
Kofax Communications Manager
ComposerUI for ASP.NET Developer's Guide
Version: 5.4.0

Date: 2020-08-26

© 2013–2020 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other trademarks
are the property of their respective owners. No part of this publication may be reproduced, stored, or
transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface.. 8

Related documentation...8
Getting help with Kofax products...9

Chapter 1: Introduction.. 11
Browser-based solution.. 11
Result document...11

Chapter 2: Overview... 12
Installation... 13
Summary...13

Chapter 3: Sample workflow..14
Analysis...21
Summary...24

Chapter 4: Configuration..25
Main configuration.. 25

Administrator section... 25
CM Core section..25
Application section...26

Application configuration...27
Main configuration section...27
Customization section..27
Properties section.. 29
Summary.. 29

Configuration for CM ComposerUI ASP.NET...29
Job scheduling in CM Core... 30

Chapter 5: Calls...32
Call parameters.. 32
Configuration parameters... 33
Properties..33
Listmodels... 33

Parameters (prepared model list)..33
Parameters...34

Runmodel..34
Parameters (prepared model run)...35
Parameters...35

3

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Chapter 6: Applications..39
Application folder.. 39
Defaults... 40
Customization... 40

Styles..41
Behavior... 41
Behavior examples.. 42
Text and JavaScript behavior.. 42
Customizing XSLT... 43

Chapter 7: Suspend and Resume... 44
Default Suspend implementation... 44
Default Resume implementation.. 44
Changing Forms during suspension.. 45

Chapter 8: Integration...47
Sessions..48
Client-side integration... 48
Server-side integration..49

Prepare Master Template list.. 49
Prepare Master Template run..50
Preparation services.. 50
Exit points.. 57

Chapter 9: KCM Core: ComposerUI exit points...58
CheckModelPathAccess.dss (previously CheckModelAccess)..58
ErrorOccurred.dss...58
MakeHTMLDocument.dss...59
MakePDFDocument.dss... 59
ModelRunCompleted.dss..60
PrepareSuspendSession.dss..60
ProcessResult.dss.. 60
ProcessPreview.dss.. 61
ResumeSession.dss... 61
SessionResumed.dss... 62
SuspendSession.dss...62
ValidateModel.dss... 62
Uploaded.dss.. 63

Chapter 10: KCM ComposerUI APIs... 64
.NET API...64

Aia.ITP.OnLine.Model class... 64

4

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Running an interactive CM model...64
Methods..65
Properties... 69

Java API... 73
Installation.. 73
Model Class... 73
Job Class... 81

Form Version.. 83
The interact.xml file format...84

Descriptions..84
Namespaces.. 85

Top-level elements..85
itp:interact element...85
itp:header element... 87
itp:question element...88
itp:question element (fixed text).. 89
itp:group element... 90
itp:table element...92
itp:row element...93
itp:button element.. 96

Subelements... 97
itp:cell... 97
itp:environment...97
itp:feedback.. 97
itp:group-label...98
itp:helptext.. 98
itp:keylist-prompt.. 98
itp:order.. 99
itp:order-response.. 99
itp:paragraph-set.. 99
itp:port.. 100
itp:screen-fields.. 100
itp:server...100
itp:table-label.. 101
itp:text...101
itp:textblockserver.. 101
itp:title... 102

The <response> element... 102

5

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Structure...102
Element.. 103
Formatting.. 103
ITP-interact-ID.. 104
Example... 105
Key selection..105

Representation of KCM FORM elements.. 106
TEXT question... 106
NUMBER question...107
BOOLEAN question...107
FILE attribute... 108
DATE attribute..109
TIME attribute.. 109
MULTISELECT questions.. 110
READONLY questions... 111
Text Block selections... 111

Chapter 11: KCM ComposerUI Server customization APIs.. 113
Customization APIs for KCM ComposerUI ASP.NET.. 113

CreateITPServerJob...113
CreateITPOnLineJob..114
GetRequestTemporaryFile... 114
GetSessionStoragePath...115
ServerCallEx.. 116
Session ID validation functions... 117
SetRunModelSession...118
StringResource and RetrieveStringResource..118
WriteError... 119

Chapter 12: Securing KCM ComposerUI.. 120
Securing custom applications...120

Exposing web URLs.. 121
Secure customization...123
CM ComposerUI pages with parameter checks... 124

Securing CM ComposerUI Server installation... 125
Securing CM ComposerUI...125
Securing CM Core...125

Chapter 13: ActiveX deployment on clients...126
Configuring Internet Explorer... 126
Deploying the ActiveX controls.. 126

6

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Download on first use..127
Centralized deployment... 127
Manual installation... 127

Validating the installation..128
Chapter 14: Troubleshooting... 129

First use of KCM ComposerUI for ASP.NET is very slow... 129
Preview documents are loaded in their own application window...129
Result document not opened in Word, error mentions OLE container.. 130
Result document not visible on desktop.. 130
Default File Upload method only works with Internet Explorer/Windows clients............................130
File Upload fails..130
Simultaneous sessions per user will fail.. 131
"String index out of range: -128" error shown in browser..131
Part of error message is hidden.. 131
Sessions lost when running KCM ComposerUI in an IFrame... 131

7

Preface

This guide describes the structure and configuration of KCM ComposerUI for ASP.NET along with an
overview of related components.

Related documentation
The documentation set for Kofax Communications Manager is available here:1

https://docshield.kofax.com/Portal/Products/KCM/5.4.0-cli2a1c07m/KCM.htm

In addition to this guide, the documentation set includes the following items:

Kofax Communications Manager Release Notes
Contains late-breaking details and other information that is not available in your other Kofax
Communications Manager documentation.

Kofax Communications Manager Technical Specifications
Provides information on supported operating system and other system requirement for Kofax
Communications Manager.

Kofax Communications Manager Installation Guide
Contains instructions on installing and configuring Kofax Communications Manager and its components.

Kofax Communications Manager Getting Started Guide
Describes how to use Contract Manager to manage instances of Kofax Communications Manager.

Kofax Communications Manager Batch & Output Management Getting Started Guide
Describes how to start working with Batch & Output Management.

Kofax Communications Manager Repository Administrator's Guide
Describes administrative and management tasks in Kofax Communications Manager Repository and
Kofax Communications Manager Designer for Windows.

Kofax Communications Manager Repository User's Guide
Includes user instructions for Kofax Communications Manager Repository and Kofax Communications
Manager Designer for Windows.

1 You must be connected to the Internet to access the full documentation set online. For offline access, see
the "Product documentation" section in the Installation Guide.

8

https://docshield.kofax.com/Portal/Products/KCM/5.4.0-cli2a1c07m/KCM.htm#

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Help for Kofax Communications Manager Designer
Contains general information and instructions on using Kofax Communications Manager Designer, which
is an authoring tool and content management system for Kofax Communications Manager.

Kofax Communications Manager Template Scripting Language Developer's Guide
Describes the KCM Template Script used in Master Templates.

Kofax Communications Manager Core Developer's Guide
Provides a general overview and integration information for Kofax Communications Manager Core.

Kofax Communications Manager Core Scripting Language Developer's Guide
Describes the KCM Core Script.

Kofax Communications Manager Batch & Output Management Developer's Guide
Describes the Batch & Output Management scripting language used in KCM Studio related scripts.

Kofax Communications Manager Repository Developer's Guide
Describes various features and APIs to integrate with Kofax Communications Manager Repository and
Kofax Communications Manager Designer for Windows.

Kofax Communications Manager ComposerUI for HTML5 JavaScript API Web Developer's Guide
Describes integration of ComposerUI for HTML5 into an application, using its JavaScript API.

Kofax Communications Manager ComposerUI for J2EE Developer's Guide
Describes JSP pages and lists custom tugs defined by KCM ComposerUI for J2EE.

Kofax Communications Manager ComposerUI for ASP.NET and J2EE Customization Guide
Describes the customization options for KCM ComposerUI for ASP.NET and J2EE.

Kofax Communications Manager DID Developer's Guide
Provides information on the Database Interface Definitions (referred to as DIDs), which is a deprecated
method to retrieve data from a database and send it to Kofax Communications Manager.

Kofax Communications Manager API Guide
Describes Contract Manager, which is the main entry point to Kofax Communications Manager.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to keep you
informed about Kofax products. We encourage you to use the Knowledge Base to obtain answers to your
product questions.

To access the Kofax Knowledge Base, go to the Kofax website and select Support on the home page.

9

https://knowledge.kofax.com/
https://www.kofax.com/

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Note The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or Microsoft
Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a product
family name to view a list of related articles. Please note that some product families require a valid
Kofax Portal login to view related articles.

• Access to the Kofax Customer Portal (for eligible customers).
Click the Customer Support link at the top of the page, and then click Log in to the Customer Portal.

• Access to the Kofax Partner Portal (for eligible partners).
Click the Partner Support link at the top of the page, and then click Log in to the Partner Portal.

• Access to Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-service
tools.
Scroll to the General Support section, click Support Details, and then select the appropriate tab.

10

Chapter 1

Introduction

KCM ComposerUI Server is a server-based solution to produce interactive documents. It consists of three
main components: KCM Core, KCM Repository Server, and KCM ComposerUI. Based on KCM Core,
KCM ComposerUI is a scalable, high-performance solution for advanced browser-based correspondence
and business document systems. It supports end users in creation of complex correspondence and
production of highly personalized documents. KCM ComposerUI has a browser-based user interface that
can be integrated with any business application and data source.

Browser-based solution
KCM ComposerUI supports the creation of interactive documents. Users can generate documents
from a list of available document templates. This is a highly interactive process, when users answer the
additional questions in the forms opening in their browsers.

These forms:
• Capture data or text that is not available from existing applications
• Enable users to make specific choices from predefined options
• Can dynamically adapt themselves to previous answers or application data

KCM ComposerUI automatically creates all these forms based on instructions in the Master Template. No
knowledge of HTML is required. The forms support the use of data entry fields, check boxes and drop-
down menus. Help texts assist the end user in the process. All dialog formatting is done using CSS and
XSL style sheets, which enable full customization of the web form layout.

Result document
After completing the interview process, the Master Template creates the required document. Depending
on the KCM ComposerUI setup, the user can edit the document in a word processor. KCM ComposerUI
can also convert the document to PDF format, and then email or publish it.

11

Chapter 2

Overview

Interactive documents produced by KCM ComposerUI require additional user input for document
production. During the server-based production of the document, the user may be prompted for additional
information.

KCM Core is the foundation of KCM Document Production. KCM Core can access a wide range of data
sources and allows a seamless integration of the document production process in the business processes
of an organization. KCM Core runs as a number of Windows services that satisfy all kinds of standard or
custom requests. KCM Core is designed to be highly scalable, and it is accessible through a number of
APIs. See KCM Core Developer's Guide for more information on these APIs.

KCM document production is template-based. In KCM terminology a template is called a "Master
template." KCM Repository offers an environment in which these models can be developed in a controlled
fashion. It provides role-based authorization, revision management, reporting facilities, and dependency
information. Also, dynamic objects such as Text Blocks and dynamic Forms, can be managed in KCM
Repository. When producing a document that requires a Text Block or a dynamic Form, KCM Core
retrieves these at runtime from the KCM Repository Server. See KCM Designer online help for more
information on Text Blocks and Forms.

KCM ComposerUI is a web-based component that serves as an intermediary between KCM Core and
the user. Whereas KCM Core communicates in terms of XForms XML messages, HTML Forms have to
be presented to the user. Likewise, whereas the browser will post data in HTTP messages, KCM Core
requires answers in XML format. KCM ComposerUI takes care of the translation between these two
components. It is highly configurable and may be customized by adapting all kinds of resources, such as
cascading style sheets, xsl transformations or resource files.

The chapter "Sample workflow" demonstrates that KCM ComposerUI can be used as a stand-alone
application, which presents a list of Master Templates and supports document production given a selected
Master Template. In many cases document production is offered to the user as part of another application.
Therefore, KCM ComposerUI has been designed to integrate into another application easily.

This process involves three parties:

1. Integrating application, which can be anything from a simple client(-server) application to a complete
portal.

2. End user

3. KCM ComposerUI

KCM ComposerUI offers different interfaces:

1. A server-to-server interface to allow the integrating application to prepare a Master Template run in
which a single interactive document is produced. Preparation of a Master Template run involves a set
of parameters and optionally one or more data files. A Master Template run is uniquely identified by a
session identifier.

12

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

2. An HTTP interface to allow the end user to produce a document given such a session identifier. The
user is guided through a wizard-like sequence of HTML forms.

3. A server-to-server interface to allow the integrating application to access the results of a Master
Template run. For example, the produced document and some metadata about the Master Template
run.

If the definition of the Master Template run is simple, it can also be passed as part of the HTTP interface.
In most relevant cases, though, server-to-server preparation of Master Template runs is preferred.

See Integration for more details on integration of KCM ComposerUI in another application.

KCM ComposerUI consists of two components: An ASP.NET implementation that runs on Microsoft
Internet Information Server, and a J2EE implementation that runs on J2EE-based web servers.

Installation
KCM ComposerUI requires installation of KCM Core in combination with either the ASP.NET or the J2EE
implementation of KCM ComposerUI that depends on your web server. To take advantage of dynamic
objects, such as Text Blocks or dynamic forms, an installation of the KCM Repository Server is required as
well.

See KCM Installation Guide for details on products installation.

Each implementation of KCM ComposerUI comes with two examples of how to configure and customize
this application. A more detailed examples of applications to explore the product will be given In the next
chapter.

Summary
• KCM Core offers production of interactive documents through the KCM ComposerUI API, with all the

advantages of a server-based solution.
• During this process the KCM Repository Server may serve dynamic objects such as Text Blocks and

dynamical forms.
• KCM ComposerUI is a web-based component that operates as an intermediary between KCM Core

and user.
• KCM ComposerUI offers interfaces to allow for seamless integration in another application.

13

Chapter 3

Sample workflow

This chapter includes a sample workflow that demonstrates the generic functionality of KCM ComposerUI
and shows how it can be configured and customized. Some information in this chapter may vary,
depending on your implementation of KCM ComposerUI. In these cases, information for ASP.NET is
provided with its equivalent for J2EE in brackets. Most information applies to both the ASP.NET and the
J2EE implementations.

Before working with KCM ComposerUI, you should configure Letterbooks and Document Templates using
KCM Designer. In the following example, assume that a Letterbook Examples has been created.

After installation and configuration of a Letterbook in the KCM Designer, you can configure a default
Letterbook entry point in the configuration page of your application using: http://[machine]:
[port]/itp/app/[application]/configure.aspx. For more information, see Application
configuration.

You can also pass the Letterbook entry point as a parameter like this:

http://[machine]:[port]/itp/app/sample/modelselect.aspx?letterbook=[letterbook]

where:
• [machine] is the name of the web server
• [port] is the port through which it is accessible
• [Letterbook] is the letterbook entry point you want to use

When you have entered a default Letterbook on the application configuration page, it is not necessary
to pass the Letterbook parameter on the page. If you do pass a Letterbook parameter, it will override the
default setting on the configuration page. Name your Letterbook Examples. The following page appears:

14

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

This page shows one of the two main functionalities of KCM ComposerUI, namely the possibility to
retrieve and present a structured list of Document Templates that has been defined as a Letterbook
in KCM Designer. The list shows all the models with the name Examples, which are available in the
Letterbook for the user.

Depending on the [Letterbook] the Administrators can manage the content of the Letterbook as follows.

