AD-A202 300

e ENE po @

Technical Report 1243
July 1988

Knowledge Acquisition
Tools and Knowledge
Representation Strategies
Development for a Naval
Expert System

Lessons Learned

C. D. Haupt

DTIC
gﬁELECTE |
.__.1 3 JAN 1989

T2 o

Approved for public release; distribution Is unliimited.

89 1 12 040

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN
Commander

R. M. HILLYER
Technical Director

ADMINISTRATIVE INFORMATION

This report was prepared by Code 444 of Naval Ocean Systems Center.

Released by

D. C. Eddington, Head
Artificial Intelligence
Technology Branch

Under authority of

W. T. Rasmussen, Head
Advanced C2 Technologies
Division

JJ

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION tb. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
NOSC TR 1243
6a. NAME OF PERFORMING ORGANIZATION 6b. OF(;IC&; &T;\ABOL 7a. NAME OF MONITORING ORGANIZATION
picable
Naval Ocean Systems Center NOSC
6¢c. ADDRESS (Ciy. State andd 2P Code) 7b. ADDRESS (Ciy, State and ZIP Code}
San Diego, CA 92152-5000
8a. NAME OF FUNDING/SPONSORING ORGANIZATION [8b. 0';;!05 aSbZ)MBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
apple:
Joint Tactical Program Management Office
8c. ADDRESS (C#y, State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO.| PROJECT NO. | TASK NO. AGENCY
ACCESSION NO.
1500 Planning Research Drive
McLean, VA 22102 63745A CD70 RDA DN307 493

TITLE Sawl%
KNOWL DGE QUlSlTlON TOOLS AND KNOWLEDGE KEPRESENTATION STRATEGIES DEVELOPMENT FOR A NAVAL

EXPERT SYSTEM
Lessons Learned
12. PERSONAL AUTHOR(S)

C. D. Haupt
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mont, Day) 15. PAGE COUNT
Final FROM Mar 1986 1o Nov 1986 July 1988 29

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and idenfity by diock number)
FIELD GROUP SUB-GROUP

artificial intelligence

197 ABSTRACT (Continue on reverse ¥ necessary and identiy by block number)

-®>_ Research performed on the Command Action Team (CAT) system and the Smart Knowledge Acquisition Tool (SKAT) is
described. CAT is a rule-based expert system to perform threat assessment in the naval domain; SKAT ig an automated knowledge
acquisition tool for CAT. These systems were developed jointly by Naval Ocean Systems Center<{NOSC) and Carnegie Mellon University.
(CMU)..- The research explored an alternative knowledge representation scheme for CAT that reduced the number of working memory
elements. A knowledge representation mechanism was developed to investigate the feasibility of incorporating higher-level control on
rule-firings based on the idea of an expert’s problem-solving method. A system is described for automatically generating OPS83 ru)es
from an external database, and an analysis is performed descnbmg SKAT's abllny to generate the CAT system.

!

3
R R s A

) -

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED /UNLIMITED SAME AS RP([Oorcusers | UNCLASSIFIED
22a. NAME OF RESPONSIBLE PERSON 22b. TELEPHONE (icfude 4rsa Code) 22c. OFFICE SYMBOL
C. D. Haupt (619) 553-5302 Code 444
DD FORM 1473, 84 JAN e e R S UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

"

—: _

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfersd)

DD FORM 1473, 84 JAN UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dala Cntered)

*'-—

CONTENTS
INT RODUCTION ..t et et e ettt e e e 1
BACKGROUND ... e e e e e e e e, 1
GROUPING CAT’S ASSERTIONSBYOBJECT 2
Objectiveof Research 2
Approach 3
ResutS . . e 5
Possible Future Research 8
SKAT-GENERATED DATABASE RULES 9
Objective of Research 9
Approach e 9
Results 12
Possible Future Research 13
AN ANALYSIS OF SKAT’S USEFULNESS FORNOSC 13
Objective of Research 13
Approach e 13
Results e 19
Possible Future Research 22

Accession Tor

. NTIS GRA&I
DTIC TAB

. Unnnnounced N
Justification

; "/\‘. e

I By "

' Distribution/ e
. Avatlability Codes 2

| }Avwil ahd/of
iDist | Special

I

|
|

e es—

INTRODUCTION

This report describes a major portion of the work performed by the author
while on a developmental training program (DTP) at Carnegie Mellon University
(CMU) from March 1986 to November 1986. The research concentrated on the
Command Action Team (CAT) program and the Smart Knowledge Acquisition Tool
(SKAT) developed by Naval Ocean Systems Center (NOSC) and CMU.

The CAT project at CMU consists of two major portions: the CAT rule-based
expert system and the Smart Knowledge Acquisition Tool (SKAT). The CAT system is
designed to perform threat assessment for a battlegroup flag watch officer. The
system is written in the rule-based system shell language called OPS83. SKAT is the
knowledge acquisition tool designed for the CAT system. SKAT was designed to elicit
tactical knowledge from an expert flag watch officer, to store that knowledge in an
intelligent manner on the computer, to integrate that knowledge into the existing
CAT knowledge base, and to translate that knowledge into a useful form in the target
language of OPS83.

Three main areas of research are described here. The first area was the
development and analysis of a version of CAT that stores assertions in the OBJECT
working memory element. The second area was the development of SKAT code to
provide database rules for CAT from information contained in the SKAT ontology.
The third area of research consisted of a study of SKAT to determine its usefulness
for the CAT system residing at NOSC.

BACKGROUND

The Command Action Team (CAT) is a system developed by Naval Ocean
Systems Center Code 444 through interaction with researchers at Carnegie Mellon
University (CMU) and the operational personnel of Command Carrier Group 3
(CCG 3). CAT was successfully deployed on the USS Carl Vinson during its deploy-
ment in 1986. CAT is an expert system designed to support the flag watch officer by
continually monitoring real-time reports of enemy activity, capability assessments,
and intentions. In particular, CAT provides an assessment of the ability of the threat
to target the carrier. This tactical situation (TACSIT) assessment considers, among
other things, factors such as the ability of the enemy to coordinate with the Soviet
Ocean Surveillance System (SOSS), own-force Emission Control (EMCON), national
Defense Condition (DEFCON), and mission of the possible detecting platforms. In
addition, CAT allows the user to define alert/warning conditions of interest within
the particular operating environment.

