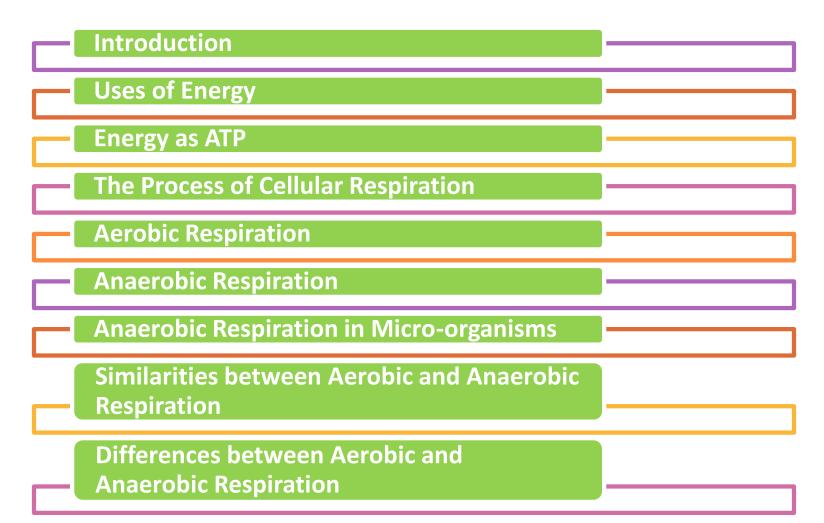



# LIFE SCIENCES GRADE 11 CAPS

STRUCTURED, CLEAR, PRACTICAL - HELPING TEACHERS UNLOCK THE POWER OF NCS

KNOWLEDGE AREA: Life Process in Plants and Animals.


**TOPIC 4:** 

#### **Cellular respiration**





## **SUMMARY OF THE PRESENTATION:**



# **INTRODUCTION:**

- In plants food is made in the form of glucose by the process of photosynthesis.
- When consumers feed on these plants the starch is digested into its simplest form-glucose.
- The glucose is then taken into the cells where it is broken down to release energy.
- This energy is released during the process of cellular respiration.
- The energy is released in the form of a compound called ATP.

# **INTRODUCTION:**

- Cellular respiration is the process during which glucose is broken down to release energy in the form of ATP.
- Oxygen is usually required for cellular respiration, though it may not always be a requirement.
- The by-products of cellular respiration are water and oxygen.

- Energy is required in the body for **5 main purposes**.
- These are:
- 1. Growth
- 2. Movement
- 3. Cell division
- 4. Maintaining body temperature
- 5. Active transport

- 1. Growth:
- Energy is used to make large molecules such as smaller polysaccharides, enzymes, proteins, fats and glycogen.
- Some of these molecules are then used to make cell components.
- These cell components are then used to make material needed for growth.

#### 2. Movement:

- Remember that movement is brought about by the contraction and relaxation of the muscles.
- Energy is required for the contraction and relaxation of muscles.
- Examples of movement in the human body is contraction and relaxation of the heart muscles, of the muscles of the blood vessels or even peristalsis.

- 3. Cell division:
- Energy is required during cell division for DNA replication and movement of the chromosomes.
- 4. Maintaining the body temperature:
- The heat energy that is released during chemical reactions is used by endothermic organisms to maintain their body temperature.

#### **SOMETHING FOR YOU TO DO:**

What is an endothermic organism?

# **SOLUTION:**

 It is an organism whose body temperature is constant irrespective of changes in the environmental temperature.

- 5. Active Transport:
- Remember when substances are absorbed against a concentration gradient energy is required.

## **ENERGY AS ATP:**

- Energy that is released during cellular respiration is used in the following way.
- Most of the energy is given off as heat.
- Some of the energy is used to make the compound ATP.
- ATP is an **energy rich compound**.
- ATP stands for Adenosine Triphosphate.
- The **formation** and **breakdown of ATP** is referred to a as the **ATP/ADP cycle**.
- During the ATP/ADP cycle ATP (Adenosine Triphosphate) is formed from ADP (Adenosine diphosphate).

#### **ENERGY AS ATP:**

- The energy that is released during cellular respiration is used to combine a phosphate molecule to ADP to form the ATP.
- When the energy is required chemical bonds are broken to release a phosphate molecule to form ADP.
- **34kJ of energy** is **required** to form **ATP**.

Can you predict then how much energy is released when ATP becomes ADP?

#### **ENERGY AS ATP:**

### 34 kJ

- These **ATP molecules** move **freely**.
- Therefore they are able to move to any part of the cell and supply the energy for any process that might need it.
- All cells use the ATP to store the energy and as a source of energy.

