KNOWLEDGE MANAGEMENT SYSTEMS LIFE CYCLE

Main Topics of This Lecture

Challenges in building KM Systems
Compare CSLC and KMSLC
User's vs. Expert's Characteristics
Stages of KMSLC

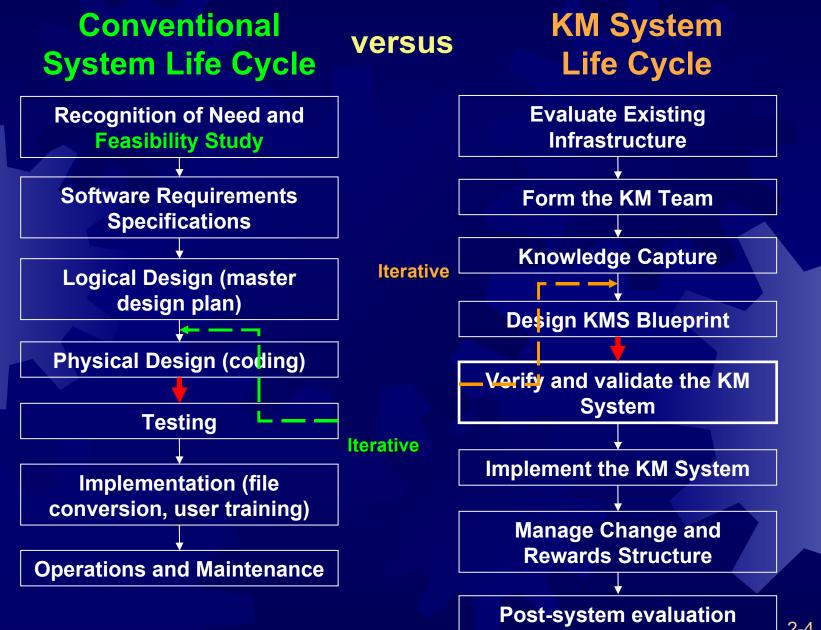
CHALLENGES IN BUILDING KM SYSTEMS

Culture

- getting people to share knowledge

Knowledge evaluation

 assessing the worth of knowledge across the firm

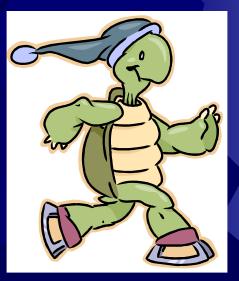

Knowledge processing

 documenting how decisions are reached

Knowledge implementation

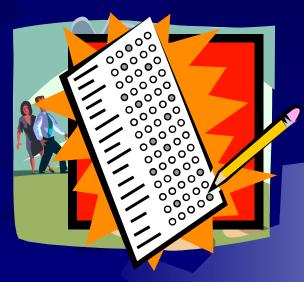
 organizing knowledge and integrating it with the processing strategy for final deployment

Key Differences


- Systems analysts deal with information from the user; knowledge developers deal with knowledge from domain experts
- Users know the problem but not the solution; domain experts know both the problem and the solution
- System development is primarily sequential; KMSLC is incremental and interactive.
- System testing normally at end of conventional system life cycle; KM system testing evolves from beginning of the cycle

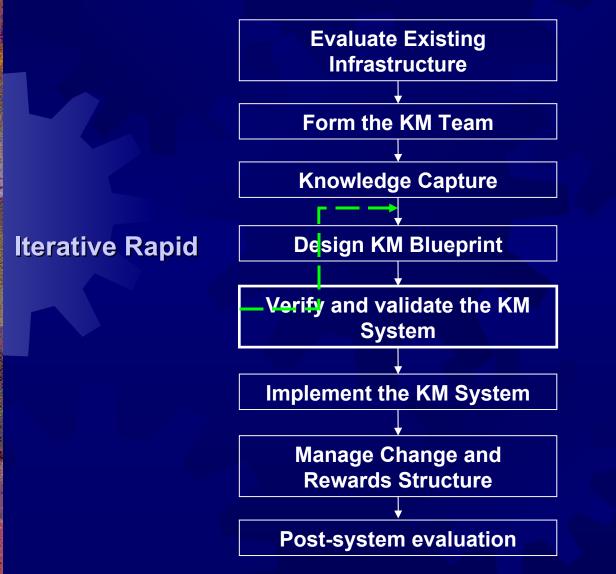
Key Differences (cont'd)