GROUPING CAT’S ASSERTIONS BY OBJECT

OBJECTIVE OF RESEARCH

The main reason for the training at CMU was to gain knowledge and experi-
ence with methods of acquiring knowledge for a rule-based expert system. In order to
provide the necessary framework for understanding the problems and concerns associ-
ated with building a knowledge acquisition tool for a rule-based expert system it was
important to understand the issues surrounding the building of that system. For this
reason one of the main areas of research was on the CAT system itself.

The objective was to explore the benefits and drawbacks associated with
making the CAT system more object oriented. The primary focus of the system up
until this point had been at the assertion level. This research would examine how
performance of the system is affected by this representational change. The research
would also describe any representational implications of such a change.

One of the main motivations for trying this experiment, besides to explore the
representational ramifications, was to see if the performance of the system could be
enhanced. Under the OPS philosophy, the original version of CAT is taxing on the
matching process due to the large amount of ASSERTION working memory elements
that are created during execution of the system. Putting the assertions into an
OBJECT element could reduce the amount of overhead time that OPS spends match-
ing because the first thing the OPS matcher matches on the left-hand side is the
name of the element. When a rule is checking several attributes for a specific object,
and assertions are used, another check has to be performed to be sure all the
assertions are referring to the same object. Such matching can result in a large
cross-product of interassertion matches that have to be performed.

This research resulted in the development of a prototype system that used the
principle that all assertions about a single object should be stored within a single
working memory element. This prototype system, called “OBJCAT,” also included the
implementation of a somewhat independent mechanism which divided the program
into a set of problem-solving steps including report pruning, report elaboration, tacti-
cal inferencing, and report propagation.

APPROACH

Knowledge Representation

The principal data structure in both CAT and OBJCAT is a network of
dependencies among assertions (or propositions). In OBJCAT, this network is repre-
sented by working memory elements of type OBJECT and REASON. The OBJECT
element contains an array of assertions, each bearing information for the attribute
name, confidence factor, observation time, value, and occupant, if any, for the role of
the patient (now, somewhat confusingly, called “object” as in the original CAT). Slots
in the array are not reserved for particular attributes; assertions are assigned to
array elements as the former attributes arrive. There is a se. of access functions
which extract values, assign values, and test for matches using the OBJECT
elements.

REASON elements specify the sources of support for an assertion, and each
assertion is associated with at least one unique REASON element. The association is
performed by matching. The REASON element contains the name of the attribute
and of the object that identifies the assertion. The REASON element contains an
array of object/attribute pairs which specify the antecedent conditions for inferred
assertions. Additional information includes the portion of the confidence factor
attributable to the source of support and some control information.

Other working memory elements used to hold tactical data include a REPORT
element which holds information being delivered to OBJCAT, and a NFW_ASSER-
TION element which holds information from a report being processed or from a
newly performed inference.

Control

Contexts in OBJCAT are of two kinds: steps in a problem-solving method and
procedure calls. The problem-solving method is the set of high level steps performed
by the expert system (and the expert as well). A step within the method contains a set
of rules that have no conflict resolution strategy (other than arbitrary selection of an
instantiated rule) to decide which rules to fire. Rules within that step will fire regard-
less of the status or of subsequent firings of other rules within that step. That is,
there is no control within a step of the problem-solving method. If the programmer is
trying to instill some control in a step, this implies that another step, or substep
should be created.

There is a working memory element called METHOD which contains an array
of symbols which designate steps in the OBJCAT problem-solving method. One of
these symbols is extracted from the array and stored in a constant location designat-
ing which step is currently active. Every rule in OBJCAT which is not in a procedure
has a test for the METHOD element as its first condition. One distinguished rule
does not test for the current step: its purpose is to advance from an exhausted step to
the next step.

Control within the “integrate” step (for propagating the effects of updates) is
effected by means of a working memory element of type NEW. NEW contains an
object and attribute designator, making it refer to a single assertion. When this

e

assertion is first inserted into the OBJECT element, and each time this assertion is
modified, a NEW element is created for the assertion. These elements are tested in all
tactical inference rules in such a way that the rule will be instantiated only when
there is a NEW element corresponding to at least one of the elements matched in the
rule’s conditions. These elements are removed when no tactical inference rules re-
main instantiated.

The Problem-Solving Method
The problem-solving method determined for OBJCAT was

1. Select a report.

2. Elaborate on the report.

3. Make resulting tactical inferences.

4. Integrate resulting conclusions into inference network.

Step Select_Report

As a simulation of report acquisition, a rule in this step selects the oldest
REPORT element, transfers its information to working memory elements of type
NEW_ASSERTION and REASON, and then discards the REPORT element. If there
are no reports, this step is exited as soon as it is entered. Thus, when the reports are
exhausted, the system will loop through the steps forever.

Step Elaborate Report

Rules in this step employ information from the new report, stored in a
NEW_ASSERTION element, and in the inference network, to generate new reports.
An example is a position report, combined with the former position from the infer-
ence net, yields a speed report. Handling this kind of elaboration at the report level
may solve some of the problems of control when trajectory-plotting occurs as tactical
inference rules.

Step Infer

Tactical inference rules fire only when the step is “infer.” These rules create
NEW_ASSERTION and REASON elements. At least one of the elements which
match the conditions must have an associated NEW element.

Step Integrate

NEW_ASSERTION elemernts, whether arising from reports or from infer-
ences, are integrated into the inference net in this step. The assertion can be inserted
into the OBJECT element for the first time, can replace an existing assertion, can be
fused (by evidence combination) into an existing assertion, or can be discarded.
Which action is taken is domain dependent, and is sensitive to the existing inference
net and to the nature of the attribute.

RESULTS

The system described above was implemented and tested. SKAT was modified
to write the 50 tactical inference rules in the system, as well as the explanation rules.
The rest of the system was translated by hand and it involved changing every rule in
the CAT system into the new representation. The other sets of rules (which included
inference net maintenance, and the rules to perform the explanation algorithm) were
written by hand because they are so idiosyncratic it would be unreasonable to have
SKAT generate them.

Knowledge Representation Results

There were several problems that were identified with this representation.
Most of them were a result of deficiencies in OPS83 and not necessarily a generic
problem associated with the object-based representation. The five major representa-
tional problems identified in OBJCAT are described in the following sections

— The lack of a general matching mechanism.

- The inability to reference previously matched assertions.

~ The difficulties of storing multiple valid values for certain types of
attributes.

~ The inability to store multiple competing values for an attribute.

- The excessive iteration through assertion arrays.