The value of the Letterbook parameter can be provided as a rep:/ URI. It looks similar to this example:
rep:[//host[:port]]/type/project/[path/]object[?key=value[&key=value]*]

host: TCP/IP Hostname of the system hosting the KCM Content Publication Database / KCM Repository
server.

port: TCP/IP Port the server listens to (defaults to 2586)

type: Type object to retrieve. Supported objects:
• Letterbook

project: Project. Use asterisk symbol to refer to the default project.

path: (Optional) Folders, separated by slash.

object: The object to be retrieved.

key/ value: Additional key/value pairs for parameters. Supported keys are:
• user=Repository User
• status=[published|accepted|current|development]

15

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Example:

rep://localhost/letterbook/DemoProject/Letters?status=accepted

refers to the Accepted version of the Letterbook Letters in the project DemoProject. The Letterbook
is retrieved from the KCM Repository Server installed on the local host. See RetrieveRepositoryObject for
more information on REP:/ URIs.

Note Letterbook is not aware of environments. The settings for ContentPublicationName and
RepositoryObjectStatus as configured in the Environments are not applied.

When no rep:/ URI is provided in the [letterbook], the templates (named Logical Models in the KCM Base
Administration GUI) added to the Letterbook are managed using the KCM Base Letterbook GUI.

The page consists of four frames. The two outer frames serve as margins. The left inner frame shows a
(possibly nested) list of folders. From this list, a page with the Master Templates for the currently selected
folder is loaded in the right frame.

In the right frame, Master Templates are presented as links. Click the link "Complaint letter" to open the
following URL in a new browser window:

http://[machine]:[port]/itp/sample/modelbegin.aspx

This URL is extended with a query string, which contains information about the model to be run.

16

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

When the page appears, the user can select an output format and Preview preference. Whenever KCM
sends out additional questions, it can include them with the document in its current stage of production.
The preview document may be presented to the user. Leave the default settings as they are. Click OK to
start the Master Template run on the server.

17

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The next page shows the first form of the Master Template run. The Complaint letter Master Template
requires selection of the customer to whom the letter should be sent. KCM Core will send out an XForms
XML message translated by KCM ComposerUI to an HTML page. In the right frame, a preview of the
document is shown, which contains only a logo. Click "1002 Benitas-Fuentes G." to proceed.

18

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The second form contains a drop-down list with the medium options. A user should select the option
through which the complaint was received. No additional content is produced and the preview remains the
same. Select Email and click OK.

19

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

In the last form the user is prompted to provide a date, a brief description of the complaint, and an action
to take a response to the complaint. Now the document has a header containing some of the information
provided earlier: the name of the customer and the fact that the complaint was received by email. The
information provided in the previous form is reflected in the preview. Provide answers to the questions and
click OK.

20

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The Master Template run is now completed. The resulting PDF document appears in the right frame. Click
the blue arrow to resize the frame. Now browse to

http://[machine]:[port]/itp/app/sample2/modelselect.aspx?letterbook=[Letterbook]

where:
• [machine] is the name of the web server
• [port] the port through which it is accessible
• [Letterbook] indicated the Letterbook entry point you want to use

This leads to similar, but slightly different features:
• The appearance of the pages is different.
• The page asking for the document format and preview activation is not available.
• No previews are shown and the result document is presented in Microsoft Word format.

Analysis
Both runs were started by opening a URL in a following format:

21

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

http://[machine]:[port]/itp/app/[application]/modelselect.aspx or
http://[machine]:[port]/itp/app/[application]/modelselect.aspx?
letterbook=[letterbook] or (http://[machine]:[port]/itp/app/[application]/
modelselect.jsp or http://[machine]:[port]/itp/app/[application]/
modelselect.jsp?letterbook=[letterbook]),

where:

• [machine]:[port] refers to the web site with installed KCM ComposerUI
• [application] identifies the usage of "Application"
• [letterbook] indicates the usage of the Letterbook entry point

An application identifies a set of resources, that are relevant to the configuration and customization of
OnLine, such as configuration settings, web pages and cascading stylesheets. Browsing to different
applications results in the use of different resources. Therefore, in different appearance and behavior.

Browsing to this URL resulted in a list of Master Templates. When the user clicked any Master Template
another URL of the form was opened:

http://[machine]:[port]/itp/app/[application]/modelbegin.aspx?[querystring]

(http://[machine]:[port]/itp/app/[application]/modelbegin.jsp?[querystring]),

where [querystring] contained some information about the Master Template to be run. This initiated the
actual Master Template run, possibly after some additional pages. During the Master Template run a
number of forms were presented to the user, after which a URL was opened

http://[machine]:[port]/itp/app/[application]/modelend.aspx?[querystring]

(http://[machine]:[port]/itp/app/[application]/modelend.jsp?[querystring])

The [querystring] contained some additional information about the document that was produced, allowing
the modelend page to open the result document.

The process flow described in the previous paragraphs is described here:

22

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The modelselect, modelbegin and modelend pages are the specific component between the generic KCM
ComposerUI functionality offered by listmodels and runmodel.

Modelselect, modelbegin and modelend are part of the application resources. Typically, they build up
framesets, show additional pages (like the page in sample, asking for document format and preview),
open result documents (modelend) and support application integration.

Both listmodels and runmodel are considered as separate generic "calls" embedded in a specific
preceding and succeeding page. In many cases the runmodel functionality will be used by directly opening
the modelbegin page with a number of query string parameters.

23

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Summary
There are two main functionalities offered by KCM ComposerUI:
• listmodels available to the user
• runmodel, which interactively produce a document by running a model

These functionalities are always called in the context of an Application. An application identifies a set of
resources that determine the appearance and behavior of KCM ComposerUI. Listmodels and runmodel
are always embedded in preceding and succeeding pages, which are part of an application.

24

Chapter 4

Configuration

Use the Main and Application configuration pages to:
• Set up KCM ComposerUI
• Configure the number of general settings
• Maintain (create, delete) applications
• Get access to a specific configuration page for each application

Main configuration
Browse to http://[machine]:[port]/itp/configure.aspx (http://[machine]:[port]/
itp/configure).

The Main configuration page consists of three sections:
• Administrator section
• KCM Core section
• Applications section

Administrator section

Use the Administrator section to set the user password that gives access required to access configuration
pages. When the user enters the password, the login page will appear. The configuration page appears
after the user logs in.

CM Core section
Use the KCM Core section to configure connection parameters

25

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• KCM Core Host
Name of the host running KCM Core. This name is used in the communication between KCM
ComposerUI and KCM Core.

• KCM Core Port
Port number of the KCM Core host. Used in the communication between KCM ComposerUI and KCM
Core. You can find the port number of your KCM Core installation on the DP Manager tab in the KCM
Core Administrator.

Application section
The application section includes all applications available to the KCM ComposerUI installation. Here
you can create applications, remove applications and access the specific configuration page of each
application.

Two implementations of KCM ComposerUI, J2EE and ASP.NET, differ from each other according to the
changes in their Application directory. See Applications. In the J2EE implementation changes take effect
immediately, whereas in the ASP.NET implementation it is required to take an explicit deployment step.
For that click "Deploy" link in the Applications section of the configuration page. This link is only available
in the configuration page of the ASP.NET implementation of KCM ComposerUI.

In this example, the Sample and Sample2 applications are already running. To configure these
applications, click Configure, or to remove them, click Remove. Removal of the application does not
delete the directory and configuration files that belong to the application, but removes only the application
from the administration. To restore the application, add an application with exactly the same name as the
removed one.

26

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

To add a new application, fill out the Application Name input box. In the example above, the application
called "New" is created by clicking the button Submit. After its creation, the new application still needs to
be configured and customized. For more information, see Application configuration and Customization.

Note When using Microsoft IIS 7, the deploy process may take a very long time (up to an hour),
because of the slow access to the IIS 6 compatibility metabase. If a timeout error occurs during
deployment, you can continue the process by starting the deploy process again from the main
configuration page. The KCM ComposerUI log file will contain an informative message once the
deployment has finished successfully.

When using Microsoft IIS 7, the deploy process may take a very long time (up to an hour), because
of the slow access to the IIS 6 compatibility metabase. If a timeout error occurs during deployment,
you can continue the process by starting the deploy process again from the main configuration page.
The KCM ComposerUI log file will contain an informative message once the deployment has finished
successfully.

Such long loading times are expected in the following cases:
• Creation of a new KCM ComposerUI application.
• Deploy one of the KCM ComposerUI sample applications (Sample, Sample2, and SecureSample).
• KCM ComposerUI application change from non-secure mode to secure mode, or from secure mode

to non-secure mode.

Application configuration
Click Configure to set up the application configuration page. The application configuration page consists of
the following sections:
• Main Configuration section
• Customization section
• Properties section

Main configuration section
To open the main configuration page click "Configure" link in the main configuration section.

Customization section
The Customization section presents settings to determine the KCM Designer interaction with the KCM
ComposerUI application.

27

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Secure mode
Select the check box "Secure mode" to make Secure mode available in the KCM ComposerUI application.
See Securing CM ComposerUI for more information on how to use this functionality.

Default Locale
To determine the language of the user interface KCM ComposerUI uses the Language Preference of the
browser. If the configured language is not supported by your application installation, KCM ComposerUI
uses the language assigned to the Default Locale.

By default, only two languages are supported in KCM ComposerUI: "en" (English) and "nl" (Dutch). To
support other languages, add your own language files. See Customization for more information.

Locale Override
If a language is configured for the Locale Override, KCM ComposerUI ignores the language preference of
the browser and uses the locale override instead.

Master Template List Frame
Master Templates in the Master Templates list frame are presented as links. To open the page Modelbegin
in another frame referenced by a name, and click the link. This name is configurable as the "Master

28

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Template Link Frame". If a frame with this name does not exist, or if it equals the value _blank, the page
Modelbegin is opened in a new browser window.

Preview Frame
The requested previews are shown in a frame, referenced by a name. This name is configurable as the
"Preview Frame". If a frame with this name does not exist, or if it equals the value _blank, the preview will
be opened in a new browser window.

Enable Suspend button
Select the check box "Enable Suspend button" in the KCM ComposerUI configuration screen to make
Suspend and resume functionality available. For more information, see Suspend and resume.

Properties section
To open the pages in the chapter Sample workflow, a number of parameters are passed. Default settings
of some of these parameters, so called properties, can be configured. If such a parameter is not passed
to a page, its configured value is used. On the application configuration page, each of these properties is
described with its corresponding call.

Summary
• KCM ComposerUI can be configured from the browser
• Access to the configuration pages may be protected by a password
• There is one main configuration page and one configuration page per application
• On the application-specific configuration pages, defaults may be configured for some parameters of

Listmodels and Runmodel.

Configuration for CM ComposerUI ASP.NET
KCM ComposerUI ASP.NET edition exposes some configuration settings that are not available through
the generic configuration pages. Instead, these settings are found in the file web.config, which is located
in the IIS virtual directory of KCM ComposerUI ASP.NET. The folder location of the virtual directory is
configured during the installation. In a default installation it is C:\Inetpub\wwwroot\itp. The file web.config
is an XML document, and the KCM ComposerUI ASP.NET configuration settings are stored in the XML
element <appSettings>. The default configuration is shown here:
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings>
 <add key="itp_log_dir" value="C:\ITPOnLineApps\itplog" />
 <add key="itp_temp_dir" value="C:\ITPOnLineApps\sessiondata" />
 <add key="itp_applications_dir" value="C:\ITPOnLineApps" />
 <add key="itp_log_count" value="10" />
 <add key="itp_max_log_size_kb" value="1024" />
 </appSettings>
<!-- ... -->
</configuration>

29

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Each line of the form <add key="configuration setting" value="value"> defines the value of
a single configuration setting. The following table describes the settings:

Settings Description

itp_log_dir: • The folder where KCM ComposerUI ASP.NET
stores its log files. In a default installation, this is the
subfolder itplog of the KCM ComposerUI application
folder.

• Note that if this setting is changed to a different folder,
then the permissions described in the KCM Installation
Guide must be applied to that folder too. It is also
recommended to remove the permissions from the old
folder when they are no longer needed.

itp_temp_dir: • The folder where KCM ComposerUI ASP.NET stores
its temporary files and its session information. In a
default installation, this is the subfolder sessiondata of
the KCM ComposerUI application folder.

• Note that if this setting is changed to a different folder,
then the permissions described in the KCM Installation
Guide must be applied to that folder too. We also
recommend to remove the permissions from the old
folder when they are no longer needed.

itp_applications_dir: • The KCM ComposerUI applications folder. Subfolders
of this folder contain the sources of the custom
applications installed in KCM ComposerUI ASP.NET.

• Note that if this setting is changed to a different folder,
then the permissions described in the KCM Installation
Guide must be applied to that folder too. It is also
recommended to remove the permissions from the old
folder when they are no longer needed.

itp_log_count: The maximum number of old log files that KCM
ComposerUI ASP.NET retains.

itp_max_log_size_kb: The size that an KCM ComposerUI ASP.NET log file may
reach before it is archived as an old log file.

Job scheduling in CM Core
In KCM Core, jobs are distributed over the available KCM Document Processors in the order they arrive.
If a single KCM Core installation is used to serve both KCM ComposerUI Server and batch jobs, long-
running batch jobs may cause a delay in the processing of the interactive KCM ComposerUI Server
requests. To prevent this, KCM Core offers two options that cause KCM ComposerUI jobs to be run before
other jobs. Add one or both of these to the dp.ini file in the Config folder of the ITPWork folder, and restart
KCM Core.
[Configuration]
PrioritizeOnLine=Y ; Y or N, default value N
DedicatedOnLine=<number> ; Number of CCM Document Processors to
 ; reserve, default value 0

30

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

When set to Y, PrioritizeOnLine causes KCM Core to schedule KCM ComposerUI jobs ahead of other
jobs, if taking jobs from the queue. Note that this only has an effect if both KCM ComposerUI jobs and
other jobs are queued. If all KCM Document Processors are processing jobs and a KCM ComposerUI job
is submitted, it has to wait until a KCM Document Processor has finished processing its job.

With DedicatedOnLine you can reserve one or more KCM Document Processors for KCM ComposerUI
jobs. These KCM Document Processors are not used for other, possibly long-running, jobs. This makes
it much more likely that KCM Document Processor will be available quickly for processing of KCM
ComposerUI Server job, if one is submitted.

31

Chapter 5

Calls

The Listmodels and Runmodel functionalities are considered as "Calls", because they both have a
number of parameters.

The behavior of each call in KCM ComposerUI depends on a large set of parameters. Overall, there are
three types of parameters:

1. Call parameters are call-specific parameters that vary at run time. They can only be passed as a
parameter of the Call.

2. Configuration parameters are installation-specific parameters that are not vary at run time. They
can only be configured through the configuration pages.

3. Properties are parameters that may or may not vary at run time. For properties, defaults may be
configured on the application specific configuration page. If a property is not passed as a parameter
on the Call, the configured default is used.

The following parameter types are supported:
• String
• Number (string that may be interpreted as a number)
• Boolean (string that may be interpreted as a boolean value, both 'Y'/'N' and 'true/false' are accepted,

either in upper or in lower case)

All parameter names are case insensitive.

Call parameters
Parameters can be passed in a call in two ways:

1. Get method, as part of the query string

2. Post method, as form parameters

Both methods may be mixed in a single call. The call functionality does not depend on the method used to
pass the parameter. If a parameter is passed both as part of the query string and as a form parameter, the
latter will prevail.

Note When Secure Mode is enabled for an application, the form parameters are ignored. The parameter
sessionid of the Runmodel call can only be passed through the query string.

32

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Configuration parameters
Configuration parameters can only be configured through the main configuration page or the application-
specific configuration pages.

Main configuration page:

http://[machine]:[port]/itp/configure.aspx

Application-specific configuration page:

http://[machine]:[port]/itp/app/[application]/configure.aspx

Properties
To limit the amount of parameters that need to be passed in a call to KCM ComposerUI, the concept of a
"Property" is introduced. A Property is a Call parameter with the possibility of default configuration.