Conventional system life cycle is process-driven "specify then build";



* KMSLC is *result-oriented* "start slow and grow"

Key Similarities


- Both begin with a problem and end with a solution
- Both begin with information gathering or knowledge capture
- Testing is essentially the same to make sure the system is right and it is the right system
- Both developers must choose the appropriate tool(s) for designing their respective systems

Helr

Chapter 3: Knowledge Management Systems Life Cycle

Stages of KMSLC

(1) Evaluate Existing Infrastructure

System justifications:

- What knowledge will be lost through retirement, transfer, or departure to other firms?
- Is the proposed KM system needed in several locations?
- Are experts available and willing to help in building a KM system?
- Does the problem in question require years of experience and tacit reasoning to solve?

The Scope Factor

- Consider breadth and depth of the project within financial, human resource, and operational constraints
- Project must be completed quickly enough for users to foresee its benefits
- Check to see how current technology will match technical requirements of the proposed KM system

Role of Strategic Planning Risky to plunge into a KMS without strategy

Knowledge developer should consider:

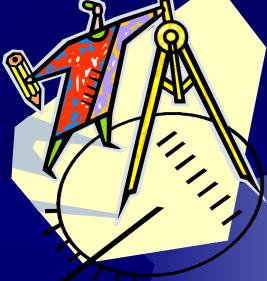
- Vision Foresee what the business is trying to achieve, how it will be done, and how the new system will achieve goals
- *Resources Check on the affordability of the business to invest in a new KM system
- Culture Is the company's political and social environment amenable to adopting a new KM system?


(2) Form the KM Team

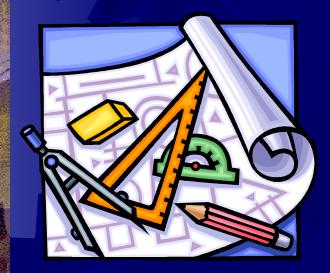
- Identify the key stakeholders of the prospective KM system.
- Team success depends on:
 - Ability of team members
 - Team size
 - Complexity of the project
 - Leadership and team motivation
 - Not promising more than can be realistically delivered

(3) Knowledge Capture

- Explicit knowledge captured in repositories from various media
- Tacit knowledge captured from company experts using various tools and methodologies
- Knowledge developers capture knowledge from experts in order to build the knowledge base


Selecting an Expert

- How does one know the expert is in fact an expert?
- How would one know that the expert will stay with the project?
- What backup should be available in case the project loses the expert?
- How could we know what is and what is not within the expert's area of expertise?


Role of the Knowledge Developer

 The architect of the system
 Job requires excellent communication skills, knowledge of capture tools, conceptual thinking, and a personality that motivates people

- Close contacts with the champion
- Rapport with top management for ongoing support

(4) Design the KM Blueprint

The KM blueprint addresses several issues:

- Finalize scope of proposed KM system with realized net benefits
- Decide on required system components
- Develop the key layers of the KM software architecture to meet company requirements
- System interoperability and scalability with existing company IT infrastructure

(5)Testing the KM System

- Verification procedure: ensures that the system has the right functions
- Validation procedure: ensures that <u>the system</u> has the right output
- * Validation of KM systems is not foolproof

(6) Implement the KM System

- Converting a new KM system into actual operation
- This phase includes conversion of data or files
- This phase also includes user training
- Quality assurance is important, which includes checking for:
 - Reasoning errors
 - Ambiguity
 - Incompleteness

 False representation (false positive and false negative)

(7) Manage Change and Rewards Structure

- Goal is to minimize resistance to change
- Experts
- Regular employees (users)
- Troublemakers
- Resistances via projection, avoidance, or aggression

(8) Post-system Evaluation

- Assess system impact in terms of effects on:
 - People
 - Procedures
 - Performance of the business
- Areas of concern:
 - Quality of decision making
 - Attitude of end users
 - Costs of Knowledge processing and update

Key Questions

- Has accuracy and timeliness of decision making improved?
- Has KMS caused organizational changes?
- What are users' reactions towards KMS?
- Has KMS changed the cost of operating the business?
- Have relationships among users affected?
- Does KMS justify the cost of investment?