General Matching Problem

In CAT each assertion about an object is stored as separate working memory
elements (wme), so the normal OPS matcher finds all of the appropriate matches. In
OBJCAT, assertions about an object are all stored in arrays within an OBJECT wme.
Normal means of interassertion matching using the OPS matcher are not sufficient
in this representation for finding all of the assertions that match the appropriate con-
straints. This matching is because OBJCAT stores the three most current assertions
for each attribute of an object in an array. Thus there is an array for each type of
assertion, and there are potentially three assertions that could satisfy a constraint on
an object’s attribute. The problem is only one of those three satisfied assertions can
be used for any one instantiation. Once the first instantiation has been made,
somehow the functions doing the matching need to know not to use that assertion
again. Instead they should use one of the other two assertions.

The current matching functions in OBJCAT handle this problem by looking
only at the most current assertion of each type. It is as if in the original version of
CAT a flag is put in the assertion wme that states whether or not that assertion is
the most current of that type. Then all of the rules only consider an assertion if this
flag is set to “most recent.” This method ignores the possible valid cross-matching
that could occur.

Referencing Problem

The referencing problem is a theoretical problem; it assumes that the
matching problem described above has been solved. The referencing problem has to

do with knowing which assertions matched in previous condition elements. For
example, consider the case in which the first condition element of a rule is matching
on speed assertions with observation_time less than 100. The second condition
element ut some point wishes to check the value of any speed assertions that matched
in the first condition. There is no way for the second condition element to know
whi.n assertions matched in the first condition unless the second is somehow passed
a pointer to the matched elements, or is able to perform all of the same tests itself.
OPS83 does not allow for variables (either local or global) to be bound or accessed on
the left-hand side of a rule, thus precluding one condition element passing the bind-
ings found to another condition element further down on the left-hand side.

Multiple Valid Value Storage Problem

The fact that only three assertions are stored for each attribute of an object
causes a problem in the case of assertions that can have many valid values. An exam-
ple of such an attribute is “has_missile.” A object can have many possible missiles.
Thus only keeping three has_missile assertions around results in throwing away
potentially good information.

One alternative would be to match assertions by attribute and object instead
of just attribute as it is done now. This way the has_missile assertions could store the
missiles in the object field, and then each has_missile assertion with a different
missile would be assigned a set of three assertions. Since has_missile is static infor-
mation, most likely, there would only be one assertion for each missile laying around.
Thus this representation would be wasteful with storage space. In addition, this
representation would be afflicted with a version of the general match and referencing
problems similar to those described above.

Multiple Competing Values

There are attributes in CAT for which there can be only one valid value. In
the old version of CAT, however, it was legal for such attributes to have several
assertions with different values. An example of this would be to have two assertions
in the system for the nationality of a platform. If one assertion claims that the
nationality of Track_1 is US and the other assertion claims it is UR then this is a
case in which there are two competing values. Only one of the assertions can be
correct because a platform has only one nationality. Often CAT is unable to discern
immediately which of the two assertions is the correct one. Both assertions are
allowed to remain in the system until it can be shown that one or both should be
removed. This could occur through the intercession of a rule which knows how to
decide between the two based on other knowledge in the system, the level of the
confidence factors, or other pertinent information. The two assertions allow rules
that use their information to fire and create higher inference chains. Thus, by leaving
in the conflicting assertions, CAT is allowed to look at the possibilities that the
assertions present. Once it is determined that one of them should be deleted, CAT can
clean up its inference network by removing all of the assertions that resulted from
the use of the erroneous assertion.

In OBJCAT, this mechanism for employing multiple competing values is
precluded by the storing of assertions in the array. Since three assertions are stored

for an attribute, it is possible to have the assertions around. Yet, because of the
general matching problem described above, it is currently impossible to match in a
general way on all of the assertions. Consequently, the corresponding inference
chains for the competing assertions cannot be created.

Excessive Iteration Problem

This section describes the inefficiencies resulting from having matching func-
tions that have to search through an array of values. In OBJCAT, each constraint on
a value requires a function call to determine if the constraint holds. These functions
require several arguments:

~ The object for which these assertions should be checked.
~ The attribute of interest (i.e., “predicate”).

— The value field to be checked.

— The relational operator with which to check.

~ The slot of the assertion to be checked.

For example, to determine if &object_a has a “speed” assertion such that the value of
the speed is greater than 20 knots, the function call would look like this

match_object_and_number(&object_a, speed, 1 | > |, 20).

(When SKAT generates this code, it realizes that the value of speed is stored in the
first value slot of that type of assertion. That is the reason for the one in the third
parameter positicn.) This function then looks through the array of histories for
&object_a to find the attribute “speed.” If SKAT finds the “speed,” then it returns the
value of the test to determine if field one of that assertion is greater than 20.

The problem becomes apparent when one compares the way the old version of
CAT would do a simple test with the way that OBJCAT would have to perform that
same test. Take the simple case of checking for one of a set of possible values, as in
“infer_frigate_if within.” A simple atomic check of “(value.name = CV \/ value.name
= CVN)” gets transformed in OBJCAT into two function calls:

(match_object_and_symbol(&obj_1, type, 1, | =, CV) \V
match_object_and_symbol(&obj_1, type, 1, { ={, CVN)).

Because this is searching down the array of assertions, this indicates that the time to
do matching for condition elements will be greater in OBJCAT than in the old ver-
sion of CAT.

Performance Results

OBJCAT was tested on a scenario on which CAT had previously been tested.
In that scenario, 33 of CAT’s 50 tactical inference rules fired as compared with 30 in
OBJCAT. The three rules that never fired in OBJCAT were rules that formed the
inferences that are highest in the inference network. The reason they did not fire was
a result of problems in rules that integrate new assertions into the inference net. This
result is also due to a minor representation problem of having multiple instantiations

of the same rule firing due to multiple NEW working memory elements being created
on previous cycles of the problem-solving method. Those problems could be fixed, but
testing of OBJCAT was ended before they were.

The behavioral characteristics of OBJCAT were unlike those of CAT, but that
was mainly due to the three tactical inference rules that did not fire. With those
three rules firing, some of the conclusions that were made in CAT would also have
been made in OBJCAT. It was inconclusive as to how similar the two systems would
have been ultimately had OBJCAT been completely debugged and working, but
because of the manifestation of the representation problems described above, it was
apparent that only a subset of the conclusions in CAT would have been made in
OBJCAT. The percentage of conclusions that would not be made in OBJCAT that
would have in CAT is not known.

As far as time and memory characteristics are concerned, however, OBJCAT
fared better than CAT. Although the number of rule firings in OBJCAT was twice
that of CAT, the actual user time to run the scenario was about 40 percent less. The
representation had a dramatic impact on the size of working memory, reducing the
mean number of working memory elements by 19 times. The mean sizes of the con-
flict set, conflict resolution time, and rule fire time were all significantly reduced.