Listmodels
To see a nested list of models go to:

http://[machine]:[port]/itp/app/[application]/listmodels.aspx

(http://[machine]:[port]/itp/app/[application]/listmodels)

A call to listmodels will result in two HTML pages, one automatically loading the other. The first page
shows a nested list of folders. The latter is loaded in the Model List Frame and shows a list of models for a
selected folder in the list of folders.

We recommend that you provide a frameset, which contains a frame with the name configured as the
Model List Frame. This can be done in the modelselect page:

http://[machine]:[port]/itp/app/[application]/modelselect.aspx

(http://[machine]:[port]/itp/app/[application]/modelselect.jsp)

See CM Core: OnLine exit points for more information on how the list of models is retrieved from KCM
Core.

Parameters (prepared model list)
If a model list has already been prepared by the integrating application, a single sessionid parameter is
sufficient to start the model list. For more information, see Integration. Other parameters will be ignored.

Call parameters

33

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Type Description

sessionid string required The session identifier
corresponding to the
prepared model list. This
session identifier can only
be passed through the
query string, not as form
data.

Parameters
If the sessionid parameter is omitted, the following property is used to identify the Letterbook.

Properties

Parameter Type Description

Letterbook string • The entry point of a Letterbook.
This selects the folders and
Templates that are available
for the user. This entry point is
interpreted as the name of an
interactive Letterbook, optionally
followed by subfolders separated
by slashes (/).

• Starting with KCM Core and
KCM Repository version 4.2.3y
when a rep:/ uri is provided for
the Letterbook, the Letterbook
will be retrieved from the
KCM Repository. See also
RetrieveRepositoryObject.

Note
• The root and pattern properties have been deprecated. Use the Letterbook property instead.
• To allow root parameters to function, the ListModels.exe executable that is used to retrieve the

Letterbook has to be configured to produce legacy references. See the chapter "Post-installation
steps" of KCM Installation Guide.

Runmodel
A call to this page initiates a model run based on a number of passed parameters. The model that is
run may contain FORM statements, possibly referring to dynamic Forms. If it does, this will result in a
sequence of HTML pages containing forms being presented to the user.

34

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameters (prepared model run)
If a model run is already prepared by the integrating application a single sessionid parameter is sufficient
to start the model run. Other parameters ignored. See Integration chapter.

Call parameters

Parameter Type Status Description

sessionid string required • The session identifier
corresponding to the
prepared model run.

• This session identifier
can only be passed
through the query string,
not as form data.

Parameters
If the sessionid parameter is omitted, the following parameters are used:

Call parameters

Parameter Type Status Description

model string required Identification of the model
to be run given as a rep:/
URI or Letterbook URI. See
also Rep:/URIs.

label string optional User readable model
identification.

keys string optional Semicolon-separated list
of keys to be used in the
model run.

35

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Type Status Description

extras string optional Semicolon-separated list
of extras to be used in the
model run.

res_uri string optional • The location of the result
document as a local
path relative to either the
web server (res_srv=N)
or the KCM server
(res_srv=Y). See the
Properties table below
for a description of the
res_srv property.

• The default is an empty
string in which case
KCM ComposerUI
stores the documents
on the Web Server and
makes it available for
display in the browser. In
that case the document
is deleted when the
session expires.

pvw_proc_params string optional • A string that passes to
the ProcessPreview
exit point. This can be
used freely to pass
information to the exit
point. For example, to
specify which action it
should take.

• For more information,
see CM Core: Online
exit points.

res_proc_params string optional • A string that passes
to the ProcessResult
exit point. This can be
used freely to pass
information to the exit
point. For example, to
specify which action it
should take.

• For more information,
see CM Core: OnLine
exit points.

Properties

36

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Type Description

dat_srv Boolean The XML data (if applicable) can be
accessed from the server on which
KCM Core is running. If this is not
the case, the file identified by dat_uri
(if any) is uploaded from the web
server to the KCM server. In this
case the value "*DataURI" should be
passed for the keys parameter, thus
indicating the file that was uploaded
to the KCM server.

dat_uri String Location of the XML data to be used
(if any), as a local path relative to
either the web server (dat_srv=N) or
the KCM server (dat_srv=Y).

db_pwd String Password to be used by the
DataManager on KCM Core.

db_uid String User Id to be used by the
DataManager on KCM Core.

env String Identification of the Environment
under which the model is run on
KCM Core. This corresponds to
the connection configuration on the
server.

history Boolean An outline of the provided answers
to all interacts should be returned by
KCM Core at the end of the model
run.

ofcmd
(AS/400 only)

String OnFailure command, executed when
the model fails.

oscmd
(AS/400 only)

String OnSuccess command, executed
when the model succeeds.

postcmd
(AS/400 only)

String Post command, executed at the end
of the run (after ofcmd or oscmd)

precmd
(AS/400 only)

String Pre command, executed at the start
of the run.

pvw Boolean KCM ComposerUI HTML Forms
should be accompanied with a
preview of the document as it is at
that moment.

pvw_fmt String Required format of the preview
document (if any - either native or
PDF).

res_fmt String Required format of the result
document (either native or PDF).

37

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Type Description

res_owt Boolean The file identified by res_uri may be
overwritten.

res_srv Boolean KCM Core should write the document
to the location identified by res_uri.
If a res_uri is provided, res_srv=Y
makes sense in most cases. If a
res_uri is not provided, res_srv is
ignored, the document is stored in
local storage on the web server and
be made available through a URL.

38

Chapter 6

Applications

The Application concept was initially introduced In the chapter Sample Workflow. Application defines a set
of resources that determine the appearance and behavior of KCM ComposerUI.

Application folder

An application is stored on the file system of the web server as subdirectory of the Applications folder. The
sample application that is shipped with KCM ComposerUI is implemented as a newsample folder.

Each application folder may contain a number of files and subdirectories that define the appearance and
the behavior of the application. For most of these files, KCM ComposerUI defines defaults. Whenever a
file is available in the Application folder, it replaces the default.

At the root level of the application folder the configuration settings are stored in a file called config.xml.
The contents of this file can be manipulated through the configuration page of the application. For more
information, see Configuration. The root level may also contain web pages (aspx-pages for ASP.NET or
jsp pages for J2EE). Each of these pages will be accessible through the following url:

http://[machine]:[port]/itp/app/[application]/[page]

where:
• [machine] is the name of the web server
• [port] the port through which it is accessible
• [application] is the name of the application
• [page] is the name of the page

The pages produced by KCM ComposerUI refer to a cascading stylesheet in:

http://[machine]:[port]/itp/app/[application]/css/styles.css

39

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

This means that a styles.css file may be stored in the css subdirectory to determine the appearance of the
pages.

The resources subdirectory may contain files related to localization of texts.

The xslt subfolder may contain overrides of the xslt files that determine the structure of the html produced
by KCM ComposerUI.

Defaults
The default value is used If a resource is not available in the application folder. These defaults are
installed as part of KCM ComposerUI. When overriding a default resource, the default resource itself can
be a useful basis to start from.

The location of default resources differs between the ASP.NET and the JBoss implementation of KCM
ComposerUI:
• ASP.NET

The default resources can be found in the physical path of the virtual directory of KCM ComposerUI
(referred to by the installer as "virtual directory physical path"). The default is C:\inetpub\wwwroot\itp.

• J2EE
The default resources can be found in the itp.war file that is contained in the itp.ear file of KCM
ComposerUI.

Customization
Applications can be customized on the following levels:

1. Customizing fonts and colors. See Styles for more information.

2. Customizing the behavior of the application. See Behavior for more information.

3. Customizing text of the user interface. See Text for more information.

4. Defining structure. See Customizing XSLT for more information.

The easiest way to create a customized application is to:

1. Create the application and its folder in the general configuration page.

2. Copy the files of one of the sample applications that are shipped with the KCM ComposerUI
installation to the folder of the newly created application. Refer to KCM Installation Guide for more
information.

3. Adapt the files of the newly created application as described in the following paragraphs.

In the J2EE implementation of KCM ComposerUI, customization in the application folder is applied
immediately (or automatically). In the KCM ComposerUIASP.NET implementation, it is necessary to
deploy the custom application. Application deployment is done through the main configuration page of
KCM ComposerUI ASP.NET.

40

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Styles
The technique of application styles customization is based on creating and adapting stylesheets. In
order to customize application styles, you should create a CSS directory in the application configuration
directory and put the following files there:
• styles.css stylesheet contains the definitions for the KCM interact pages.
• textblock.css stylesheet contains definitions for the Text Block preview window. Only needed if you

actually use Text Blocks.

The Sample application that is shipped with KCM ComposerUI provides CSS files example. Images used
by these stylesheets should be placed in an "images" subdirectory inside the CSS directory. No defaults
are available for these resources.

Behavior
In addition to changing styles, you can also change the behavior of an application. This customization
is based on defining .aspx (.jsp) pages that precede or succeed the basic listmodels and runmodel
functionality. These pages could also define frames in which particular information is shown.

As it was mentioned in the Sample workflow chapter, there are three "exit point" pages. If you place
the following files in the root of the application directory, they will override standard variants of KCM
ComposerUI.
• modelselect.aspx (modelselect.jsp).

This page acts as the starting point of the application. You can place any file at the root of the
application config and invoke that via the /app/ path. The default modelselect.aspx (modelselect.jsp)
just calls listmodels.

• modelbegin.aspx (modelbegin.jsp).
This page is called after selecting a model, before it starts to run. The default page just calls runmodel.

• modelend.aspx (modelend.jsp).
This page is called after running a model. The default one opens the produced document in the frame
"docframe" or in a new window if you have not defined such a frame.

The default exit point implementations use a number of predefined pages that you can call in your own
exit points as well. You can also override these pages so that the default exit points use them instead. The
predefined pages are:
• empty.aspx (empty.jsp) shows an empty page, using the right style
• opendocument.asxp (opendocument.jsp) opens a document asynchronously, that is shows a

"loading..." text while the document loads
• openfolders.aspx (openfolders.jsp) calls listmodels asynchronously, and shows a "loading..." text while

retrieving the list

The defaults for these pages can be found in the jsp subdirectory of the KCM ComposerUI installation.
When overriding them, they should be placed at the top level of the application directory.

In the implemented pages aspx or jsp, it is possible to use various bits of functionality offered by KCM
ComposerUI. The APIs that are available to the customized pages are described in The CM ComposerUI
Server customization APIs.

41

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Behavior examples
• Framesets

You can use the exit points not only to define behavior, but also to define framesets. In the application
configuration page you can specify the frame, where certain interactions should occur. For example,
to have the folder and models opened in two frames in the same window, you could have the following
modelselect.aspx (modelselect.jsp):
<HTML>
 <HEAD>
 <TITLE>ITP/OnLine Server Sample Application</TITLE>
 </HEAD>
 <FRAMESET cols="250,500" framespacing="0" scrolling="no">
 <frame src="openfolders.jsp" name="folders" />
 <frame src="empty.jsp" name="models"/>
 </FRAMESET>
</HTML>

If the value "models" is configured as Model List Frame on the configuration page of the application, the
list of models is now shown in the right frame.

• Open Microsoft Word non-maximized
The modelend.aspx (modelend.jsp) exit point for the provided Sample2 and newSample applications
use ActiveX to open the result document in Microsoft Word. By default, the window in which Microsoft
Word is opened is maximized. For ITPOLSActiveX3 this behavior can be changed by locating the
doInitWordControl() function, and adding wordcontrol.MaximizeUponPopup = 0 to it. This leads to the
following block of code:
function doInitWordControl()
{
 wordcontrol.OLSUploadURL = "";
 wordcontrol.OLSDownloadURL = "";
 wordcontrol.FileAccessStyle = 1;
 wordcontrol.Language = "en";
 wordcontrol.MaximizeUponPopup = 0;
}

Text and JavaScript behavior
Part of the text that you see on screen, such as interact questions, originates from the KCM Master
Template itself. Some of the text is defined in KCM ComposerUI. Localized versions of these text parts
are stored in the subfolder "resources." You can override the standard text for a particular language by
creating a "resources" folder in your application containing the following files:
• <lang>_custom.msg, this file contains the text like header and footer text, titles and "supporting"

interact text, such as "loading document..."
• <lang>_errors.msg, this file contains the text of the error messages
• <lang>_gui.msg, this file contains the text that is shown in the configuration pages
• <lang>.js, this file contains the text that are used by JavaScript code that is executed at the client, such

as the calendar control

For the new div-oriented KCM ComposerUI output, additional <lang>.js resource files have been
placed in the subfolder "res". This language file may also contain code that sets the texts of the
jQueryUI DatePicker, which is used in the new output. For more information, see res\nl.js and http://
docs.jquery.com/UI/Datepicker/Localization.

42

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Some text, like "Ok" and "Back", originates from KCM Core. When the TranslateOnLineResources setting
on KCM Core is set to "N", KCM Core will output message codes instead of literal texts. For the div-
oriented output, these messages are translated using the resource files in the subfolder "res". See res\nl.js
for more information.

The TranslateOnLineResources on KCM Core can be found on the General tab of the Environments.

The behavior of the pages is determined by two javascript variables:
• numEditFormat

This variable determines whether numerical fields are shown in one or in two input boxes. In <lang>.js,
assign 1 to this variable to show only one input box for a numerical field. The default value is 2, in which
case two input boxes will be shown: one box on each side of the decimal point.

• fileEditActiveX
It is a boolean variable that determines whether or not an ActiveX-control is used for file upload
questions. By default this is the case (fileEditActiveX = true). If the variable is set to false, a native
HTML file upload control is used. In this case, the default value for the file upload question, the default
provided in the model, is ignored. For the div-oriented output this variable is deprecated. Use the
variables in res\settings.js instead.

The Language Preference settings of your browser and the Default Locale and Locale Override settings of
your application determine which files KCM ComposerUI will use. The defaults for these resources can be
found in the folder "resources" of the KCM ComposerUI installation. When overriding them, they should be
placed in a subfolder "resources" inside the application folder.

Customizing XSLT
With XSL stylesheet overrides, the user can change the structure of the different pages. To do so, we
recommend to create a folder XSLT, that contains the following XSLT files:
• html.xsl, describes the general structure of the HTML pages.
• modellist.xsl, is applied to the XML, where the modellist structure of the Models directory is shown. This

stylesheet produces the list of folders as well as the list of models that belong to a certain folder
• error.xsl. Applied to the XML that contains the error returned from the API. It produces an error page.
• interact.xsl, produces the HTML FORMS in which the user can fill in the questions as they have been

defined in the KCM Model. This XSL is applied to the xForms XML that is returned by the Start and
Continue method.

The defaults for these XSL stylesheets can be found in the "xslt" subdirectory of the KCM ComposerUI
installation. When overriding them, they should be placed in an "xslt" subdirectory inside the application
directory.

Note XSL stylesheets can only be adapted by specialists experienced in writing XSL stylesheets.
Furthermore, the KCM ComposerUI stylesheets will be updated in future updates of KCM ComposerUI.
As a result, you may need to update your own stylesheet, or create a new custom stylesheet.

43

Chapter 7

Suspend and Resume

KCM ComposerUI offers Suspend and Resume functionality. Users can suspend a Master Template
run without losing answers that are already completed, and then resume it a later point in time. See
Customization section.

With Suspend and Resume functionality each KCM ComposerUI form, which runs within the configured
application, contains a button Suspend at the bottom.

Note KCM Core
KCM Core 3.2.21 or higher. It is only available when using prepared Master Templates runs, as
described in chapter Integration.

Note If your KCM Core version supports the DisableValidation environment setting, do not use it.
Disabling validation will prevent the correct functioning of Suspend and Resume.

Default Suspend implementation
When the user clicks the Suspend button, KCM ComposerUI will submit all answers currently filled in and
forward the user to the page modelsuspend.aspx (modelsuspend.jsp). The modelsuspend page calls the
KCM Core script, which stores the Master Template run session. Then sends it back to the modelsuspend
page, which offers the user a downloadable file, containing this suspended session.