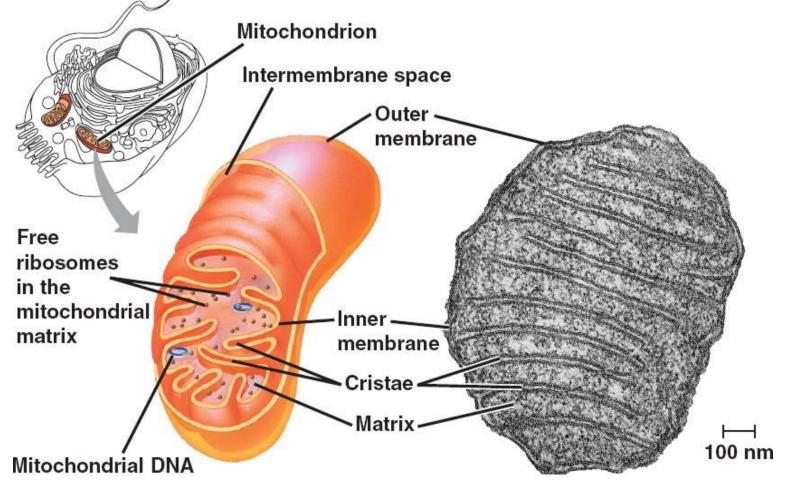
#### THE PROCESS OF CELLULAR RESPIRATION:

- Cellular respiration occurs in both plant and animal cells.
- There are **2** types of cellular respiration.
- They are:
- 1. Aerobic respiration
- 2. Anaerobic respiration.

#### THE PROCESS OF CELLULAR RESPIRATION:

• Aerobic respiration is respiration

that occurs in the **presence** of oxygen.


 Anaerobic respiration occurs in the absence of oxygen.

- Site of Cellular Respiration:
- Cellular respiration occurs in the cytoplasm of the cell and in the mitochondrion.
- Therefore we will look briefly at the structure of the mitochondrion:

#### Structure of the Mitochondrion:

- This is a cigar shaped organelle found in both the plant and animal cell.
- It is surrounded by a **double membrane**.
- The outer membrane is permeable to allow oxygen and pyruvic acid to enter.
- The inner membrane is folded to form finger like projections.
- These projections are called cristae.
- These cristae increase the surface area for the process of cellular respiration.

- Within the membrane lies a ground substance called the matrix.
- Found in the matrix are the DNA, ribosomes and enzymes.
- The ribosomes manufacture the enzymes that are required for respiration.
- The enzymes help with the process of respiration.



**Structure of Mitochondrion** 

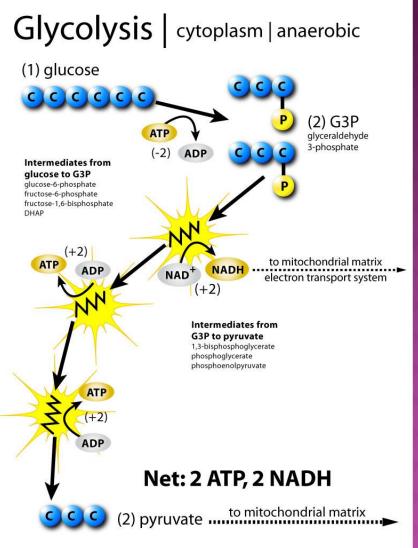
 The number of mitochondrion present in the cell is an indication of how much energy is required by that cell.

- Adaptations of the Mitochondrion for the process of Cellular Respiration:
- 1. Smooth outer membrane to enable easy movement around the cell.
- 2. Outer membrane is permeable to allow oxygen and pyruvic acid to enter the mitochondrion for Krebs's cycle and oxidative phosphorylation.
- 3. The inner membrane is folded to form the cristae to increase the surface area for the process of respiration.
- DNA and ribosomes are present for the manufacture of enzymes that are required for respiration.

#### The Process of Aerobic Respiration:

• This process is **dependent on oxygen**.

- Occurs in **3 phases**.
- These 3 phases are:
- 1. Glycolysis
- 2. Kreb's Cycle
- 3. Oxidative Phosphorylation

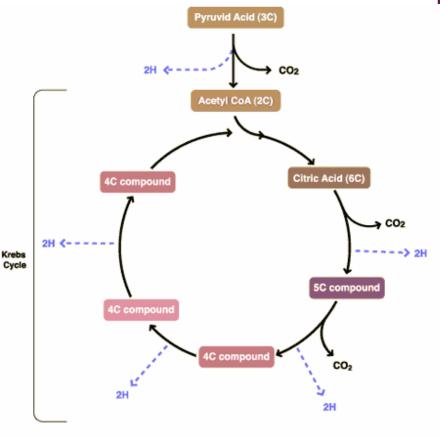

**Glycolysis**:

- Glycolysis occurs in the cytoplasm.
- This reaction requires energy.
- The **energy** comes from **ATP**.