POSSIBLE FUTURE RESEARCH

There are several areas in which this research could be extended. One of the
areas would be to try and minimize the cost resulting from the matching functions.
This could be done by changing the attribute access functions from searching through
an array to using a hashing function. Another way would be to have the object con-
tain a large list of all the attribute names that are of interest and slots to store the
values of those attributes. This would provide less flexibility and generality than the
present design which allows for any attributes to be used without changing the repre-
sentation of the object. The cost to access the attributes could be less, however, than
the current method of stepping through a large array and looking for the appropriate
attribute.

Another area for research would be to explore the idea of a hybrid representa-
tion. The original version of CAT uses the ASSERTION element as the basic repre-
sentational unit. OBJCAT uses the OBJECT element as the basic unit. There are
several attributes that change frequently in CAT (such as position, speed, course,
etc.). It would be interesting to put these more expensive attributes into the OBJECT
element and to put the higher level conclusions that do not get made as often into
ASSERTION elements. Storing some attributes at the OBJECT level would reduce
some of the interassertion matching liability, whereas storing other attributes in
ASSERTIONS would still allow the flexibility that representation provides. The
difficulty in implementing such a system, even with SKAT, however, would be signifi-
cant as there could not be a general way to deal with network maintenance, confi-
dence factor manipulations, explanation, as well as the other pieces of functionality
that belong in the system.

A third area in which follow-on work should be done is to see how much of the
performance improvements were caused by the object-based representation and how
much was a result of the implementation of the problem-solving method. The working

memory reduction is a result of the storing of the assertions in objects; there are just
fewer little pieces of information independently lying around. They are bundled up in
the OBJECT element. It is not so easy, however, to credit the decreases in conflict
set size, conflict resolution time, and rule firing time.

SKAT-GENERATED DATABASE RULES

OBJECTIVE OF RESEARCH

SKAT has stored a lot of information on ships and weapons that was not being
used in CAT. One objective was to provide CAT with the capability of using that in-
formation.

APPROACH

The Ontology

SKAT's declarative knowledge about domain concepts and their relationships
is stored in a Common Lisp data structure called the ontology. The ontology resem-
bles a sematic network. The information is stored in the ontology in a very general
form since it is used for numerous different purposes.

The ontology contains information on objects that are important for the do-
main. Those objects may be higher level concepts or groupings, like fleet or air-
craft_carrier, or they may be specific instances of real world objects, like the carrier
kiev or Carl Vinson. The information in the ontology consists of two types:

1. Characteristics of platforms and military installations
2. Characteristics of weapons and sensors

The first type is concerned with the characteristics of platforms and military
installations. Ships, aircraft, subsurface vessels, land bases, and satellites all fall
under that category. Characteristics such as the weapons and sensors a platform
owns, the maximum speed of the platform, and other pertinent data, are all stored in
the ontology.

The second type of information in the ontology is concerned with the charac-
teristics of weapons and sensors that can be owned and used by the platforms and
military installations. This type would include information on missiles, guns, radar,
sonar, torpedoes, electronic countermeasures (ecm) gear, and would include charac-
teristics that are pertinent to each type of weapon and sensor.

All of this information was retrieved from Jane’s Fighting Ships, so it is
unclassified.

Static Database Rules - Initial Design

The initial design of the static database rules centered on the division of the
static database information into the two categories described above. Essentially two
types of rules were envisioned.

1. Platform type rule.
2. Weapon or sensor type rule.

Platform Type Rule

This type rule included surface and subsurface platforms, aircraft, satellites,
and landbases. This rule consisted mainly of a left-hand side that would check for the
existence of an assertion with predicate equal to “name” and with value equal to the
name of the platform for which that rule was made. Thus, there would be a rule in
the system for every platform that was named in the ontology. The right-hand side
would consist of a set of assertions being made about the characteristics of the plat-
form. In other words, as soon as a new platform is discovered by the CAT system, all
of the static data about that platform is put into the system. In this way, other rules
that may depend on this data for matching on the left-hand side will have the data
present only when the object is in the system. Essentially working memory does not
know about an object and its characteristics unless that object is in the system.

Consider an example database rule of this type. If SHIP_A is known to own
MISSILE_1 and RADAR 1, and to have a maximum speed of 30 knots, then an
example rule for that platform would look like this:

If there is an assertion for an object in
working memory with
predicate = “name” and
value = “SHIP_A”
then make the following assertions
The object has_missile with name = “MISSILE 1.”
The object has_radar with name = “RADAR_1.”
The object has maximum speed = 30.

Thus, if there is an assertion that TRACK 1 has a “name” assertion with
value SHIP_A (i.e., TRACK_1 is the ship SHIP_A), then the three assertions listed on
the right-hand side of the above rule would be made with the subject field equal to
“TRACK_1.”

Weapon/Sensor Type Rule

The weapon or sensor type rule included missiles, guns, radar, sonar, torpe-
does, and electronic countermeasures (ecm) gear. Instead of checking for “name” type
assertions, as was done for the platform type rules, the weapon/sensor type rules con-
sisted of a left-hand side that would check for the existence of an assertion with an
ownership type predicate and with value equal to the name of the weapon/sensor type
for which that rule was made. As with the platform rules, the right-hand side of each
of the weapon/sensor rules would consist of a set of assertions being made about the

10

characteristics of the sensor/weapon for which that rule was made. An ownership
type predicate is one that declares that an object owns a certain piece of equipment.

Inheritance of Database Information

The ontology not only has static database information, but also contains links
showing the subclass and superclass relationships between the nodes in the ontology.
For example, it would represent the fact that the carrier Carl Vinson is a member of
the Nimitz class, as well as the fact that the Nimitz class is a member of the set of
surface combatants. This knowledge of the hierarchical nature of the ontology, as
well as the fact that static data is stored not only at the “name” level, but at higher
levels of abstraction (such as “class,” and “type”) provided a means for asserting more
information on the right-hand side than that provided by asserting only the informa-
tion at the “name” node. Thus, if the name of a ship is known, all of the static data
that is known for that ship, as well as the data that can be inherited from ancestor
nodes of that ship in the ontology, is asserted for that object.

Problem With Initial Design

The main problem with the initial design had to do with the level at which
information is stored in the ontology for platforms as well as the number of individ-
ual platforms. There is a large number of platforms that SKAT knows about. Writing
a rule for each individual platform would require an enormous amount of memory
and is unfeasible. In addition, most of the static information about a platform is de-
termined by the class of that object. The initial design did not take advantage of that
fact to reduce the number of static database rules that would have to be created. This
feature was addressed in the subsequent redesign of the system.