Both the page modelsuspend.aspx (modelsuspend.jsp) and the script KCM Core SuspendSession are
marked as exit points. For example, their implementation may be altered to store the suspended session
on a server. Or, instead of offering it as a download to the user, pass the suspended session back to the
calling application. See CM Core: OnLine exit points.

Default Resume implementation
KCM ComposerUI comes with a page called modelresume.aspx (modelresume.jsp) to resume a stored
session. In the default implementation, this page asks the user for a file containing a stored session, which

44

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

is uploaded to KCM Core. KCM Core uses the file to restore it in a new KCM session, which is used to
resume the stored session. Next, the user is forwarded to KCM ComposerUI form, which was originally
shown when the Suspend was performed.

Both the modelresume.aspx (modelresume.jsp) page and the ResumeSession script are marked as exit
points, so they can be modified. For example, instead of asking the user to upload a file, these exit points
could let KCM Core retrieve the stored session file.

KCM Core also contains the exit point script SessionResumed, which is called after a suspended session
is restored. See CM Core: OnLine exit points.

Changing Forms during suspension
KCM ComposerUI Server supports changes to Forms while the model runs using the suspended Forms.
The same applies to KCM Master Templates. Answers to the Questions of Forms are validated by KCM
Core when a Master Template run is resumed. This validation checks all previous answers against the
current definition of each Form that was already filled in before suspending the Master Template run. If
the validation check fails for one or more Forms, the Master Template run will start at the first Form in the
Master Template that fails the validation.

The validation consists of checks if the Form ID is changed, if any Questions are changed, and if all
answers comply with the restrictions defined in their corresponding Question. When the validation fails,
the Form is presented again with appropriate error messages about the Questions that no longer accept
the previous answers. Most of the Questions retain their previous input, or in case of a new Question, their
default answers. After changing the KCM Master Template its developer should consider forcing some of
the Forms to be presented again. We recommend that you change the Form IDs or Question IDs when
resuming a model run.

Forms are only considered unchanged when their IDs are specified and unchanged. Otherwise, the Form
fails the validation and is presented again. The order of the Forms in the Master Template is not important,
they are matched to their ID and the number of times that it was presented during the Master Template
run.

For more information on Form IDs, refer to the KCM Core Developer's Guide, chapter Form and question
IDs.

Questions are considered unchanged, when:
• Their IDs are identical
• The type of the Questions is not changed
• The answer is still valid for that Question.

The order of Questions is not important because they are matched to their ID. New Questions with a new
ID added to the Form are considered as changed. Removed questions are considered as unchanged.
Changing a Question from a single-select to a multi-select or vice versa also constitutes a change of the
Question type. For more information on Forms and Question definitions, see Template scripting language
Help keyword FORM.

Answer is valid if it respects the maximum length and specified format in the definition of the Question. If
the Question specifies a list of possible answers, the answer must occur in that list. A Text Block selection

45

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

must also be a member of the specified View, in order to be a valid answer. For more information on
Question definitions, see Template scripting language Help keyword FORM.

46

Chapter 8

Integration

In most of the cases KCM ComposerUI Server is used within the context of integrating application.
Business applications often can not produce documents in a proper fashion due to lack of functionality.
KCM ComposerUI fills this gap.

The following diagram shows a situation when a business application requires a document to be
produced. This business application consists of a client and a server component, named "BA Client"
and "BA Server," respectively. Note that this is a logical architecture that may be mapped on a physical
architecture in many different ways.

KCM ComposerUI and business application have two interfaces between them:

1. An http interface between KCM ComposerUI on the web server and the BA Client on the workstation,
supporting client-side integration of Master Template runs.

47

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

2. A server-to-server interface between KCM Core and the BA Server, supporting server-side
integration of Master Template runs.

Integration of an interactive Master Template run involves a number of steps:
• Preparation of the Master Template run. This involves a number of calls from the BA Server to KCM

Core. See Server side integration.
• The Master Template run itself, consisting of a sequence of HTML Forms, offered by the http interface

between KCM ComposerUI and the BA Client. See Client side integration.
• Processing of the Master Template run. This can be achieved by specific implementations of some exit

points on KCM Core. See Server side integration.

The fact that a single Master Template run consists of multiple steps introduces the notion of a session,
which is shared by these steps.

Note Business application integration using prepared model is introduced in KCM ComposerUI 3.2.20.
Although the current version of KCM ComposerUI can be used in combination with earlier versions
of KCM Core, the integration method described in this chapter is not available in such configurations.
Instead, one should use the Runmodel call for non-prepared model runs, which is described in chapter
Calls. This chapter also describes model list integration using prepared model lists. This functionality is
in KCM ComposerUI 3.2.25. When an KCM Core version 3.2.24 or earlier is used, one should use the
call Listmodels for non-prepared model lists, which is also described in chapter Calls.

Sessions
In KCM ComposerUI, the sessions that hold the information about a single Master Template run are open.
They can be accessed from any KCM Core script that runs within the context of a session:
• Key/value pairs can be stored in a session and retrieved at a later time; any script can do this, as long

as it runs in the context of the specific session.
• The parameters that define KCM ComposerUI Master Template run are stored as special key/value

pairs in the session. See KCM CoreScripting Language Guide for more information on sessions, which
use a KCM Core concept and are not specific to KCM ComposerUI.

Client-side integration
Client-side integration focuses on the embedding the document production process in the flow of the BA
Client. The exact way in which it can be achieved highly depends on the nature of the client application. In
general, the following occurs:
• The BA Client requests the BA Server to prepare a Master Template run. This results in the creation of

a session defining the Master Template run. The BA Server will responds with a URL, which contains
the session identifier as a query string parameter.

• The BA Client opens this URL in a separate browser, in an iframe on a web page or in a browser
component. This triggers an interactive Master Template run.

48

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• As soon as the end user completes the Master Template run, the modelend page of the KCM
ComposerUI application is opened. The particular implementation of this page determines what
happens next. For example:
• Opening the result document, so the end user can edit it.
• Calling a service on KCM Core for further processing of the document. This can be done in

combination with any of the other options.
• Redirection to a page in the business application, putting the business application back in control, if

the business application is web-based.
• Redirection to a page with a specific name. The BA Client can detect that the Master Template run is

finished, if the business application is a Windows application and the URL is loaded inside a browser
control.

• Simply closing the browser, if the URL is loaded inside a separate browser window.

Server-side integration
Server-side integration focuses on the embedding the document production process in the business logic
of the BA Server. It consists of two parts:

1. Preparation of the Master Template run. A number of KCM Core services are available for this
purpose.

2. Notifications, that can be implemented using exit point scripts. See CM Core: OnLine exit points.

Note The integration methods described here are not compatible with all versions of KCM Core. See
introduction of the Integration chapter for more information on the supported KCM Core version.

Prepare Master Template list
In KCM ComposerUI, Master Templates list functionality can also be prepared through the server-to-
server interface.

Preparation of a Master Template list consists of the following steps:

1. Create a new session for the Master Template list.

2. Set the parameters that define the KCM ComposerUI Master Template list.

3. Optionally perform preparation for a subsequent Master Template run. For example, this could
uploading data files or setting Master Template parameters.

KCM Core offers a service for each of these steps and services that combine these steps. See
Preparation services for details on the services for preparing Master Template lists and Master Template
runs.

It is also possible to extend the preparation of the Master Template list so that custom information can be
stored in the session. This can be done by creating a custom service, which stores additional key/value-
pairs in the session, and calling this service as an additional step. This information becomes available
from all scripts that run in the context of the session. For example, the information is available during the
exit point scripts or subsequent Master Template run.

49

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Preparation of a Master Template list results in a session identifier. This session identifier can be used to
invoke the actual Master Template list by opening the URL from the BA Client:

http://[host]:[port]/itp/app/[application]/modelselect.aspx?
sessionid=[sessionid]

See section Parameters (prepared Master Template list) for more information.

Prepare Master Template run
Preparation of a Master Template run consists of the following steps:

1. Create a new session for the Master Template run.

2. Optionally, store files in the session. This could for example be an XML file holding the data based on
which the Master Template should be run.

3. Set the parameters that define the KCM ComposerUI Master Template run.

KCM Core offers a service for each of these steps. Additionally, it offers a service that combines these
steps to a single call. Finally, it also offers a service to retrieve a file from a session.

It is also possible to extend the preparation of the Master Template run so that custom information can be
stored in the session. This can be done by creating a custom service, which stores additional key/value
pairs in the session, and calling this service as an additional step. This information becomes available
from all scripts that run in the context of the session, such as the exit point scripts.

Preparation of a Master Template run results in a session identifier. This session identifier can be used to
invoke the actual Master Template run by opening the URL from the BA Client:

http://[host]:[port]/itp/app/[application]/modelbegin.aspx?
sessionid=[sessionid]

See section Parameters (prepared Master Template run) for more information.

Preparation services
The KCM Core services for the preparation of Master Template runs or Master Template lists are
described below. Apart from ITPOLSSessionStart, these services should be run in the context of an
existing session. This can be done by passing the identifier of this session on the call to the service.
Details on how to do this depend on the specific API used to call the service. See the documentation on
the APIs in the chapter "Integrating" of the KCM Core Developer's Guide. For more information on the
role of sessions in KCM Core scripts, see the chapter "KCM Core Sessions" in the KCM Core Scripting
Language Developer's Guide.

ITPOLSSessionStart
Parameters

(no parameters).

ITPOLSSessionStart creates a new session. After a call to the service, the session identifier is returned.

50

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

ITPOLSSessionUploadFile
Parameters
Parameter Text FileName

Through ITPOLSSessionUploadFile, a file may be uploaded to an existing session. On the parameter
FileName, the name of the file is passed. This name may not contain backslashes. The service calls
ReceiveFile with this name as the Src parameter and stores the received file in the session. If a file with
this name already exists in the session, it is overwritten.

ITPOLSSessionDownloadFile
Parameters
Parameter Text FileName

Through ITPOLSSessionDownloadFile, a file may be downloaded from an existing session. On the
parameter FileName, the name of the file is passed. This name may not contain backslashes. If no file
with this name exists in the session, an error appears.

ITPOLSSessionSetModelParams
Parameter Text User
Parameter Text Model
Parameter Text Label = ""
Parameter Text Keys = ""
Parameter Text Extras = ""
Parameter Text ResultFileName = "Result"
Parameter Text ProcessPreviewParams = ""
Parameter Text ProcessResultParams = ""
Parameter Text ProcessConfirmParams = ""
Parameter Text Environment = ""
Parameter Text ResultFileFormat = ""
Parameter Text Preview = ""
Parameter Text PreviewFileFormat = ""
Parameter Text Confirm = ""
Parameter Text ConfirmFileFormat = ""
Parameter Text DatabaseUID = ""
Parameter Text DatabasePWD = ""
Parameter Text OnSuccessCommand = ""
Parameter Text OnFailureCommand = ""
Parameter Text PreCommand = ""
Parameter Text PostCommand = ""
Parameter Text DBB_XMLInput = ""
Parameter Text DBB_XMLOutput = ""
Parameter Text RedirectUrl = ""

The parameters defining a Master Template run may be set through ITPOLSSessionSetModelParams.
Most of these parameters match the parameters described in section Runmodel.

Parameter Description

User The user on whose behalf the Master Template is run.
For example, the value for this parameter is passed to
the ListModels and the CheckModelAccess exit point
scripts.

51

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Description

Master Template The Master Template to be run.

Label The label of the Master Template run. The value is
shown on the HTML forms of the Master Template run.

Keys A semicolon separated list of keys to be used by the
Master Template run. It is possible to refer to files in
the session by prefixing their name with "session." For
example, key1;session:data;key3;key4.

Extras A semicolon separated list of extras to be used by the
Master Template run.

ResultFileName The file name of the result document. The result
document is always stored as a session file.

ProcessPreviewParams The value of this parameter is passed to the
ProcessPreview exit point script.

ProcessResultParams The value of this parameter is passed to the
ProcessResult exit point script.

ProcessConfirmParams The value of this parameter is passed to the
ProcessParams parameter of the exitpoint scripts.

Environment The environment under which the Master Template run
takes place.

ResultFileFormat The format of the result document, either "PDF" or
"native".

Preview The HTML forms of the Master Template run are
accompanied with previews of the document as it is at
that moment. Either "Y" or "N".

PreviewFileFormat The format of the preview document. Either "PDF",
"native" or "HTML".

Confirm A confirmation page is presented after the model
completes. Either "Y" or "N".

ConfirmFileFormat The format of the confirm document. Either "PDF",
"native" or "HTML".

DatabaseUID User Id to be passed to the DataManager on KCM Core.

DatabasePWD Password to be passed to the DataManager on KCM
Core.

OnSuccessCommand OnSuccess command, executed when the model
succeeds (AS/400 only).

OnFailureCommand OnFailure command, executed when the model fails
(AS/400 only)

PreCommand Pre command, executed at the start of the run (AS/400
only).

PostCommand Post command, executed at the end of the run (AS/400
only).

52

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Description

DBB_XMLInput The location of a data XML file that is used to fill the Data
Backbone of the Master Template. That data XML file
must match the xsd of the Data Backbone. It is possible
to refer to files in the session by prefixing their name
with "session." For example, "session:xml-input.xml".
Uploading a file to the session can be done with the
ITPOLSSessionUploadFile service.

DBB_XMLOutput The location where the XML file with the data of the
Data Backbone of the Master Template is stored after
the Master Template run completed. It is possible to
refer to files in the session by prefixing their name
with "session." For example, "session:xml-output.xml".
Downloading the file from the session can be done with
the ITPOLSSessionDownloadFile service.

RedirectUrl An URL that can be retrieved with the
ITPOLSSessionGetRedirectURL service using an
exchange data. Typically used to redirect the user's
browser after completing the Master Template.

For certain parameters it is possible to indicate that the value is determined by the configuration of KCM
ComposerUI, instead of by the value passed to the service ITPOLSSessionSetModelParams. This can
be indicated by passing the special value "*DEFAULT". This special value is supported for the following
parameters:
• User
• Environment
• ResultFileFormat
• Preview
• DatabaseUID
• DatabasePWD
• OnSuccessCommand
• OnFailureCommand
• PreCommand
• PostCommand

For the remaining parameters, the Master Template run always uses the exact values specified as
parameters to this service.

ITPOLSSessionPrepareModelList
Parameters
Parameter Text User
Parameter Text Pattern = ""
Parameter Text Root = ""
Parameter Text Keys = ""
Parameter Text Extras = ""
Parameter Text ResultFileName = "Result"
Parameter Text ProcessPreviewParams = ""
Parameter Text ProcessResultParams = ""
Parameter Text ProcessConfirmParams = ""

53

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Text Environment = ""
Parameter Text ResultFileFormat = ""
Parameter Text Preview = ""
Parameter Text PreviewFileFormat = ""
Parameter Text Confirm = ""
Parameter Text ConfirmFileFormat = ""
Parameter Text DatabaseUID = ""
Parameter Text DatabasePWD = ""
Parameter Text OnSuccessCommand = ""
Parameter Text OnFailureCommand = ""
Parameter Text PreCommand = ""
Parameter Text PostCommand = ""
Parameter Boolean UploadDataFile = False
Parameter Boolean UploadDBB_XML = False
Parameter Text DBB_XMLInput = ""
Parameter Text DBB_XMLOutput = ""
Parameter Text RedirectUrl = ""

ITPOLSSessionPrepareModelList combines the functionality of the ITPOLSSessionStart,
ITPOLSSessionUploadFile and ITPOLSSessionSetModelListParams services. It allows for the definition
of KCM ComposerUI Master Template run in a single call and does the following:
• Call ITPOLSSessionStart
• If UploadDataFile is set to True, do a ReceiveFile with the value "datafile" for the parameter
Src. The location of the received data file is used as Keys, and the Keys value passed to
ITPOLSSessionPrepareModelList is ignored.