Chapter 3: Knowledge Management Systems Life Cycle

End of Lecture 2

Chapter 3: Knowledge Management Systems Life Cycle

Purpose

- Statement of Scope & Objectives
 - 2.1 System functions
 - 2.2 Users and characteristics
 - 2.3 Operating environment
 - 2.4 User environment
 - 2.5 Design/implementation constraints
 - 2.6 Assumptions and dependencies

3. Functional Requirements

- 3.1 User interfaces
- 3.2 Hardware interfaces
- 3.3 Software interfaces
- 3.4 Communication protocols and interfaces

4. Nonfunctional Requirements

- 4.1 Performance requirements
- 4.2 Safety requirements
- 4.3 Security requirements
- 4.4 Software quality attributes
- 4.5 Project documentation
- 4.6 User documentation

Users Versus Experts

<u>Attribute</u> Dependence on system High

Cooperation

Usually cooperative

<u>User</u>

Tolerance for ambiguity Low

Knowledge of problem High

Contribution to system Information

System user

Yes

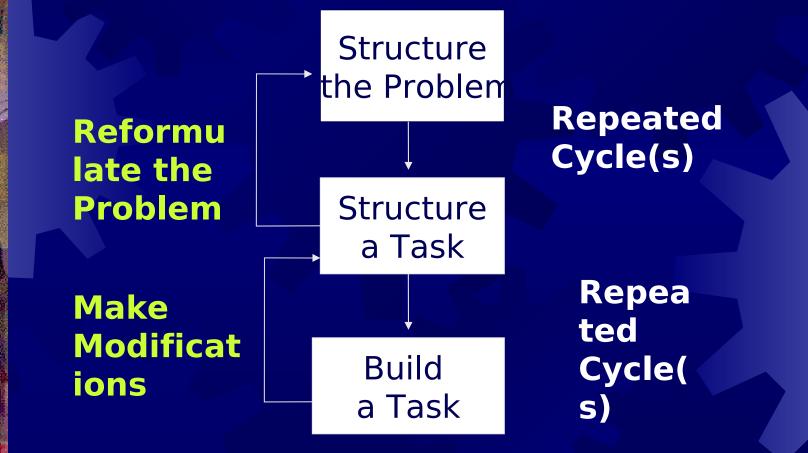
Availability for system builder

Readily available

Low to nil

Cooperation not required

High


Average/low

Knowledge/expertise

No

Not readily available

Rapid Prototyping Process?

2

3

4

5

6

7

Databases

Layers of KM Architecture

Authorized access control (e.g., security, passwords, firewalls, authentication)

Collaborative intelligence and filtering

(intelligent agents, network mining, customization, personalization)

Knowledge-enabling applications

(customized applications, skills directories, videoconferencing, decision support systems, group decision support systems tools)

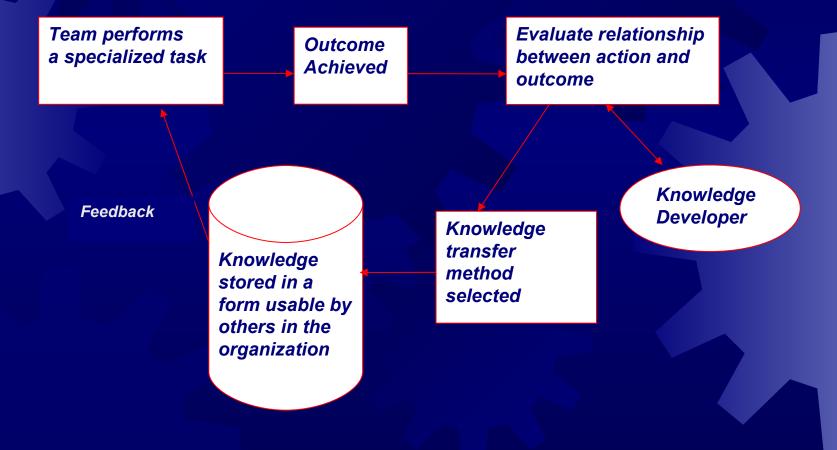
Transport

(e-mail, Internet/Web site, TCP/IP protocol to manage traffic flow)

Middleware

Legacy applications

(e.g., payroll)


(specialized software for network management, security, etc.)

Groupware (document exchange, collaboration) Data warehousing (data cleansing, data mining)

-26

Knowledge Capture and Transfer Through Teams