Static Database Rules - Subsequent Design

The main goal of the subsequent design was to take advantage of the fact that
most of the features of a platform are determined by the class of that object. In the
ontology, with only a few exceptions, the platforms within a class all possessed the
same weapons and sensors as well as identical values for the other physical attributes
of the object. In fact, the data was stored at the class level in the ontology for the
platforms. Individual platforms that possessed more equipment than was shown at
the class level had this extra information stored at the individual node in the ontol-
ogy, with the rest of the attributes being stored at the class level. No provision was
set up in the ontology to handle exceptions at the subclass level, but such problems
were never encountered anyway.

The subsequent design was geared towards taking advantage of this fact that
most of the static information concerning platforms is stored at the class level. This
design resulted in four types of static database rules:

1. Platform name to platform class type rule.
2. Individual platform database type rule.

3. Platform class database type rule.

4. Weapon or sensor type rule.

The weapon/sensor type rule was described in a previous section.

11

——“

Platform Class Database Type Rule

One type of rule that resulted from the design is a rule that asserts the infor-
mation associated with platforms at the class level. A rule of this type has a left-hand
side that checks for the existence of an assertion in working memory with the attrib-
ute “class.” Thus, if the class of a ship is known, all of the static data that is known
for that class, as well as the data that can be inherited from ancestor nodes of that
class are asserted for that ship.

Individual Platform Database Type Rule

Some platforms have attributes that are specific to just that one platform and
thus cannot be inherited from the class node for that platform or at a higher level in
the inheritance network. For such cases, a rule is required that is similar to the rule
described in a previous section. The only difference is that the right-hand side of the
new rule would assert only the data found at the “name” level, and not any of the in-
herited information. This rule would also assert the class of the platform so that the
platform class database rule described above will be instantiated and the inherited
information for that platform will be asserted into working memory.

Platform Name to Platform Class Type Rule

Most of the information for a platform is stored in the platform class database
rule, which is instantiated by a “class” assertion for a platform. Thus, if the name of
the platform is known, there needs to be some rule that maps the name into the class.
For objects that have information stored at the “name” level the name-to-class
mapping is done in the same rule that asserts the static information, as described
above. For platforms that do not have static information stored at the “name” level,
however, the rule needs to be created that asserts the platform class based on the
platform name. There does not have to be one of these rules for each platform, how-
ever. Since a class normally contains several different platforms, only one rule needs
to be created for all of the platforms with that class. The left-hand side of this rule
would merely check for the existence of a “name” assertion whose value is the name
of one of the members of that class. If it is found, then the right-hand side makes the
assertion that that platform has the class defined in the ontology for that object.

RESULTS

The second design described was implemented. Instead of writing the rules
directly in OPS83, the database rules were written in the SKAT command language.
This was done in order to take advantage of the fact that SKAT is essentially a smart
rule editor for CAT rules. SKAT understands what assertions in CAT are and how
rules need to be written to support the inference network. When new knowledge rep-
resentations are being experimented with, SKAT is modified to write the rules in the
correct manner to support that new representation. If the static database rules were
written directly into OPS83, then every time the knowledge representation changed,
the static database rule writer would have to be modified along with SKAT. Since the
static database rules are being written in SKAT’s command language format, they
only have to be written once. This language can then be fed into SKAT whenever the
representation is changed and SKAT (when it has been modified for that representa-
tion) will write the rules in the appropriate OPS format for that representation.

12

‘—

_»

POSSIBLE FUTURE RESEARCH

One area of possible extension to this work is in the area of making CAT a
little smarter about what information it asserts for an object. Working memory is at
a premium. The number of assertions that are in the system has a dramatic impact
on performance. If the number of static database assertions could be limited to only
those that are actually used, this could lessen the impact of loading all of the static
data into working memory. There would have to be some rule analysis tools written
for SKAT, which could go through the CAT rules and determine what information in
the ontology could actually be used by the tactical rules in the system.

Another area for research would be to explore alternate methods of represent-
ing the static information. Instead of using assertions, as is done now, alternate
representations that group the data into one or several blocks might incur less impact
on the inference network and working memory.

It would be useful to change the level at which the static database information
is stored. Currently, every platform that comes in causes the class database rule to
fire and assert the static information about that class for that object. Thus, two ships
that are the same class have the same information asserted for each. An economical
approach would be to assert the class information once per class. The left-hand sides
of the tactical rules that use that information would have to be made “smarter” to
take that into account, but SKAT should be able to do the necessary modifications to
allow for that representation.

AN ANALYSIS OF SKAT’S USEFULNESS FOR NOSC

OBJECTIVE OF RESEARCH

This portion of the report will discuss the Smart Knowledge Acquisition Tool
(SKAT) that was under development at Carnegie Mellon University (CMU) in the
summer of 1986. SKAT is a knowledge acquisition system that was developed for the
Command Action Team (CAT) expert system project. This section will describe the
structure and function of SKAT. This portion will report on the analysis that was
done to determine to what extent SKAT was capable of generating the rules in
NOSC'’s version of CAT. A discussion will follow regarding the extent that SKAT
currently is useful for the development of CAT at NOSC, to what extent SKAT could
be useful in the near-term with some modifications, and the direction of the research
at CMU for SKAT that would impact usefulness at NOSC in the long-term.

Since the SKAT system and the CAT system are constantly being changed and
developed, this report reflects the systems that were running up through October
1986.

APPROACH

This section will first describe the SKAT system developed at CMU. Then a
description of the CAT system that was analyzed. Because the CAT system at NOSC
differed from CMU’s version, this description of the CAT system that was used will
provide some framework for the analysis.

13

SKAT

SKAT is a system that understands to a certain extent the template of a tacti-
cal inference rule of the CAT expert system. The template that SKAT follows for the
tactical inference rules developed at CMU can be described in English in the follow-
ing manner:

A tactical inference rule consists of a lefi-hand side that matches on the key
assertions about objects in the system, checks the appropriate interassertion
constraints, and if all the conditions and constraints are satisfied, the rule
creates a new assertion that is the conclusion that the rule reaches. The rule
also creates the data structures that are necessary to support the function of
the inference network.

In CAT, assertions are essentially the informational primitives. Assertions
are the basic pieces of information that the system handles in making inferences.
Assertions consist of a “predicate” which is the name of the type of assertion being
made (e.g., “has_missile,” “speed,” etc.). and slots that specify the value of that
assertion. Each predicate has a specific set of slots that it needs to have filled in
order to specify a value.