• If UploadDBB_XML is set to True, do a ReceiveFile with the value "xml-input" for the
parameter Src. The received data file is stored in the session and a reference to that file
("session:xml-input.xml") is used as DBB_XMLInput value, and the DBB_XMLInput value passed to
ITPOLSSessionPrepareModel is ignored.

• Call ITPOLSSessionSetModelListParams with the passed parameters.

The UploadDataFile feature is designed for Master Templates that use an XML File connection. The
uploaded file is automatically used as the XML data file by the Master Template run.

The UploadDBB_XML feature is designed for Master Templates that have a Data Backbone which should
be filled by a data XML that matches the xsd of the Data Backbone.

See ITPOLSSessionSetModelListParams for detailed parameter descriptions.

ITPOLSSessionPrepareLetterbook
Parameters
Parameter Text User
Parameter Text Letterbook = ""
Parameter Text Keys = ""
Parameter Text Extras = ""
Parameter Text ResultFileName = "Result"
Parameter Text ProcessPreviewParams = ""
Parameter Text ProcessResultParams = ""
Parameter Text ProcessConfirmParams = ""
Parameter Text Environment = ""
Parameter Text ResultFileFormat = ""
Parameter Text Preview = ""
Parameter Text PreviewFileFormat = ""
Parameter Text Confirm = ""
Parameter Text ConfirmFileFormat = ""

54

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Text DatabaseUID = ""
Parameter Text DatabasePWD = ""
Parameter Text OnSuccessCommand = ""
Parameter Text OnFailureCommand = ""
Parameter Text PreCommand = ""
Parameter Text PostCommand = ""
Parameter Boolean UploadDataFile = False
Parameter Boolean UploadDBB_XML = False
Parameter Text DBB_XMLInput = ""
Parameter Text DBB_XMLOutput = ""
Parameter Text RedirectUrl = ""

The parameters defining a Master Template list and the parameters for a subsequent Master Template
run may be set through ITPOLSSessionSetListParams. Most of these parameters match the parameters
described in the section Runmodel.

Parameter Description

User The user on whose behalf the Master Template list and
the subsequent Master Template are run. For example,
the value for this parameter is passed to the ListModels
and the CheckModelAccess exit point scripts.

Letterbook The entry point of a Letterbook. This selects the folders
and Templates that are available for the browsing user.
This is the name of an interactive Letterbook, optionally
followed by sub folders separated by slashes (/).
Starting with KCM Core and KCM Repository version
4.2.3y when a rep:/ uri is provided for the
Letterbook, the Letterbook is retrieved from the KCM
Repository. See also RetrieveRepositoryObject.

Keys A semicolon separated list of keys is used by the Master
Template run. It is possible to refer to files in the session
by prefixing their name with "session." For example,
key1;session:data;key3;key4.

Extras A semicolon separated list of extras is used by the
Master Template run.

ResultFileName The file name of the result document. The result
document is always stored as a session file.

ProcessPreviewParams The value of this parameter is passed to the
ProcessPreview exit point script.

ProcessResultParams The value of this parameter is passed to the
ProcessResult exit point script.

ProcessConfirmParams The value of this parameter is passed to the
ProcessParams parameter of the exit point scripts.

Environment The environment under which the Master Template run
will take place.

ResultFileFormat The format of the result document, either "PDF" or
"native".

Preview Whether or not the HTML forms of the model run should
be accompanied with previews of the document as it is at
that moment. Either "Y" or "N".

55

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Description

PreviewFileFormat The format of the preview document, either "PDF",
"native" or "HTML".

Confirm A confirmation page is presented after the Master
Template completes. Either "Y" or "N".

ConfirmFileFormat The format of the confirm document, either "PDF",
"native" or "HTML".

DatabaseUID User Id is passed to the DataManager on KCM Core.

DatabasePWD Password is passed to the DataManager on KCM Core.

OnSuccessCommand OnSuccess command, executed when the model
succeeds (AS/400 only).

OnFailureCommand OnFailure command, executed when the model fails
(AS/400 only).

PreCommand Pre command, executed at the start of the run (AS/400
only).

PostCommand Post command, executed at the end of the run (AS/400
only).

UploadDataFile Either True or False. If UploadDataFile is set to True,
a ReceiveFile is performed with the value "datafile"
for the parameter Src. In this case the location of the
received data file is used as Keys, replacing the value
passed to this service. The UploadDataFile feature is
designed for use by Master Templates that use an XML
File connection (DID). The uploaded file is automatically
used as the XML data file by the Master Template run.

UploadDBB_XML Either True or False. If UploadDBB_XML is set to True,
a ReceiveFile is performed with the value "xml-input"
for the parameter Src. The received data file is stored
in the session and a reference to that file ("session:xml-
input.xml") is used as DBB_XMLInput value, replacing
the value passed to this service. The UploadDBB_XML
feature is designed for use by Master Templates that
have a Data Backbone which are filled by a data XML
that matches the xsd of the Data Backbone.

DBB_XMLInput The location of a data XML file is used to fill the Data
Backbone of the Master Template. That data XML file
must match the xsd of the Data Backbone. It is possible
to refer to files in the session by prefixing their name
with "session." For example, "session:xml-input.xml".
Uploading a file to the session can be done with the
ITPOLSSessionUploadFile service.

DBB_XMLOutput The location where the XML file with the data of the
Data Backbone of the Master Template should be stored
after the Master Template run completed. It is possible
to refer to files in the session by prefixing their name
with "session." For example, "session:xml-output.xml".
Downloading the file from the session can be done with
the ITPOLSSessionDownloadFile service.

56

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameter Description

RedirectUrl A URL that can be retrieved with the
ITPOLSSessionGetRedirectURL service using an
exchange data. Typically used to redirect the user's
browser after completing the model.

For certain parameters it is possible to indicate that the value should be determined by the configuration
of KCM ComposerUI, instead of by the value passed to the service ITPOLSSessionPrepareLetterbook.
This can be indicated by passing the special value "*DEFAULT". This special value is supported by the
following parameters:
• User
• Letterbook
• Environment
• ResultFileFormat
• Preview
• DatabaseUID
• DatabasePWD
• OnSuccessCommand
• OnFailureCommand
• PreCommand
• PostCommand

For the remaining parameters, the Master Template run always use the exact values specified as
parameters to this service.

Exit points
The business application is notified when a Master Template run is completed. KCM ComposerUI offers
a number of exit point scripts, because the requirements on how to achieve this may vary widely. See CM
Core: OnLine exit points.

It is important to note that these exit point scripts run within Master Template run session. This means that
any key/value pairs and files that are stored in the session can be accessed from the scripts.

57

Chapter 9

KCM Core: ComposerUI exit points

The functionality that supports the production of interactive documents on KCM Core is implemented as
a number of KCM Core scripts. Some of these scripts are "exit points," as they can be overridden. These
scripts are located in the scripts\User Library subfolder of the KCM Core KCM Work folder.

CheckModelPathAccess.dss (previously CheckModelAccess)
These scripts are called before executing a Master Template. They are used to check whether the given
user has access to the given model. If access is not allowed, the scripts display an error and Master
Template execution is subsequently aborted.

The CheckModelPathAccess.dss script is called for KCM ComposerUI requests.

Note The CheckModelPathAccess.dss script installed by KCM Core does not implement any validations
and permits all requests.

Parameters
• Master Template: The Master Template to be executed.

For CheckModelPathAccess, this is the unmodified Master Template as passed to KCM ComposerUI.
• UserID: The KCM ComposerUI user submitting the request.
• ApplicationID: The KCM ComposerUI Application ID.

ErrorOccurred.dss
This script is called after an error occurs during KCM ComposerUI Master Template run. By default, this
script does nothing. For example, it can be used to do some post-processing of the XML containing the
error data or, to inform calling applications of the error occurred. A modified error XML file must be saved
to the same location as the original file.

Parameters

The script is called with the following parameters:
• ITPCode: The code indicating the source of the error. For example, "itp.Server" or "itp.authorization".
• ITPReason: The error message text.
• ITPLOG: Messages from the ITPLOG if any.
• ITPLOGDM: Messages from the ITPLOGDM if any.
• ErrorFile: The file name of the XML file containing the error data.

58

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

MakeHTMLDocument.dss
This script is always called when an HTML document is produced by KCM ComposerUI. By default this
script uses the Microsoft XSLT transformation tool with a sample XSLT sheet to generate the HTML. We
recommend that users change this script to use a custom XSLT sheet and add additional functionality to
the document production if required.

Parameters

The script is called with the following parameters:
• Document: The file path of the input document. This is in the AiaDocXML format.
• HTMLResult: The name of the resulting HTML document. The script must either produce this file or

throw an error.
• IsFinalResult: Indicates if this is the final result document (True) or a preview document (False).
• Environment: The environment that is used to produce the document.
• Master Template: The Master Template that produced the document.
• UserID: The user name of the browsing user.
• ApplicationID: The name of the KCM ComposerUI application.
• ProcessParams: The content of the pvw_proc_params (if IsFinalResult=False) or the

res_proc_params (if IsFinalResult=True) that is passed to the runmodel call if any.

MakePDFDocument.dss
This script is always called when a PDF document is produced by KCM ComposerUI. By default this
script uses the DocToPDF command to generate the PDF document. Users can change the script to use
another PDF converter or add additional functionality to the document production.

Parameters

The script is called with the following parameters:
• Document: The file path of the input document.
• PDFResult: The file path of the resulting PDF document. The script must either produce this file or

throw an error.
• IsFinalResult: Indicates if this is the final result document (True) or a preview document (False).
• Environment: The environment to produce the document.
• Master Template: The Master Template to produce the document.
• UserID: The user name of the browsing user.
• ApplicationID: The name of the KCM ComposerUI application.
• ProcessParams: The content of the pvw_proc_params (if IsFinalResult=False) or the

res_proc_params (if IsFinalResult=True) that is passed to the runmodel call if any.

59

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

ModelRunCompleted.dss
This script is called after an KCM ComposerUI Master Template is run and the result document is written
to its folder. By default, this script does nothing. You can add custom functionality to this script. For
example, you can pass the file name of the produced document back to a calling application.

Parameters

The script is called with the following parameters:
• Document: The file path of the produced document. This parameter is empty when the document is not

stored on the server (res_srv=N on KCM ComposerUI).
• MetaData: The file path of the Master Template run XML metadata. For more information on Master

Template run XML metadata, see the "Integration" chapter in the KCM Core Developer's Guide.
• Environment: The environment to produce the document.
• Master Template: The Master Template to produce the document.
• Format: The requested output format.
• UserID: The user name of the browsing user.
• ApplicationID: The name of the KCM ComposerUI application.
• ProcessParams: The content of the res_proc_params that is passed to the runmodel call if any.

PrepareSuspendSession.dss
This script is called when the user clicks the Suspend button on a form. It is run within the same KCM
Core job that processes the Master Template run. All ccm_parameters set by the Master Template run are
still available in this exit point. Note, that these are no longer available in the exit point SuspendSession.

Parameters

The script is called with the following parameters:
• Environment: The KCM Core environment that is used.
• Master Template: The Master Template that produces the document.
• UserID: The name of the user for whom the Master Template run is done.
• ApplicationID: The name of the used KCM ComposerUI application.

ProcessResult.dss
This script is always called after a result document is produced, but before it is written to its folder. By
default this script does nothing. You can add functionality to this script for processing the result before
presenting it to the user.

Parameters

60

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The script is called with the following parameters:
• Document: The file path of the produced document. If you adapt the script to process this document.

We recommend, that you save it to the same file.
• MetaData: The file path of the Master Template run XML metadata. For more information on model run

XML metadata, see the "Integration" chapter of the KCM Core Developer's Guide.
• Environment: The environment that is used to produce the document.
• Master Template: The Master Template that produces the document.
• Format: The requested output format.
• UserID: The user name of the browsing user.
• ApplicationID: The name of the KCM ComposerUI application.
• ProcessParams: The content of the res_proc_params that is passed to the runmodel call if any.

ProcessPreview.dss
This script is always called after a preview document is produced, but before it is written to its folder. By
default this script does nothing. Users can add functionality to this script for processing the preview before
presenting it to the user.

Parameters

The script is called with the following parameters:
• Document: The file path of the produced document. If you adapt the script to process this document,

we recommend that you save it to the same file.
• Environment: The environment to produce the document.
• Master Template: The Master Template to produce the document.
• Format: The requested output format.
• UserID: The user name of the browsing user
• ApplicationID: The name of the KCM ComposerUI application.
• ProcessParams: The content of the pvw_proc_params that is passed to the runmodel call if any.

ResumeSession.dss
This script is called after the usage of the modelresume page. It retrieves and restores a suspended
session. The default implementation restores the session data inside the passed on archive. Then,
the KCM Core sessionID is sent back to the client, namely modelresume page, where the browser is
forwarded to the correct form.

Parameters

The script is called with the following parameters:
• Param: The custom parameter, which is passed on from the page modelresume in KCM ComposerUI.
• ApplicationID: The name of KCM ComposerUI application in which modelresume.aspx is called.

61

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

SessionResumed.dss
This script is called after KCM Core resumes a suspended session and sends back to the client the
sessionID of the restored session. This script is run in the context of the restored session.

Parameters

The script is called with the following parameters:
• Environment: The KCM Core environment that is used.
• Master Template: The Master Template that produces the document.
• UserID: The name of the user for whom the Master Template run is done.
• ApplicationID: The name of the used KCM ComposerUI application.
• Param: The custom parameter, which is passed on from the page modelsuspend in KCM ComposerUI.

SuspendSession.dss
This script is called after the user clicks the Suspend button on an OnLine form. The default
implementation saves the KCM session into an archive and sends it to the client, namely modelsuspend
page, where it is offered to the user as a download.

Parameters

The script is called with the following parameters:
• Environment: The KCM Core environment that is used.
• Master Template: The Master Template that produces the document.
• UserID: The name of the user for whom the Master Template run is done.
• ApplicationID: The name of the used KCM ComposerUI application.
• Param: The custom parameter, which is passed on from the page modelsuspend in KCM ComposerUI.

ValidateModel.dss
This script is called when a user selects a Master Template from a prepared Master Template list. The
purpose of this script is to validate that the Master Template selected by user is a part of the prepared
Master Template list. In this case, the script writes the path to the Master Template in a session variable
with the following keys:
• Key defined by the parameter KeyModel of the script
• Key defined by human readable representation of the Master Template
• Key defined by the parameter KeyLabel of the script

If the Master Template is not valid, the error appears in the script.

62

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

The default behavior implemented in the script is that it validates the parameter ModelRef against the
provided XMLFile. If it is valid, it will set some session variables. Other forms of authorization can be
implemented by adapting the script.

Parameters

The script is called with the following parameters:
• ModelRef: The Master Template reference to be validated.
• XMLFile: The xml file containing the list of Master Templates that the user is allowed to run.
• KeyModel: The key that can be used to store the Master Template name in the session.
• KeyLabel: The key that can be used to store the label in the session.

Uploaded.dss
This script is always called when KCM ComposerUI uploads a file to KCM Core. The default
implementation of this script does nothing. You can change this script to implement processing of the
uploaded file.

Parameters

The script is called with the following parameters:
• File: The file name and path of the uploaded file.
• Master Template: The Master Template running when the upload takes place.
• Environment: The environment to upload the file.
• UserID: The user name of the browsing user.
• ApplicationID: The name of the KCM ComposerUI application.

63

Chapter 10

KCM ComposerUI APIs

KCM ComposerUI API demonstrates the functionality that supports the production of interactive
documents on KCM Core. For example, KCM ComposerUI uses this API to access KCM Core from
the web server. The KCM ComposerUI ASP.NET implementation uses a .NET version of the KCM
ComposerUI API, whereas the J2EE implementation uses a Java implementation. There is also a KCM
ComposerUI API using COM.