 It involves phosphorylation which is the addition of phosphate to the glucose with the addition of energy.

#### **Glycolysis**:

- It starts with an energy rich 6 carbon molecule.
- This carbon molecule is broken down step wise to form two 3 carbon molecules.
- These 3 carbon molecules are called pyruvic acid.
- During the process energized hydrogen atoms and energy is released.




- The energy that is released is used to form ATP.
- Each step of the reaction is catalyzed by an enzyme.

#### Kreb's cycle:

- This stage is **dependent on oxygen**.
- Now lets look at this stage.

- The 2 pyruvic acids enters the mitochondrion.
- The pyruvic acid is now used in a cyclic series of reactions.
- During these reactions energized H atoms and carbon dioxide are released.
- The hydrogen atoms are transferred by coenzymes.



 $NAD + 2H \longrightarrow NADH_2$ 

#### **Oxidative Phosphorylation**:

- This phase also occurs in the mitochondrion.
- The energized H atoms that were produced during glycolysis and Kreb's cycle are involved in a series of reactions.
- These H atoms are transferred from 1 co-enzyme to another.
- At each transfer the energized H atom gives off a little energy.
- This continues until all the energy is released from the H atoms.

- The energy that is lost by the H atoms are used to combine:
  - ADP + P to form ATP
- The H atom then combines with oxygen to from water.

- Anaerobic respiration is also known as fermentation.
- This type of respiration occurs in the absence of oxygen.
- During anaerobic respiration the glucose is not completely broken down into carbon dioxide and water.
- The glucose is instead broken down into intermediate substances that are alcohol or lactic acid.
- Anaerobic respiration also releases very little energy, net gain of 2 ATP, compared to net gain of 36 ATP, produced during aerobic respiration.
- This is so because the glucose is not completely broken down.

#### **SOMETHING FOR YOU TO DO:**

Explain the differences between aerobic and anaerobic respiration.

# **SOLUTION:**

- 1. It occurs in the absence of oxygen.
- 2. The glucose is not completely broken down into carbon dioxide and water.
- The glucose is instead broken down into intermediate substances that are alcohol or lactic acid.
- Anaerobic respiration also releases very little energy, net gain of 2 ATP, compared to net gain of 36 ATP, produced during aerobic respiration.
- 5. This is so because the glucose is not completely broken down.

- Anaerobic respiration begins with glycolysis.
- Glycolysis occurs in the cytoplasm.
- During this process phosphorylation of the glucose molecule occurs.
- This means that energy from the ATP molecule is added to the 6 carbon glucose molecule.
- The glucose is then broken down into two 3carbon molecules called pyruvic acid.
- During this process energized H atoms and energy is released.

- The energy is used to form ATP.
- Each step of this process is **catalyzed by enzymes**.
- The process that follows is slightly different is plant and animal cells.

#### In a plant cell...

- The pyruvic acid is converted into ethanol and carbon dioxide.
- Energy is released as ATP.

In animal cells...

• The **pyruvic acid** is converted into **lactic acid**.

• Energy is also released as ATP.

#### **Anaerobic Respiration in Humans:**

- During strenuous physical activity larges amount of energy is required.
- This energy is first supplied by aerobic respiration.
- Since large amounts of energy is required, the breathing rate and heart rate needs to increase.
- This occurs to ensure there is enough oxygen entering the body and this oxygen is carried fast enough to the cells.
- This **increases** the **supply of oxygen** to the **cells**.

### **ANAEROBIC RESPIRATION:**

- Eventually is an **oxygen debt occurs**.
- Oxygen debt occurs when the available oxygen cannot meet the energy demands.
- The anaerobic respiration must occur.
- Remember that in animal cells lactic acid is produced as a by-product during anaerobic respiration.
- This lactic acid collects in the muscle tissue.
- If the lactic acid reaches very high levels, then it causes muscle cramps.
- These cramps prevent the muscle from contracting any further.

# **ANAEROBIC RESPIRATION:**

- Therefore the person cannot continue with the activity.
- The person then collapses.
- After the activity has stopped the breathing rate and heart beat remain high.
- This is to ensure that the oxygen debt is paid off by more oxygen being taken into the cells.
- The oxygen is used in 2 ways.
- Some of it is used to convert some lactic acid into carbon dioxide and water.
- Some oxygen is also used to convert some lactic acid into glucose.