Thus, based on this information about assertions, and based on the template
described above, SKAT needs to understand several things:

- Assertions and how they are put together.

- Predicates and the slots they contain.

~ The legal values for the different slots of each predicate.

— Interassertion comparisons.

- The data structures that the inference net requires in order to
maintain a complete and consistent picture.

The knowledge that SKAT has about the rules is spread out over several
different parts of the system. These different components, which will be discussed
below, include

- The Ontology

- The User Interface Command Language

- The Tactical Inference Rule Generator

— The Assertion Paraphrase Rule Generator.

14

Ontology

SKAT’s declarative knowledge about domain concepts and their relationships
is stored in a Common Lisp data structure called the “ontology” which resembles a
semantic network. The information is stored in the ontology in a very general form
since it’s used for numerous different purposes.

The ontology contains information on objects that are important for the do-
main. Those objects may be higher level concepts or groupings, like “fleet” or
“aircraft_carrier,” or they may be specific instances of real world objects, like the
carrier “kiev” or “Carl_Vinson.” Residing with each object node is information about
that node. This information includes attril ute-value pairs describing different charac-
teristics of the object, as well as information about the supersets and subsets of each
node.

The ontology also contains information about the assertions that are possible
in the CAT system. The ontology stores information on all of the predicates that CAT
employs. Stored with the predicate are the slots for that predicate and the type of val-
ues the slots expect. Also stored with each predicate is an English paraphrase of that
predicate.

The User Interface Command Language ~ SCL

The user interface for SKAT is a set of commands that serve to specify differ-
ent portions of the tactical inference rule. For ease of reference this command lan-
guage will be called SCL (for Skat Command Language]j. There are three modes in
which the user can work:

- Edit
-~ Generate
~ Teach.

The “edit” mode is currently unimplemented. Upon implementation the mode
would allow the user to edit a rule that was previously entered into SKAT. The gen-
erate mode is currently a command contained within the “teach” mode. The user may
specify that the rule that is being constructed should be generated into the target lan-
guage and placed into the named file. Using the “teach” mode is the means by which
new tactical inference rules are created. The major commands that are used in
“teach” mode are

~ Constrain
- Conclude
- Refine

-~ Write

- Literal.

There are other commands that deal with confidence factors, observation
times of assertions, histories of commands, and others. Those listed above are impor-
tant in that they are the tools that the user employs to create the bulk of the rule, in
other words, to fill in the variables of the template.

15

The command constrain is used to specify left-hand-side condition elements.
The first argument to “constrain” is a reference name for that condition (for example
“speed3,” “lat_lon-5") or the atom “not.” If the word “not” is present this condition is
a check in the target language for the nonexistence in working memory of the pattern
that is specified for the condition. In OPS83 terminology this is defining a negative
condition element. If the “not” is present then the second argument is the reference
name. SKAT is able to determine the predicate of the constraint by stripping the
number at the end of the reference name. In summary “constrain” is used to check for
the existence or nonexistence of assertions with the predicate specified by the
reference name.

The command conclude is used to specify the right-hand-side conclusion that
is to be drawn by this rule. It takes one argument that is the reference name for the
assertion. The reference name performs the same function as in the “constrain”
command.

The command refine is used to further specify the slots of an assertion. This
command can be used with both the “constrain” and “conclude” command. The first
argument is the reference name for the assertion that is to be refined. The second ar-
gument is the name of the slot field to be specified. In the case of a refine statement
on a “constrain” predicate, the subsequent arguments are the values against which
that field of that predicate are to be tested. In the case of a refine statement on a
“conclude” predicate, the subsequent argument is the value that is to be placed in
that field of that predicate.

The command write prompts SKAT to generate the rule into the target lan-
guage and place the generated code into a file.

The command literal is the escape hatch. Literal basically allows the user to
put text “as is” into the rule in the event that none of the other SCL commands pro-
vide the needed function.

SKAT also allows the user to create and reference variable bindings. These
can then be used by condition elements to do intercondition-element comparisons, or
by the conclusion to access values contained within assertions that have been
matched on the left-hand side.

SKAT provides the capability of reading the input from a file that contains
SCL command. Thus the user can prepare the rules in a file and then run them
through SKAT. SKAT reads the commands and responds just as if the user was typ-
ing at the keyboard, the only difference being the user does not regain control until
the whole file has been processed.

The Tactical Inference Rule Generator

The third major component of the SKAT system is the tactical inference rule
generator. This portion of SKAT knows how to use the information specified by the
user in the SCL to generate a rule in the syntax of the target system, which in the
case of CAT is OPS83. This portion of SKAT knows how the major portions of the
rule template should look and also knows where to insert the specific information
that has been declared by the user for that rule.

16

The Assertion Paraphrase Rule Generator

SKAT also is able to generate another set of rules. The explanation procedure
in CAT employs a set of rules that know how to describe an assertion in a manner
that is more English-like than merely displaying the fields of the assertion data struc-
ture. These rules use the fact that, knowing the predicate of the assertion, one knows
the fields in which the data for that assertion is stored. Since these rules all have a
standard template and the ontology stores all of this knowledge about the predicates,
there is a section of SKAT that is able to generate the assertion paraphrase rules.

The CAT System

In order to discuss the usefulness of SKAT for NOSC’s CAT system, it is nec-
essary to pin-point exactly which system at NOSC was employed in that experiment.
The system that was analyzed in this context is the sanitized version of CAT
produced by NOSC in July 1986.

CMU has created its own version of CAT that is different from the version at
NOSC. Most of the tactical inference rules at CMU are different from those that are
contained in NOSC'’s system. One of the main reasons for this is CMU'’s inability to
have access to the classified information in NOSC’s system. The tactical inference
rules at CMU have been written with a certain template in mind and this is the tem-
plate that SKAT employs. Consequently all of the tactical rules at CMU are capable
of and are currently being generated by SKAT.

In July of 1986, a sanitized version »f the CAT system at NOSC was made so
that CMU would at least have access to the structure of the NOSC system if not the
actual content. This sanitized version has been analyzed to determine to what extent
SKAT is able to generate this version. The sanitized version was chosen for compari-
son because this version was representative of the system that was being used at
NOSC.

The following is a breakdown of CAT. The first column contains the general
category into which the rules can be placed. The second column is the number of
rules in that category. The third column is the name of ihe module or file in which
the rule is contained.