KCM ComposerUI API is an officially supported API. This means that it can be accessed directly without
the use of one of the KCM ComposerUI implementations, such as a client application that accesses KCM
Core directly from the workstation. In order to do this, an implementation of the KCM Core API (either
Java, .NET or COM) is installed as part of the application. The application can translate the XForms XML
retrieved through the API to an appropriate GUI representation.

This chapter describes the .NET, Java and COM implementations of the KCM ComposerUI API.

.NET API
The .NET API is implemented by the class Aia.ITP.OnLine.Model. This class offers properties and
methods for listing KCM Master Templates and running an interactive KCM Master Templates. The Java
and COM APIs for KCM ComposerUI are separate from the APIs for KCM Core, while the .NET API for
KCM ComposerUI is delivered as an integrated part of the .NET API for KCM Core.

See the KCM Core Developer's Guide for information on the installation and use of the KCM Core .NET
API.

Aia.ITP.OnLine.Model class
The class Aia.ITP.OnLine.Model offers functionality for running an interactive KCM Master Template using
KCM ComposerUI, and for using various miscellaneous features of KCM ComposerUI. The following
section describes the properties and methods of the class Aia.ITP.OnLine.Model.

Running an interactive CM model
The class Aia.ITP.OnLine.Model makes it possible to run KCM Master Templates that interact with a user.
Running such a Master Template always follows the below procedure:

1. Call the method Start to perform an initial run of the Master Template.

2. Every time the model run returns interaction requests, call the method Continue to send responses to
the interaction and re-run the Master Template.

64

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

3. After the last interaction request, the Master Template run is complete. Optionally, call the method
Finish to allow KCM ComposerUI to clean up after the Master Template run.

So, running an interactive KCM Master Template is always done by calling the method Start to start
running the KCM Master Template, and one or more calls to the method Continue. The number of calls
depends on the number of FORM statements and other interaction requests in the KCM Master Template.

Every time the KCM Master Template comes across a FORM statement or other interaction request, KCM
will send out an XForms XML document that contains the Form questions. This XML data will be stored
into the file specified by the property InfoFile of the object Aia.ITP.OnLine.Model. The Form questions can
be extracted from this XML, for instance, by using an XSLT transformation, and presented to the user.
The answers have to be passed back to the KCM ComposerUI through the parameter response of the call
Continue.

Note Interaction requests do not result only from FORM statements in the KCM Master Template. There
are several other situations in which XML forms are generated by KCM Core. For instance, if the KCM
XML File Connection is used and no XML data file using the property DataFile is specified, KCM Core
sends out an XML form. In this Form, the user is asked to select the XML data file that will be used to
run the KCM Master Template.

Also, for every Continue call the KCM Master Template is actually re-run completely. This could possibly
have adverse side effects if the KCM Master Template or one of the parameters of the call Start is
changed, for instance, the database. The developer must ensure that such side effects either cannot
take place, or cannot influence the outcome.

Methods
The Aia.ITP.OnLine.Model class has the following methods:
• Constructor
• Letterbook
• List
• Start
• Continue
• Finish
• Upload

Constructor
The constructor for Aia.ITP.OnLine.Model constructs a model object with values for all of the required
properties.
• Signature

Model (string host, string port, string jobID, string infoFile);

• Parameters
The parameters correspond to the properties Host, Port, JobID and InfoFile, respectively. After
the constructor is run, these properties contain the values specified as parameters to the constructor.
See the section "Properties" below for information on the meaning of these properties.

65

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Letterbook
Lists the models in a letterbook.
• Signature

bool Letterbook (string letterbook);

• Parameters
The parameter letterbook specifies the entry point of a Letterbook.

• Return value
If the function returns true, an XML data file with a list of models and model folders is stored in the file
specified by the property InfoFile.
If the function returns false, then the request has failed, and the file specified by the property
InfoFile will contain XML error data.
An example (List.xml) of the XML data file returned by the method List can be found in the subfolder
Apis\Online\Example XML Files of the KCM Core installation folder.

List
This method is deprecated.

The method List retrieves a list of all KCM Master Templates that the user, as indicated by the property
UserID, is allowed to access.
• Signature

bool List (string pattern);

• Parameters
The parameter pattern specifies the entry point of a Letterbook.

• Return value
If the function returns true, an XML data file with a list of models and model folders is stored in the file
specified by the property InfoFile.
If the function returns false, then the request has failed, and the file specified by the property
InfoFile will contain XML error data.
An example (List.xml) of the XML data file returned by the method List can be found in the subfolder
Apis\Online\Example XML Files of the KCM Core installation folder.

Start
See Running an interactive ITP model for a description of the functionality of the method Start.
• Signature

ResultCode Start (string model,
 string resultDocument,
 string keys,
 string extras,
 string preCMD,
 string postCMD,
 string onSuccessCMD,
 string onFailureCMD);

66

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• Parameters

1. Master Template: Specifies the KCM Master Template to be run.

2. resultDocument: Specifies the path of the result document. See the documentation on the
property ResultDocument.

3. keys: Tthe parameter keys is used to pass information to KCM Master Template. For example,
you can use the parameter keys to identify the customer for whom you want to create a policy or
an invoice. The KCM Master Template can then use the identifying information to retrieve the full
customer name and address.
Keys are passed as a string of values separated by semicolons (;). The sequence must be the
same as the order in which they are expected in the Master Template.
The property DataFile is used to specify an XML data file to be passed to the KCM Master
Template. And the special value "*DataURI" is passed to indicate that this data file should be
used.
It is possible to specify an empty key by following a semicolon with another one (;;). This will
ensure that the empty parameter will count in the sequence.

4. Extras: Extra parameters are used to pass information to KCM Master Template. For example,
you can use the extra parameters to pass extra information on the user who runs the KCM
Master Template, at run time. Extras are typically used to pass information to the model that is not
available from the database and that cannot be derived from the database data.
The parameter Extras is specified as a string of values separated by semicolons (;). The
sequence must be the same as the order in which they are expected in the model.
It is possible to specify an empty parameter by following a semicolon with another one (;;). This
ensures that the empty parameter counts in the sequence.

5. PreCMD: AS/400 only. The Pre command is executed after the library list is set.

Note We recommend that the API user is aware that this Pre command is executed when the
Master Template needs to get data from the database. If the Master Template is set up in such
a way that interact statements follow on this data access, the Pre command is executed the first
time the data is accessed and every time the call Continue is called.

6. OnSuccessCMD: AS/400 only. The OnSuccess command is executed if the Master Template is
completed successfully.

7. OnFailureCMD: AS/400 only. The OnFailure command is executed if the Master Template fails.

8. PostCMD: AS/400 only. The Post command is executed at the end of the run (after OnSuccess or
OnFailure).

Note We recommend that the API user is aware that this Post command is executed for the call
to Start and also for each subsequent call to Continue. This means that the Post command is
executed for the call Start and all its Continue calls.

67

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• Return values
The following result values are defined for the methods Start and Continue:

1. Model.ResultCode.Done
The Master Template run is completed. The final document has been stored to the location set in
the property ResultDocument. If the property History is enabled, a file with all form answers in
XML format has been saved to the location set in the property InfoFile.

2. Model.ResultCode.Interact
A file containing an XML form (XForms 1.0) is saved to the location set in the property InfoFile. In
addition, if the property PreviewDocument has been set, a preview document has been written to
the location set in the property PreviewDocument.
The keyselection.xml and interact.xml examples of XML data files, which are returned by the
method Start in case of key selection or a form, can be found in the folder: APIs\Online
\Example XML Files of the KCM Core installation.
The application that uses the KCM ComposerUI .NET API responds to this result by gathering
answers to the Form questions in the XML form file, and by subsequently calling Continue,
passing the answers to the Form questions in the parameter response. The format of the
parameter response must also be XForms 1.0 XML.
An example (response.xml) of an XML data file that should be passed to the method Continue in
case of an interaction, can be found in the folder APIs\Online\Example XML Files of the KCM
Core installation.

3. Model.ResultCode.Error
An error has occurred. An XML document describing the error is stored at the location set in the
property InfoFile. After an error has occurred, the session information on the KCM Core is not
destroyed. A user is still able to go back to a previous form, and resubmit other form data.
An example (error.xml) of an XML data file returned by the method Start in case of an error
can be found in the folder APIs\OnLine\Example XML Files of the KCM Core installation.

Continue
The method Continue is used to run KCM Master Template. See Running an interactive ITP model for a
description of the functionality of this method.
• Signature

ResultCode Continue (string responseFile, string submission);

• Parameters
responseFile: The path to an XML file containing form answers. These form answers must correspond
to the form that is returned by the preceding call to Start or Continue.
submission: The parameter submission indicates the button that the user presses to submit the form.
The possible values of this parameter are defined by the XML form definition returned by the preceding
call to Start or Continue, in the element button.

• Return value
The method Continue returns the same values as the method Start.

68

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Finish
The method Finish signals KCM Core that the interactive KCM Master Template run is complete. It
may be called after a call to the methods Start or Continue returns ResultCode.Done. KCM Core
responds to this signal by cleaning up session storage. Calling Finish after a Master Template run is not
mandatory.
• Signature

bool Finish ();

• Return value
The method Finish returns true if the Master Template completion signal is successfully processed
by KCM Core. It returns false if an error occurred during the submission or processing of the completion
signal.

Upload
The method Upload is used to upload a file to an KCM ComposerUI session in KCM Core.
• Signature

string Upload (string filename);

• Parameters
The parameter filename specifies the local file that is to be uploaded.

• Return value
The method Upload returns an identifier for the file of the form "file:<id>", where <id> is the ID of a
file that is stored in the session data store on KCM Core.

Properties
The Aia.ITP.OnLine.Model class has the following properties:
• Host
• Port
• JobID
• SessionID
• UserID
• ApplicationID
• Environment
• DBUserID
• DBPassword
• History
• DataFile
• DataFileOnServer
• InfoFile
• ResultDocument
• PreviewDocument

69

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• ResultDocumentFormat
• PreviewDocumentFormat
• ResultDocumentOnServer
• PreviewDocumentOnServer
• ResultOverwrite
• FileExtension
• ProcessPreviewParams
• ProcessResultParams
• FormVersion

Host
The property Host is a string that specifies the host name of the computer running KCM Core. The name
can be specified either in (IPv4) Internet Protocol dotted address notation (a.b.c.d) or as a resolvable host
name.

Port
The property Port is a string that specifies the port number on which the KCM Core is running. The port
can be specified either in numerical format or as a service name that is resolved through any available
service databases.

JobID
The property JobID is a string that is used to identify the job on the KCM Core. It appears in the KCM
Core log files in all log lines that describe the job run.

SessionID
The property SessionID is a string that specifies the KCM Core session ID associated with the submitted
job. KCM Core session IDs serves two purposes:
• Mutual exclusion: The KCM Core guarantees that multiple requests for the same session ID are not

handled in parallel by multiple Document Processors. Instead, multiple simultaneous requests with the
same session ID are queued and processed in a series.

• Persistent storage across jobs: KCM Core services may use the session ID to store information
across several KCM Core jobs, so that each job can use data stored by earlier jobs.

During KCM ComposerUI runs of interactive KCM Master Templates, the session ID is used for both
purposes. If no session ID is provided, KCM ComposerUI automatically assigns a session ID to the
Master Template run during the method Start. This session ID is automatically retrieved and stored in the
property SessionID.

UserID
The property UserID represents the Windows user ID of the user who makes this request. If this property
is not set, the API uses the default user ID value of the calling application that is running.

70

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

ApplicationID
The property ApplicationID is used by KCM ComposerUI to store additional accounting information.
Typically, It is not necessary to set this property.

Environment
The property Environment specifies the environment that the Master Template runs in. If not set, the
default environment is used if configured.

DBUserID / DBPassword
The properties DBUserID and DBPassword specify credentials to override the database credentials
that are configured in the KCM Core environment configuration. The password is always transferred in
encrypted form.

History
The boolean property History specifies that a list of all form answers is returned together with the result
document. This information is stored in an XML format, in the file specified by the property InfoFile.
The default value for the property History is false.

DataFile / DataFileOnServer
The property DataFile specifies the file path to an XML data file. This file is used in conjunction with the
KCM XML File Connection, and specifies the XML file that is used as input for the Master Template run. If
the property DataFile is not set and the KCM Master Template requires an XML data file, an XML form is
sent by KCM Core, asking the user to upload an XML file.

If the property DataFileOnServer is enabled, then the file path is interpreted as a path accessible from
KCM Core. If the property DataFileOnServer is disabled, then the .NET API uploads the file to KCM
Core from the specified local path. The default value for the property DataFileOnServer is false.

InfoFile
The property InfoFile specifies the path to the file in which all XML data is returned. Its contents
depend on the specific method that is called, and on the return value of the method. Among the possible
contents are:
• An XML document containing information about the Master Template run, including the form answers

that are given, are stored in the file indicated by the property InfoFile; when a Start or Continue
call returns Model.ResultCode.Ready, and the property History is enabled.

• An XForms XML document containing a form which is displayed to the user; when a Start or
Continue call returns Model.ResultCode.Interact.

• An XML document containing information on the error that occurs; when a Start or Continue call
returns Model.ResultCode.Error.

71

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

ResultDocument and related properties
The property ResultDocument specifies the file path that is used to store the final result
document. It contains the last value that is passed through the resultDocument argument
to the method Start. The result document is written when a Start or Continue call returns
Model.ResultCode.Done. If the property ResultDocumentAllowOverwrite is disabled and the file
with the specified path already exists, an error code is returned instead. The default value for the property
ResultDocumentAllowOverwrite is true.

If the property ResultDocumentOnServer is enabled, then the file path is interpreted as a path
accessible from KCM Core. If the property ResultDocumentOnServer is disabled, then the .NET
API downloads the file from KCM Core to the specified local path. The default value for the property
ResultDocumentOnServer is false.

The property ResultDocumentFormat is a string that specifies the file format in which the result
document is generated. This format can be either "native" or case insensitive "PDF". The default is
"native", which means that the word processor format of the Master Template itself gets generated.

PreviewDocument and related properties
The property PreviewDocument specifies the file path that is used to store preview documents. If this
property is empty, then no preview documents are generated. If a file path is specified, then KCM Core
generates a preview document when the Master Template run is interrupted for user interaction, such
as when a Start or Continue call returns Model.ResultCode.Interact. The preview document
is generated in the format specified by the property PreviewDocumentFormat. It is allowed to use the
same path for both the preview document and the final result document.

If the property PreviewDocumentOnServer is enabled, then the file path is interpreted as a path
accessible from KCM Core. If the property PreviewDocumentOnServer is disabled, then the .NET
API downloads the file from KCM Core to the specified local path. The default value for the property
PreviewDocumentOnServer is false.

The property PreviewDocumentFormat specifies the file format in which the preview document is
generated. This format can be either "native" or case insensitive "PDF". The default is "native",
which means that the word processor format of the Master Template itself gets generated.

ResultDocumentFileType
The property ResultDocumentFileType is a read-only string property which specifies the file type of
the result document. Possible values are:
• unknown: Unable to determine the type of the file.
• doc: Microsoft Word document.
• docx: Microsoft Word Open XML document.
• ps: PostScript file.
• pdf: PDF document.
• sxw: OpenOffice.org / StarOffice document.
• odt: OpenOffice.org 2.2 document.
• lwp: WordPro document.

72

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• wpd: WordPerfect document.

ProcessPreviewParams
The property ProcessPreviewParams specifies a string that is passed to the exit point ProcessPreview
in KCM Core. This can be used freely to pass information to the exit point, such as to specify which action
it should take.

