complements. This is a geometric way of
describing knots.

The least number of hyperbolic tetrahedra gives a geometric
complexity for knots.
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Knots with low tetrahedral number

Hyperbolic knots with geometric complexity up to 6 tetrahedra
were found by Callahan-Dean-Weeks (1999), extended to 7
tetrahedra by Champanerkar-Kofman-Paterson (2004), and to 8
tetrahedra by Champanerkar-Kofman-Mullen (2013).



Knots with low crossing number



Computing knot invariants

Many computer programs are available to compute knot invariants.

SnapPy by Culler and Dunfield, based on
SnapPea by Jeff Weeks computes hyperbolic
invariants.

KnotTheory by Bar-Natan, is a Mathematica
package which computes diagrammatic
invariants.



Computing knot invariants

Many computer programs are available to compute knot invariants.

SnapPy by Culler and Dunfield, based on
SnapPea by Jeff Weeks computes hyperbolic
invariants.

KnotTheory by Bar-Natan, is a Mathematica
package which computes diagrammatic
invariants.



Asymptotic knot theory

Infinite alternating weave W Regular ideal octahedron in H3 with volume = v8

Champanerkar-Kofman-Purcell (2014) Relate asymptotic
growth of spanning trees (i.e. knot determinant) to asymptotic
growth of hyperbolic volume. i.e

if Kn is n × n grid which give an exhaustion of W, then

lim
n→∞

2π log det(Kn)

c(Kn)
= v8 = lim

n→∞

vol(Kn)

c(Kn)
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Abhijit’s Home page:
http://www.math.csi.cuny.edu/abhijit/

KnotAtlas: http://katlas.math.toronto.edu/wiki/

SnapPy: http://www.math.uic.edu/~t3m/SnapPy/

Knot Invariants: http://www.indiana.edu/~knotinfo/

KnotPlot: http://www.knotplot.com/

Thank you
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