- Micro-organisms undergo anaerobic respiration.
- This type of anaerobic respiration is called fermentation.
- An example of an organism that undergo fermentation is the yeast cell.
- Ouring fermentation, yeast cells produce energy.
- Then carbon dioxide and alcohol are produced as by-products.
- These by-products are used in industry.

 In industry the yeast is used to produce carbon dioxide and alcohol in large quantities.

- This field is called **biotechnology**.
- Biotechnology refers to the process during which biological processes are used for production.

#### Yeast:

- Yeast is used in wine and bread making.
- During fermentation, the product that is produced is dependent on the sugar that is used during anaerobic fermentation.

- If apple juice is the sugar source then, cider is made.
- When wine is made the source of sugar is grapes.
- If it is beer that needs to be made then the sugar used is a malt extract from germinating barley.

Wine is made in the following way...

- 1. The grapes are crushed.
- 2. Then the **crushed grapes** together with the **juice** is placed in a **fermentation vat**.

- 3. Then **yeast** is **added** to the **vat**.
- 4. Fermentation now occurs at a controlled temperature.
- 5. Alcohol and carbon dioxide is released during the fermentation process.
- 6. This results in the **formation of wine**.

#### **Bread-making**:

Bread is also dependent on the fermentation process.

#### Bread is made in the following way:

1. Yeast is added to the flour.

- 2. Then water is added to make a dough.
- 3. Remember the flour has starch. The starch in the flour is broken down into maltose when water is added to it. Maltose is a type of sugar.
- 5. As the yeast undergoes respiration is breaks down the sugar to release energy.
- 6. Together with the energy it also releases carbon dioxide and alcohol.
- 7. The alcohol is burnt off during baking.
- 8. The carbon dioxide causes the bread to rise.
- 9. When the bread is cooked the high temperatures kill the yeast.

#### **Bacteria:**

- Bacteria is used in the making of cheese and yoghurt.
- The type of bacteria that is used in making these dairy products is called lactic acid bacteria.
- During anaerobic respiration this type of bacteria releases lactic acid.
- The lactic acid turns the milk or cream sour.
- This lowers the pH of the milk or cream.
- The acidic pH prevents other types of bacteria from growing.

#### Cheese is made in the following way:

- 1. Lactic acid bacteria is added to the milk.
- 2. This bacteria undergoes anaerobic respiration to release lactic acid.
- 3. Then a protease enzyme, called rennin, is added to the milk.
- 4. Rennin causes the milk protein to coagulate.
- 5. The milk curdles into solid curd.
- 6. The curd is cut into slabs and a liquid is drained away after the curdling process.
- 7. This liquid is called whey.

- 8. The curd is compressed into blocks.
- 9. They are then placed on shelves to ripen.
- 10. The ripen process occurs as a result of action by other micro-organisms.
- 11. The longer the cheese is left to ripen the sharper its taste.
- The flavour or texture of the cheese is dependent on the strains of bacteria used in their production.

#### SIMILARITIES BETWEEN ANAEROBIC AND AEROBIC RESPIRATION:

# Anaerobic and aerobic respiration are similar in the following ways:

- 1. In both processes glucose is a requirement.
- In plants, both aerobic and anaerobic respiration release carbon dioxide and alcohol as byproducts.
- 3. The main product of both types of respiration is energy in the form of ATP.

### DIFFERENCES BETWEEN AEROBIC AND ANAEROBIC RESPIRATION:

 The table below shows the differences between the 2 types of respiration.

#### Differences between aerobic and anaerobic respiration:

| Aerobic respiration                                   | Anaerobic respiration                                            |
|-------------------------------------------------------|------------------------------------------------------------------|
| 1. Dependent on oxygen                                | 1. Independent of oxygen.                                        |
| 2. Releases more energy, net gain of 36 ATP.          | <ol> <li>Releases less energy,<br/>net gain of 2 ATP.</li> </ol> |
| 3. By products released are carbon dioxide and water. | 3. By products are carbon dioxide and alcohol.                   |

# **TERMINOLOGY:**

- Cellular respiration: is the process during which glucose is broken down to release energy.
- ATP: stands for Adenosine Triphosphate and is an energy rich compound.
- Aerobic respiration: is respiration that occurs in the presence of oxygen.
- Anaerobic respiration: occurs in the absence of oxygen.
- Cristae: these are finger like projections that increase the surface area for the process of cellular respiration.