ProcessResultParams
The property ProcessResultParams specifies a string that is passed to the exit point ProcessResult
in KCM Core. This can be used freely to pass information to the exit point. For example, to specify which
action it should take.

FormVersion
The property FormVersion specifies the maximum XML Forms feature level that is supported by the
client of the API. The clients can protect themselves against new features in the form XMLs returned
by KCM Core. If a FORM statement in an interactive KCM Master Template uses features that are not
supported by the client, KCM Core aborts the Master Template run with an error. The default value for the
property FormVersion is "0", which indicates that only basic XML forms are supported.

Java API
Java API for KCM ComposerUI consists of two classes:
• Model class
• Job class

Installation
All functionality can be found in the package com.aia_itp.itpols.api, which is provided by the Java archive
itpolsapi.jar. This archive is placed in the Apis\Online subdirectory of the KCM Core installation folder.

Model Class
This section describes the properties and methods of the Model class as well as error handling. The
Model class offers properties and methods for running an interactive KCM Template.

Run an interactive CM Template
With the Model class, it is possible to run KCM Template that can be interactive. Running such a Template
is split in two methods:

1. "Start" method for the initial call

2. "Continue" method for continuing the Template after an interact is answered

Running an interactive KCM Template is always done by calling the Start method to start running the
KCM Template, and one or more Continue calls, depending on the number of INTERACT statements in

73

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

the KCM Template. Every time the KCM Template comes across an INTERACT, KCM sends out an XML
Form with the INTERACT questions. A reference to this XML data is returned in the file mentioned in
the Info property of the Master Template object. The questions of the INTERACT can be extracted from
this XML and presented to the user, such as with an XSLT. The answers are passed back to the KCM
Template in the response parameter of the Continue call.

Note If the XML Connection is used and no XML data file is passed in the Data property of the
Template, KCM Core sends out an XML Form with an INTERACT as well. In this INTERACT the user is
asked to select the XML data file that should be used to run the KCM Template.

Also, for every Continue call, the KCM Template is actually rerun completely. This could have possible
side effects if the KCM Template or one of the parameters of the Start call updates, such as the
database. We recommend, that the developer makes sure that such side effects cannot take place or do
not influence the outcome.

Properties
The Model class has the following properties. All properties have getter and setter methods.

Connection settings.

Both properties below must be specified when constructing a model.

Property Type Description

Host String Required. A string that contains the
name of the server running KCM
ComposerUI. The name can be
specified either in (IPv4) Internet
Protocol dotted address notation
(a.b.c.d) or as a resolvable host
name.

Port String Required. A string that contains the
port to connect to KCM ComposerUI.
The port can be specified either in
numerical format or as a resolvable
port name (TCP/IP service name).

Identification

Property Type Description

JobId String Required. A string that contains the
Job Identifier for this job.

UserId String Required. The user that is doing this
request.

ApplicationId String Optional. Additional accounting
information.

74

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Property Type Description

SessionId String This identifier is initialized by KCM
ComposerUI during a "Start" call. If
a single Model instance is used to
manage a complete Master Template
run, this will automatically ensure that
Continue/Cancel/Finish calls pass the
right session id. We recommend that
the user of this API remembers this
value, and sets it before issuing one
of these subsequent calls.

Database info

Property Type Description

Environment String Optional. The environment that the
Master Template runs in. If not set,
the default environment will be used
(if configured).

DBUserId String Optional. Database User ID.

DBPassword String Optional. Database password for
the given DBUser. If set, these
credentials are initially passed to
the Start and the Continue call.
They override any credentials that
have been set in the Connection
Configuration file.

Note The password is not
encrypted.

Processing modes

Property Type Description

History boolean Optional. If set to True, return a list of
all interact answers (in XML format)
together with the final document.
False by default.

Input and Output files

Property Type Description

Info String Required. This property contains the
path to the file in which all XML data
will be returned. The content of the
XML file depends on the call, and on
the return value of the call.

75

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Property Type Description

Result String The UNC path where the final
document is stored. It contains the
value that is passed as a Result
argument to the Start method.
API retrieves the document from
KCM Core and stores it at the UNC
path location that is accessible from
the machine, and on which the Java
API is installed. We recommend that
the user ensures that the API is able
to write to this location. Also see
the property DocumentOnServer for
alternative use.

Preview String Optional. The UNC path where the
previews are stored. A preview is an
intermediate result document, as it
is at the moment of an interact. Also
see Result. If no preview filename is
specified, no previews are generated.
It is allowed to use the same UNC
path for both the preview and the
final document.

Data String Optional. The UNC path to an XML
data file. Also see Result.
This XML data can be passed as an
input file to KCM Core. Only used
with the KCM XML File Connection.
If the Data property is not set and the
KCM Template needs an XML data
file, an XML Form is sent out with an
INTERACT. In this INTERACT the
user is asked to select the XML data
file.

DocumentOverwrite boolean Optional. Specifies whether existing
result documents may be overwritten.
True by default.

ResultFormat String Optional. The format of the final
document. Can be either "NATIVE"
or case insensitive "PDF". Default
is "NATIVE", which means that the
word processor format of the model
itself gets generated.

PreviewFormat String Optional. The format of the previews.
Can be either "NATIVE" (the default)
or "PDF" (case insensitive).

76

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Property Type Description

ResultOnServer boolean If True, the Result is relative to the
KCM Core machine, such as a local
path on the KCM Core machine. In
that case, KCM Core is responsible
for storing the result document at
that location. The final document
is not transferred to the Java API
then. If this value is False, the final
document is transferred and stored
on the machine where the API is
installed. False by default.

PreviewOnServer boolean Optional. See DocumentOnServer.
False by default.

DataOnServer boolean Optional. See DocumentOnServer. If
True, the API does not transmit any
XML data file. False by default.

FileExtension String Read only. Contains the extension of
the result document. Possible values
are:
unknown: Unable to determine the
type of the file.
doc: Microsoft Word document.
docx: Microsoft Word Open XML
document.
ps: PostScript file. pdf: PDF
document.
sxw: OpenOffice.org/StarOffice
document.
odt: OpenOffice.org 2.2 document.
lwp: WordPro document.
wpd: WordPerfect document.

ProcessPreviewParams String Optional. A string that is passed
to the ProcessPreview exit point.
This can be used freely to pass
information to the exit point. For
example, to specify which action it
should take.

ProcessResultParams String Optional. A string that is passed
to the ProcessResult exit point.
This can be used freely to pass
information to the exit point, such as
to specify which action it should take.

77

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Property Type Description

FormVersion String Optional. The maximum feature
level that is supported by the client
of the API. Clients can protect
themselves against new features in
the INTERACT XMLs returned by
KCM Core. Instead of sending back
an XML with these features, KCM
Core returns an error.

Methods
1. Model

The constructor creates a new Model object.
public Model (String host,
 String port)

Parameters:
• host - the location of KCM ComposerUI
• port - the port that KCM ComposerUI listens to

2. Letterbook
Lists the models in a letterbook.
public boolean Letterbook (String letterbook)
 throws Exception

Parameters:
• letterbook - the entry point of a Letterbook

Returns:
false if the function failed. In that case the Info file contains XML error data. If the function
succeeds it returns true, and the Info file contains a list of Master Templates.

3. List
This method has been deprecated.
Lists the Master Templates that the user, as indicated by the current set of properties, is allowed to
access.
public boolean List ()
 throws Exception
 public boolean List (String pattern)
 throws Exception

Parameters:
• pattern (optional) - the pattern to be passed to the ListModels exit point script.

Returns:
false if the function failed. In that case the Info file contains XML error data. If the function
succeeds it returns true, and the Info file contains a list of Master Templates.

78

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

4. Start
The RunModel functionality is split in two method calls: Start and Continue. Start is always called
first. Depending on the outcome of the previous call, zero or more Continue calls are needed.
public int Start (String model,
 String result,
 String keys,
 String extras)
 throws Exception

 public int Start (String model,
 String result,
 String keys,
 String extras,
 String preCMD,
 String postCMD,
 String onSuccessCMD,
 String onFailureCMD)
 throws Exception

Parameters:
• Master Template: The Master Template to run, given as a rep:/ URI or a Letterbook URI.
• Result: The URI of the file of the result. By default, this URI is a location relative to the user of the

Java API itself. In that case, the API retrieves the document from KCM Core and stores it at this
location. We recommend that the user ensures that the API is able to write at this location. Also,
see the DocumentOnServer flag for alternative use.
The value passed here can be retrieved as the DocumentURI property.

• Keys: The keys string, in KCM Core format. There is no keys file support. A special "*DataURI"
value refers to the XML file as indicated by the DataURI property. For Master Templates that need
access to an XML file either this key and DataURI must be specified, or the actual path, relative to
IKCM Core.

• Extras: The extras string, in KCM Core format. There is no extras file support.
• PreCMD: AS/400 only. The Pre command is executed after the library list is set.

Note We recommend that the API user is aware that this Pre command is executed when the
Master Template needs to get data from the database. If the Master Template is set up in such
a way that interact statements follow on this data access, the pre command is executed the first
time the data is accessed and every time the Continue call is called.

• OnSuccessCMD - AS/400 only. The OnSuccess command is executed if the model is completed
successfully.

• OnFailureCMD - AS/400 only. The OnFailure command is executed if the model failed.
• PostCMD - AS/400 only. The Post command is executed at the end of the run (after OnSuccess or

OnFailure).

Note We recommend that the API user is aware that this Post command is executed after every
run of the Master Template. This means that the Post command is executed for the Start call and
all of its Continue calls.

Returns:
• An enumeration type that indicates what this call returns. See the Types section.

79

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

5. Continue
If Start(), or another Continue() call is returned ModelResultInteract, and the user is prompted to
provide answers to the interact questions, Continue() can be called to continue Master Template
execution.
public int Continue (String response,
 String submission)
 throws Exception

Parameters:
• Response: Contains a reference to a file with the answers to an KCM Master Template interact

that is returned earlier.
• Submission: The Submission parameter indicates what the user presses in the INTERACT screen.

The possible values of this parameter are passed in the XML File that holds the INTERACT
questions, which is element button.

• Finish: This is called after a ModelResultReady result is returned to indicate that the user accepts
the Master Template. KCM Core may use this as a clean-up signal. It is not mandatory that users
call Finish.
Calling Finish clears the session id.
public boolean Finish ()
 throws Exception

6. Upload
This method sends the file indicated by the filename argument to KCM Core. The file is stored under
an automatically generated unique name in the session directory on the server. The server-side
name is returned as the return value of this call as a "file:<name>" URI. The name is a relative path
with respect to the session directory on the server. If the call fails, an empty string is returned and the
info file contains additional error data.
The stored files at least remain present at the server until Finish is called.
Upload only works as long as a session id is present, such as between calls of Start and Finish.
public String Upload (String filename)
 throws Exception

Parameters:
• filename - name of the file to upload

Returns:
Local name on the server, empty string on error.

Types
There is a special ModelResult enumeration type, a set of int constants, that specifies the possible
outcomes of a call:
• ModelResultReady (=0): Master Template runs. The final document is returned in the Result file. If

the History flag is set, the Infofile contains all interact data in XML format. This does NOT destroy the
session information on the server.

• ModelResultInteract (=1): Info contains an XML with an interact Form (XFoms 1.0). The identification
of the replay stage must be included in the interact Form itself. In addition, if Preview is set, a partial
document returns in the file indicated by the Preview file. We recommend that the API user reacts to
this result by calling Continue with the result of this or any previous Form as an argument. Furthermore,
the user must ensure that the Session property is maintained, such as host or port.

80

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• ModelResultError (=2): An error has occurred. Info contains error details in XML format. This does NOT
destroy the session information on the server. A user is still able to go back to a previous interact, and
resubmit other interact data.

• ModelResultDBUnauthorised (=3): KCM Core is unable to log on to the database due to an
authorization error for some "domain." For example, environment/did/... This implies that the Java
API itself does not have the corresponding authorization information in its cache for this domain.
Info contains an XForm that requests credentials. Basically, the format adheres to the interact Form.
We recommend that the user of the API reacts by calling Continue with the result of this Form as an
argument, similar to an ordinary interact.

Job Class
The Job class provides methods for setting the job parameters and for job submission. This section
describes the properties and methods of this class as well as error handling.

Properties
Property Type Description

Host String A string that contains the name of the
server running KCM Core. The name
can be specified either in (IPv4)
Internet Protocol dotted address
notation (a.b.c.d) or as a resolvable
host name.

Port String A string that contains the port to
connect to. The port can be specified
either in numerical format or as a
resolvable port name (TCP/IP service
name).

JobID String A string that contains the Job
Identifier for this job.

ApplicationID String Optional. Additional accounting
information.

SessionID String Session ID. See Model class.

ConfirmDisconnect Boolean Requires KCM Core to wait for
confirmation after completing a job.

LastError String Read-only. The last error message
generated.

Methods
setAdvancedCapabilities method

Allows the user of the application to specify callback objects that are involved in communication with the
server:
• Receiving files
• Transmitting files
• Exchanging data

81

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

public void setAdvancedCapabilities(ITPOLSDataSender sender,
 ITPOLSDataReceiver receiver)
 public void setAdvancedCapabilities(ITPOLSDataSender sender,
 ITPOLSDataReceiver receiver,
 ITPOLSExchangeData exchange_data)

The callback classes have to implement the appropriate interfaces:
public interface ITPOLSDataReceiver {

 /**
 * Method called when the CCM ComposerUI Server server executes a SendFile command.
 * This method should return either null to indicate that it does not want to receive
 the
 * data or an OutputStream object to which the data will be written.
 * @param DataItem The Dest parameter as passed in
 * the SendFile Src(...) Dest(...) command.
 */
 public OutputStream ITPOLSReceiveData(String DataItem);

 /**
 * Method called when receipt of the data has been finished.
 * When this method is called all data has been written to the
 * OutputStream returned by ITPOLSReceiveData. It is typically
 * used to close the OutputStream object.
 * @param DataItem The Dest parameter as passed in
 * the SendFile Src(...) Dest(...) command.
 * @param out The OutputStream object as returned by ITPOLSReceiveData.
 */
 public void ITPOLSReceiveDataFinished(String DataItem, OutputStream out);
}

public interface ITPOLSDataSender {

/**
 * Method called when the CCM ComposerUI Server server executes a ReceiveFile
 command.
 * This method should return either null to indicate that it does not want to send
 the
 * data or an ITPOLSInputStream object from which the data will be read.
 * <p>
 * The InputStream object that is returned must be wrapped in
 * an ITPOLSInputStream object, because CCM ComposerUI Server requires the size of
 the data
 * to be available before actually sending the data.
 *
 * @param DataItem The Src parameter as passed in the ReceiveFile Src(...) command.
 */
 public ITPOLSInputStream ITPOLSSendData(String DataItem);
/**
 * Method call when sending the data has been finished.
 * When this method is called all data has been sent to the CCM ComposerUI Server
 server.
 * It is typically used to close the InputStream object.
 *
 * @param DataItem The Src parameter as passed in the ReceiveFile Src(...) command.
 * @param in The ITPOLSInputStream object as returned by ITPOLSSendData.
 */
 public void ITPOLSSendDataFinished(String DataItem, ITPOLSInputStream in);
}

public interface ITPOLSExchangeData
{
 /**

82

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

 * Method called when the CCM ComposerUI Server server executes a exchange_data(key,
 value)
 * function.
 * This method should return a (optionally empty) string to the server.
 *
 * @param Key The Key parameter as passed in the exchange_data function.
 * @param Value The Data parameter as passed in the exchange_data function.
 */
 public String ITPOLSExchangeData(String Key, String Value);}

submit method

The submit functions takes the service name as the first function parameter, followed by a boolean flag
that indicates whether job submission is synchronous.