17

TYPE OF RULE # CONTAINED IN MCDULES
database rules 879 (db files, catdb)
database explanation 760 (db files)
other explanation 256 (catpara, catpara 2,
catparr, catexp, other files)
alert processing 96 (catalert, catalert2,
catalt)
miscellaneous inference 90 (catbrf, catgrp, catrul,
cattw, catwarning, evcomb)
miscellaneous control 60 (catcon, catdec)
report processing 55 (catrpt, tckrul)
movement calculations 54 {catmov, catmotion)
tacsit processing 43 (catts, catemt)
loghook processing 34 (logbook)
truth maintenance 20 (cattms, evcomb)
Total (all) 2347
Total (non-db) 1468
Total (non-db, non-exp) 452
Analysis Method

This section will describe the manner in which the analysis was done. First
the “literal” command will be described as well as its importance in determining to
what extent a rule is capable of being generated by SKAT. Then a disclaimer will be
forwarded stating the difficulty of the task of analyzing the rules. Following that, the
method of analysis will be described.

The main means of deciding whether or not a rule could be generated was
based on the use of the “literal” command. The “literal” command allows the user to
name specific text that should be placed into the rule, either on the right- or left-hand
side. The rule allows variable references to be included in the text, and the binding of
the variables are replaced by the proper pointers in the target code. The “literal”
command basically allows the user to create rules that do not fall into SKAT’s under-
standing of a rule template. The amount of use of the “literal” command provides a
strong indication of how much or how little the rule is covered by SKAT’s idea of a
tactical inference rule template, and is the main means of analysis employed here.

This paragraph is more or less a disclaimer for the analysis procedure.
Analyzing the rules is a difficult task. First, it is not always clear if a rule falls into
the category of tactical inference. In the event that it wasn’t clear whether or not a
rule was a tactical inference rule it was included as such and analyzed. Second,
sometimes a rule is very close to being “generated,” but it may have one statement in
it that has to be interpreted (such as using a START working memory element as a
condition element in order to have that rule dominate in the conflict set by specific-
ity). This prompted the categories of “generatability” which are described in the next
section. Even with the different categories, however, it was difficult to know where to
place rules. Only a few rules were actually run through SKAT. The process of rewrit-
ing the OPS code into SCL code turned out to be a slow and tedious process that was
abandoned in favor of looking at the rules and noting the areas of potential problems.

18

Because the rules were not actually run through SKAT, some problems may have es-
caped notice. On the whole, however, the analysis was done carefully, and most of the
problems were identified.

Due to these difficulties, it was decided that a distinction between completely
generated and ungenerated rules was undesirable. Thus, the capability of generating
the rule was broken into four categories. The categoeries delineate the degree to which
the “literal” command would have to be used in order to generate the CAT rule from
SKAT. The breakdown is as follows:

A = Can be generated without any literal statements in SCL.

B = Can be generated with a few (less than 5) basic literal statements.
C = Can only be generated with complicated literal statements.

D = Cannot be generated.

After most of the analysis was completed it hecame obvious that the category
C really had no meaning in that it became hard to distinguish from category D. When
a rule was complicated it was easier to say that it couldn’t be generated. The rule
would mainly consist of “literal” statements anyway.

RESULTS

This section presents the results of the analysis. First, the category of rules
actually analyzed will be described. The results of the analysis of the current version
of SKAT will be presented. An analysis of a version of SKAT with some simple modi-
fications will be presented.

The Rules That Were Closely Examined

Several categories of the rules were eliminated from consideration because
they are different from the template of SKAT. Obviously they could not be generated.
The categories that meet that criterion are

- alert processing

- miscellaneous control

- logbhook processing

- truth maintenance

- part of the explanation rules

- part of miscellaneous inference - (catbrf, catwarning).

This means the rules that were examined are as follows:

— database rules

- database explanation rules

- part of miscellaneous inference rules - (catgrp, catrul, cattw)
- report processing

— movement calculations

- tacsit processing.

Since the database rules all have essentially the same format with only a few
changes depending on the database key, they are considered a group. If one can be

19

generated, they all can be generated. Except for only a handful of rules, the same is
true for the explanation rules.

Results of Analysis of SKAT

Following are the number of rules for each category of “generatability.”

ke e o ofe sk ok ok ok sk sk ok ke ke ke ok o o o ok o o o ok ol ke o ok e ke e ok o ok e sk 3 o ok ok o ok ok ok ke ke ok ke e o ok o ok ok oK ok ok sk ok ke ok ok oK ok ok ok ok sk ok ok ok ok K

Analysis on current version of SKAT

Generation Number of
Category Rules
A 38
B 15
C 0
D 152

Database rules cannot be generated.
Explanation rules can be generated.

2 e afe e ok e ofe ke sk e ok e sfe afe ofe Ak o ofe e ofc e ok ok afe o ok ok ok ok o ak o 3 3 ak sl ke ok ok ok ok ke ol Ak e A e ke e ok o ol ofe e e ko e ke ke ol a3k s e ok Bk ok ok ok ok ok

The numbers for category A are a little misleading in that 32 of the 38 rules fall in
the module “catgrp.” Each of the 32 rules in that module is very similar to the rest of
the rules in that module. They have a certain feature on the left-hand-side (disjunc-
tion of predicates and values) that could be fixed by hand such that the rules could be
generated by SKAT. The only prerequisite would be that each rule would have to be
broken into several rules in order to handle the disjunction. That is the only problem
with those rules. Therefore they were included in category A.

These data point out that SKAT currently is capable of generating only a few
of the rules in NOSC'’s version of CAT. To some extent this inability could be ex-
pected. NOSC was not writing rules with CMU’s idea of the template in mind. A rule
in the NOSC system can contain much more “stuff” than the rule template at CMU
would allow. The types of things that are allowed in the NOSC system vary consider-
ably. Some of the differences are simple things that could be encompassed by chang-
ing the rule template as well as the SCL. Other differences are more profound in that
they indicate other types of knowledge that SKAT currently is incapable of handling.
This doesn’t mean that SKAT is unable to incorporate this knowledge. These differ-
ences mean that it would take some major effort to include this knowledge.

Results of Analysis of Modified Version of SKAT

In order to better understand how much of the problem lies with simple tem-
plate differences and how much lies with major differences in SKAT's understanding
of a tactical inference rule, another analysis of the rules was performed. This analysis
looked at the rules to see if they could be generated if certain simple changes to
SKAT could be made. These changes are simple only requiring slight changes to the
rule template. The changes that were included in the second analysis are

- Incorporate writes to screen on right-hand side of rule.

20

—“

— Allow more than one conclusion per rule.

— Allow right-hand side removes on assertions.

— Incorporate source field checks in assertion condition elements.
- Allow matching and making of contexts.