# **TERMINOLOGY:**

- Phosphorylation: is the addition of phosphate to the glucose with the addition of energy.
- Pyruvic acid: these are 3 carbon molecules.
- Oxygen debt: occurs when the available oxygen cannot meet the energy demands of the body.
- Fermentation: is a type of anaerobic respiration that occurs in some micro-organisms.
- Biotechnology: refers to the process during which biological processes are used for production.
- Rennin: is a protease enzyme that causes the milk protein to coagulate.

The energy rich compound associated with respiration is...

- A. ATP
- B. ADP
- C. P

D. None of the above



The processes that requires energy in the body are...

- A. Growth, passive transport and cell division
- B. Mitosis, meiosis and passive transport
- C. Growth, mitosis and meiosis
- D. Both A and C



The organelle in which cellular respiration occurs is...

- A. Chloroplast
- B. Nucleus
- C. Mitochondrion
- D. Golgi apparatus





The mitochondrion contains the following components...

- A. DNA, stoma, crista
- B. Nucleus, crista, stroma
- C. DNA, crista, nucleus
- D. DNA, crista, matrix





The phase of respiration that occurs in the mitochondrion is...

- A. Kreb's cycle
- B. Glycolsis
- C. Oxidative phosphorylation
- D. Both A and C





The phase of respiration that occurs in the cytoplasm is...

- A. Kreb's cycle
- B. Glycolsis
- C. Oxidative phosphorylation
- D. Both A and C



The energy released from the energized hydrogen atom during oxidative phosphorylation is used to...

- A. Combine ADP + P to form ATP
- B. Produce pyruvic acid
- C. Break down pyruvic acid
- D. Break down glucose



Energized hydrogen atoms and carbon dioxide is released during...

- A. Glycolysis
- B. Kreb's cycle
- C. Oxidative phosphorylation
- D. Both B and C



Energized hydrogen atoms are transferred from one coenzyme carrier to the next during...

A. Glycolysis

- B. Kreb's cycle
- C. Oxidative phosphorylation
- D. Both B and C



The 6 carbon molecule undergoes a step wise break down to form two pyruvic acids during...

- A. Glycolysis
- B. Kreb's cycle
- C. Oxidative phosphorylation
- D. Both B and C



\_\_\_\_\_ is an adaptation that increases the surface area for respiration.

- A. Smooth outer membrane
- B. Permeable outer membrane
- C. Presence of cristae
- D. Presence of DNA and ribosome



\_\_\_\_\_ is an adaptation that allows oxygen and glucose to enter the mitochondrion for respiration.

- A. Smooth outer membrane
- B. Permeable outer membrane
- C. Presence of cristae
- D. Presence of DNA and ribosome





\_\_\_\_\_ is an adaptation that allows for easy movement of the mitochondrion around the cytoplasm.

- A. Smooth outer membrane
- B. Permeable outer membrane
- C. Presence of cristae
- D. Presence of DNA and ribosome



\_\_\_\_\_ is an adaptation that allows for the production of enzymes for respiration.

- A. Smooth outer membrane
- B. Permeable outer membrane
- C. Presence of cristae
- D. Presence of DNA and ribosome



During anaerobic respiration in plants the products are...

- A. ATP, carbon dioxide and water
- B. ATP, alcohol and carbon dioxide
- C. ATP, lactic acid and carbon dioxide
- D. ATP, alcohol and water



During aerobic respiration the products formed are...

- A. ATP, carbon dioxide and water
- B. ATP, alcohol and carbon dioxide
- C. ATP, lactic acid and carbon dioxide
- D. ATP, alcohol and water



During fermentation in bacteria the products formed are...

- A. ATP, carbon dioxide and water
- B. ATP, alcohol and carbon dioxide
- C. ATP, lactic acid and carbon dioxide
- D. ATP, alcohol and water



The enzyme that is used to curdle milk is...

- A. Called rennin
- B. An example of a protease
- C. Used during the production of alcohol
- D. Both A and B



Bread is able to rise when baked because of...

- A. Anaerobic respiration
- B. Aerobic respiration
- C. The presence of alcohol
- D. Both A and C



A similarity between aerobic and anaerobic respiration is that...

- A. Both require oxygen
- B. Both release alcohol
- C. Both release water
- D. Both require glucose



#### SOLUTIONS FINAL ASSESSMENT QUESTIONS

11. C Α 1. 2. C 12. B 3. C 13. A 4. D 14. D 5. D 15. **B** 6. B 16. A Α 7. 17. C 8. B 18. D 9. C 19. A 20. A 10. A