- Incorporate ability to use current time on right-hand side.

Following are the number of rules for each category of “generatability” for the ver-
sion of SKAT with the above changes:

250 2 e o o i ot e 30 ok e afc e ofe ok o ke o e o ol e ol ok ol ke ke ok e ok e 3k ok o 2k ke ok e ok ke e ok 3k o ok ok ke e alk ok sk ke ok 3 ok afe ke 3 ok 3 ke sk ok Ak ok o ok ok K

Analysis on version of SKAT with minor modifications

Generation Number of
Category Rules
A 69
B 36
C 0
D 101

Database rules cannot be generated.
Explanation rules can be generated.

o ok ok 4 sk 2t o sk sk e sk ok ok 3k o 3 e 3 e sk ok ok ok ok sk ok sk ke e sk ok ok sk e s o sfe ok e sk af afe ake ke 3k ok sk sk e 3 ok ok ke ok sk ale sk e ok ok e s ol ok ke e ok ok K ok ok

Simple changes to SKAT would provide some benefits to the generation process. Yet
problems would still remain. The NOSC CAT rules have other knowledge, besides
simple templated differences, encoded in them that SKAT currently is unable to deal
with. The types of knowledge represented in CAT that are not fully accounted for in
SKAT can be divided into three types:

- Knowledge about the target language.
- Knowledge about the domain.
- Knowledge about other parts of the system.

SKAT'’s Problems With Understanding of Target Language

SKAT only has a very limited knowledge about the data structures that are
used in SKAT. Most of that knowledge is contained within print statements in the
tactical rule generator. Thus the knowledge about what data structures in OPS83 are
being used to represent assertions and the inference network resides with the SKAT
programmer. If this knowledge was more explicit in SKAT, as well as knowledge
about how to access different fields of the data structures, then SKAT could be ex-
tended to represent and allow referencing of other fields of the structures.

SKAT currently employs no knowledge about the control mechanisms used in
OPS83. There are cases in NOSC’s CAT rules in which the programmer used such
knowledge to cause a rule to fire only in specific circumstances. This was done often
through the use of a CONTEXT working memory element. Another example of this
idea is contained in the use of the START working memory element in order to allow
a rule to dominate other rules in conflict resolution because the rule with the START
element would then be more specific than some other rules, which in the MEA

21

44‘---------------------------d

conflict resolution strategy is one of the filtering steps. It is unimportant that such
programming practices may not be very “pretty.” The importance is that such
practices express a need to represent control in SKAT in such a way that similar
types of control can be achieved in CAT, or at least similar functionality.

SKAT’s Problems with Understanding of Domain

The CAT rules employed many “removes” on the right-hand sides of rules.
Currently SKAT only deals with “makes” of assertions. The knowledge of when to
remove assertions from the inference net or to modify assertions already in it is
contained in the inference rules that produce the updates or superseding assertions.
This points out the need for SKAT to attain understanding of the conditions in which
an assertion is no longer true, or needs to be modified. This is an example of SKAT
needing knowledge about the validity of assertions.

Another piece of knowledge that SKAT needs deals with the use of default rea-
soning in the CAT system. Many assertions in NOSC’s CAT system are made in
which REASON working memory elements are made but the evidence is not made.
The evidence is one of the key elements for the inference network. In some cases this
is indicative that the assertion is a default. In other cases it is a way of isolating the
assertion from the inference net so that it is not removed and remade whenever
changes are made to any of its antecedents. This again points out a need for SKAT to
understand how long information is valid in the system and what should be done
when the information is no longer valid. It shows a need for somehow breaking out
default information into separate rules.

Inference rules in NOSC’s CAT are more contextualized than in the CMU sys-
tem. Some of the contexts are used as procedure calls to perform certain calculations
(e.g., cpa). Others are used as procedure calls to check if a recently calculated value
indicated a change in the old value (e.g., course or speed change). In those cases the
rules are used to match the needed assertions to do the comparison, but the compari-
sons themselves are done on the right-hand side so they can specify a tolerance for
the comparison (i.e., if courses are more than 5.0 degrees apart then there has been a
course change). All of those cases indicate a need for SKAT to have more complete
knowledge about the control issues involved with writing the system in a target lan-
guage such as OPS83.

In many of the rules, REASON working memory elements are matched on the
left-hand side. There are examples of rules using knowledge about how an assertion
was made to decide whether or not to match it. The source fields in some assertions
are also checked for this reason. These kind of examples show a need for SKAT to
have more knowledge about how to deal with the source of the information in a rule.

SKAT’s Problem With Understanding of Rule Interaction

SKAT doesn’t employ any knowledge about what rules are affected by other
rules. In other words, there is no knowledge about what right-hand side conclusions
are matched on the left-hand side of other rules or the transitive closure of other
rules. This is a manifestation of SKAT's nearsightedness about the other rules that it
has already learned. This type of knowledge is important also for cases in which rules
are inconsistent with the rest of the knowledge base, or are breaking a chain of rea-
soning by firing at inappropriate times.

22

Ld

POSSIBLE FUTURE RESEARCH

There are two main areas of research that have direct relevance to SKAT and
to the solution of some of the problems discussed above. The two major areas are in
task-level parallelism and expert system problem-solving methods.

One idea is to look at possibilities of task-level parallelism in production sys-
tems. CMU is looking at ways of exploiting parallelism in the match portion of the
recognize-act cycle. Task-level parallelism would focus more on exploiting parallelism
in domain dependent task areas.

This focus has direct implications for the development of SKAT. In order to
generate systems that take advantage of parallelism at the task level, the parallel
task areas first need to be uncovered. SKAT is a tool that could do such an analysis of
the rule base. This implies that SKAT would have to develop a database of the rules
that are in the system as well as a more thorough understanding of the ways in which
they interact. In addition, a better understanding of the control information that is
contained within the rules would have to be obtained. Development along those lines
would alleviate some of the problems previously discussed.

The other major effort would be to explore the idea of a problem-solving
method for CAT. The theory, attributable to John McDermott, et al., is that
rule-based system can be reasonably maintained and developed if the high level
problem-solving procedure that the system employs is understood and made explicit
in the design of the system. The problem-solving method helps to point out where
new knowledge needs to be added to the system in case the system is deficient in that
area. It also helps control rule interaction by carefully defining at what points in the
method each rule is available to be instantiated.

This type of development is relevant to SKAT in that an understanding of the
problem-solving method used by the system would provide a thorough understanding
of how and when the rules in the system should be employed. This means SKAT
would need an understanding of how control mechanisms are represented.

23