Optional parameters are:
• User: The user submitting the job. This is "Remote" by default.
• byteCoding: The encoding of the request, either RQST_IN_ASCII or RQST_IN_UNICODE, which is the

default.

public boolean submit (
 String service,
 boolean sync)
 throws Exception
 public boolean submit (
 String service,
 boolean sync,
 String user)
 throws Exception
 public boolean submit (
 String service,
 boolean sync,
 int ByteCoding)
 throws Exception
 public boolean submit (
 String service,
 boolean synchronous,
 String user,
 int byteCoding)
 throws Exception

Parameters are set before submit is called.
// Clear the parameter list, for subsequent addParamter() calls
 public void clearParameters()
 // Sets all parameters at once
 public void setParameters(String[] parameters)
 // Adds a single parameter to the parameter list
 public void addParameter(String parameter)

Form Version
A Form version expresses the complexity level for features in an XForms interact form. KCM Core
distinguishes the following values:

0 - Basic features available in KCM Core 3.1.10

1 - Multiselect, order and group features

83

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

2 - Text Block selection

3 - Edit box, radio buttons, read-only questions, group toggle and explode.

4 - Time questions, tables, buttons

5 - Editable Text Block Questions

6 - Text Block preview by date

7 - Additional toggle condition operators supported

8 - Toggling possible on more than one condition

9 - Editable Rich Text Block Questions supported

Through the COM API FormVersion property, a client can indicate the maximum Form Version that is
supported. KCM Core protects the client from features with a Form Version that exceeds this value by
sending an error message rather than an interact form containing these features.

Furthermore, each interact form indicates the highest feature level that it contains as an attribute of the
main itp:interact tag. This attribute is called "itp:feature-level." For example, an interact form XML can be
found in the COM/API/Example XML Files subdirectory of the KCM Core installation.

The interact.xml file format

Descriptions
The XML elements are described in the following generic format:

<namespace:element
 attribute=
 attribute=
 …
>
 <namespace:subelement/>
 <namespace:subelement/>
 …
</namespace:element>

The following notation is used to indicate how often subelements occur.

Notation Description At least At most

(…)? Element is optional 0 1

(…)+ Element occurs at least
once

1 -

(…)* Element can repeat more
than once

0 -

(…|…) Select one element N/A N/A

Example

84

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<x:test
 req=
 (opt=)?
>
 <y:something/>
 (<y:else/>)*
</x:text>

Defines an element x: text that has a required attribute req= and an optional attribute opt=. It always
contains an subelement <y:something> and zero, one or more <y:else> elements.

Namespaces
Namespaces are used throughout the XML structures. Their definitions are omitted from the attribute lists
in this document.

The following namespaces are used in the generated interact.xml files.

xmlns URL Description

itp http://www.aia-itp.com/3.1/interact The structures described in this
document

xforms http://www.w3.org/2002/xforms XForms 1.0

xsd http://www.w3.org/2001/XMLSchema XMLSchema datatypes

type http://example.info/types Used for internally defined datatypes

Examples

Examples only show the relevant parts of the XForms XML structure. Nested XML elements that do not
add relevant information are collapsed and shown as <subelemet/>.

Top-level elements
This section describes the main XML elements that are used to build a KCM XForms interact.xml file.

itp:interact element
<itp:interact
 itp:type=
 itp:lang=
 itp:gui_lang=
 itp:version=
 itp:feature-level=
 itp:has-errors=
>
 <itp:header/>
 (<itp:question/> | <itp:group/> | <itp:table/>)+
 (<itp:button/>)+
</itp:interact>

85

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Description
The <itp:interact> element is the root element of the interact.xml file. It contains all questions and
associated definitions for the form.

Attributes

Attribute Description

itp:type This attribute indicates the type of form that is presented.
Currently defined values are:
• keyselection: The form is a key-selection screen.
• query: The form is based on a FORM statement.
• content-wizard: The form is based on a WIZARD

statement.

itp:lang The language currently used by KCM to generate dates,
numbers and other language-dependent output.

itp:gui_lang The language currently used by KCM to interact with the
user. Both itp:lang and itp:gui_lang are presented in the
format "ll#CC", where:
• "ll" is the ISO-639 language code.
• "CC" is the ISO-3166 country code.

For example, the KCM language "ENG", English
localized for the UK, maps to "en-GB". "NLB", Dutch
localized for Belgium, maps to "nl-BE".

itp:version The version of KCM that generates the interact.xml file.

itp:feature-level Indicates the FORM features that actually occur in the
form. Currently defined levels are:
0 - All features introduced before KCM ComposerUI
Server
1 - MULTISELECT, ORDER, BEGINGROUP/
ENDGROUP

2 - VIEW
3 - EXPANDABLE, EDITBOX, RADIOBUTTONS,
READONLY, TOGGLE

4 - BEGINTABLE/ ENDTABLE, TIME, RECORSET,
SHOW/ SHOWNOT

5 - EDITABLE_TEXTBLOCK questions
6 - Support for Text Block preview by date
7 - CONTAINS, IN, >, >=, <, <= allowed as toggle
operator
8 - Toggling allowed on more than one condition
9 - Editable Rich Text Blocks
Each level includes the features of the previous levels.

86

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Attribute Description

itp:has-errors This attribute has the value "true" to indicate that
the form is a re-send of a previously generated and
submitted form, including feedback to the user about the
errors in the input. In all other cases, the value is "false".

Content
The <itp:interact> element contains an <itp:header> element which defines the title of the form
and the header attributes for the XForms definition.

In addition to this header, it contains one <itp:question> element for the QUESTION / TEXTBLOCK
and one <itp:button> element for each button on the FORM. Note that a form always contains at least
one question and one button.

Example
<itp:interact itp:type="query" itp:lang="nl-NL" itp:gui-lang="en-GB"
 itp:version="3.2.2" itp:feature-level="0" xmlns:itp="http://www.aia-itp.com/3.1/
interact" xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:type="http://example.info/types">
<itp:header/>
<itp:question/>
<itp:question/>
<itp:button/>
</itp:interact>

itp:header element
<itp:header>
 <itp:title/>
 <xforms:model/>
</itp:header>

Description
The <itp:header> element defines global properties of the interact.

Attributes
None.

Content
The <itp:title> element specifies the title of the interact.

The <xforms:model> element defines the XForms model for this FORM. See the XForms specification
for details on this element.

Example
<itp:header>
<itp:title>Customer Mailing</itp:title>

87

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<xforms:model>
<xsd:schema/>
<xforms:instance/>
<xforms:bind/>
<xforms:submission/>
</xforms:model>
</itp:header>

itp:question element
<itp:question
(id=)?
>
 (<itp:order-response/>)?
 (<itp:keylist-prompt/>)?
 (<itp:paragraph-set/>
 <itp:textblockserver>
 <itp:server/>
 <itp:port/>
 <itp:environment/>
 </itp:textblockserver>) ?
 <xforms:.../>
 (<itp:helptext/>)?
 (<itp:feedback/>)?
 (<itp:layout-hint/>)?
</itp:question>

Description
The <itp:question> element defines a single question on the form. This element contains the XForms
representation of the question and some optional components which affect how the question is displayed.

Attributes
Attribute Description

id This optional attribute specifies the ID(…) keyword
used to identify this question for use with the SHOW/
SHOWNOT keywords.

Content
Element Description

<itp:order-response> This optional element is used in textblock selection and
multiselect questions to indicate that the form should
allow the user to order the responses.

<itp:keylist-prompt> This optional element is used in keyselection forms to
provide a description for the selection list.

<itp:interact> This element has an itp:type="keyselection"
attribute.

<itp:paragraph-set> This optional element is used in a textblock selection and
specifies the textblock view from which the textblocks
can be selected by the user.

88

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Element Description

<itp:textblockserver> This optional element is used in a textblock selection
and specifies the textblock server and environment from
which the textblocks can be selected by the user.

<itp:helptext> This optional element specifies a helptext for the
question. It is only generated if the question has an
HELPTEXT element.

<itp:feedback> This optional element specifies feedback messages
for the question. It is only generated if the form was
previously rejected because of an invalid response or if
one or more ERRORCONDITION statement in the form
were triggered.

<itp:layout-hint> This optional element specifies a layout hint for the
question. It is only generated if the question has an
LAYOUT element.

The following XForms elements can currently occur within an <itp:question> element.

Element Used for

<xforms:select> Any multiselect question with a picklist.

<xforms:select1> BOOL question, any question with a picklist.

<xforms:input> NUMBER and TEXT questions.

<xforms:upload> Text question with a FILE modifier.

(<xforms:submit>)* Keys in a keyselection form (one <xforms:submit>
element for each key displayed).

The list can be expanded in future versions of KCM.

Example
<itp:question>
<xforms:input/ >
<itp:helptext>Provide the age of the customer.</itp:helptext>
<itp:feedback>The age should be between 18 and 35.</itp:feedback>
</itp:question>

itp:question element (fixed text)
<itp:question>
 <itp:text/>
 (<itp:layout-hint/>)?
</itp:question>

Description
This special version of the <itp:question> element is used to present fixed text on the form.

89

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Attributes
None.

Content
Element Description

<itp:text> The text.

<itp:layout-hint> This optional element specifies a layout hint for the
question. It is only generated if the question has an
LAYOUT element.

Example
<itp:question>
<itp:text>This is fixed text</itp:text>
</itp:question>

itp:group element
<itp:group
 id=
 level=
 expandable=
 expanded=
 toggle-source=
 toggle-value=
 toggle-condition=
>
 <itp:group-label/>
 (<itp:layout-hint/>)?
 (<itp:question/> | <itp:group/> | <itp:table/>)+
</itp:group>

Description
The <itp:group> element defines a set of <itp:question> elements that are grouped on the form.
Interactive clients should provide a visual hint of such grouping.

If the form is interactively presented to a user, the <itp:group> element can also be used to collapse
or expand the groups or to toggle the visibility of the group based on the value of another question on the
form.

<itp:group> elements can be nested.

Attributes
Element Description

id Sequence number that uniquely identifies this group
within the form. The id= attribute is used as the N value
to identify the expandedN state in the <response>
element.

90

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Element Description

level Nesting level of the group.

expandable Indicates whether or not this group can be expanded. If
the value is true, an interactive client should render this
group as a collapsible/expandable element.

expanded Indicates the original state of the group. If the value
is true, an interactive client should render this group
expanded. This value matches the value of the matching
<expanded> element in the XForms instance data.

toggle-source Indicates the question that controls whether or not this
group should be toggled as visible/hidden.
If this attribute is not present an interactive client
should always show this group and ignore other toggle-
attributes.

toggle-value Indicates the value on which the group is shown or
hidden.

toggle-condition Indicates the condition on which the group is shown or
hidden. Possible conditions are:
• toggle-condition='='

Show the group only if the current value of the toggle-
source question matches the toggle-value.

• toggle-condition='<>'
Show the group only if the current value of the toggle-
source question does not match the toggle-value.

Note that the list of conditions can be expanded in future
versions of KCM.

Content
Element Description

<itp:group-label> This element defines the heading for the group.

<itp:question> One or more questions.

<itp:group> Nested groups of questions.

<itp:table> Table structure containing one or more questions.

<itp:layout-hint> This optional element specifies a layout hint for the
group. It is only generated if the group has a LAYOUT
element.

Example
<itp:header>
<itp:title>Sample interact with a toggled group</itp:title>
<xforms:model>
<xforms:instance>
<response xmlns="">
<question1 />
<question2 />

91

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<expanded1 />
</response>
</xforms:instance>
</xforms:model>
</itp:header>

<itp:question>
<xforms:input ref="question1">
<xforms:label>Toggle</xforms:label>
</xforms:input>
</itp:question>

<itp:group id="1" level="1" expandable="false" expanded="false" toggle-
source="question1" toggle-value="42" toggle condition="<>">
<itp:group-label>Group</itp:group-label>
<itp:question>
<xforms:input ref="question2">
<xforms:label>Group question</xforms:label>
</xforms:input>
</itp:question>
</itp:group>

In this example, the "Group" group, containing the "Group question," is shown if the value of the "Toggle"
question is not equal to 42. Otherwise, the group and its contents are hidden.

itp:table element
<itp:table
 id=
 rows=
 columns=

>
 <itp:table-label/>
 (<itp:layout-hint/>)?
 (<itp:row/>)*
</itp:table>

Description
The element <itp:table> defines a group of questions structured in a table grid. One or more of the
rows in the table can be extended as a rowset.

Note that the KCM Master Template language currently does not allow cells to span multiple rows and/or
columns.

Attributes
Element Description

id Label that uniquely identifies this table within the form.

row Declaration of the number of rows in the table.
Rowsets are counted as a single row regardless of the
number of rows shown.

columns Declaration of the number of columns in the table.

92

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Content
Element Description

<itp:table-label> This element defines the heading of the table.

<itp:layout-hint> This optional element specifies a layout hint for the table.
It is only generated if the table has an LAYOUT element.

<itp:row> Definition of a row of cells.
The number of <itp:row> elements must match the
number declared with the rows= attribute.

Example
<itp:table id="table1" rows="3" columns="3">
<itp:table-label>Sample table</itp:table-label>
<itp:row/>
<itp:row/>
<itp:row/>
</itp:table>

itp:row element
<itp:row
 id=
 columns=
 (xforms:repeat-nodeset=
 (xforms:repeat-number=)?
 (maximum-number=)?
)?
>
 (<itp:layout-hint/>)?
 (<itp:cell>
 (<itp:question/>)?
 </itp:cell>)+
</itp:row>

Description
The <itp:row> element defines a row of cells in the table grid. Each row has its own definition. Rowsets
are defined as a single row.

Note that the KCM Master Template language currently does not allow cells to span multiple rows and/or
columns.

Questions within a recordset are stored in a repeated element of the response XML. The XForms
implementation of uses qualified ref= attributes to the XPath of these questions.

Attributes
Element Description

id Label that uniquely identifies this row within the table.

93

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Element Description

columns Declaration of the number of columns in the table.
The value of this attribute currently must match the value
of the columns= attribute of the <itp:table> element.

xforms:repeat-nodeset Element used to embed repeated elements in the
XForms instance data.

xforms:repeat-number Minimum number of rows that is shown in an interactive
client.

maximum-number Maximum number of rows. Clients should not exceed this
limit. (Note that XForms 1.0 does not implement such a
limitation.)

Content
Element Description

<itp:layout-hint> This optional element specifies a layout hint for the row.
It is only generated if the row has an LAYOUT element.

<itp:cell> Contents of the table cell. Cells can either be empty or
contain a single question.
The number of <itp:cell> elements must match the
number declared with the columns= attribute.

Example
<xforms:instance>
<response xmlns="">
<question5 />
<question6 />
<question7 />
<recordset1>
<question9>first record</question9>
<question10 />
<question11 />
</recordset1>
<recordset1>
<question9>second record</question9>
<question10 />
<question11 />
</recordset1>
<ITP-interact-step>1</ITP-interact-step>
<ITP-interact-count>6</ITP-interact-count>
<ITP-interact-ID>
 0bfed7a006ca685abfd59f549fb02491
</ITP-interact-ID>
</response>
</xforms:instance>

<itp:table id="table1" rows="3" columns="4">
<itp:table-label>Sample</itp:table-label>

<itp:row id="row1" columns="4"/>

<itp:row id="row2" columns="4">
<itp:cell>

94

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<itp:question>
<itp:text>Variables</itp:text>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:input ref="question5">
<xforms:label>TEXT</xforms:label>
</xforms:input>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:input ref="question6">
<xforms:label>NUMBER</xforms:label>
</xforms:input>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:select ref="question7" appearance="full">
<xforms:label>BOOL</xforms:label>
<xforms:item>
<xforms:value>TRUE</xforms:value>
</xforms:item>
</xforms:select>
</itp:question>
</itp:cell>
</itp:row>

<itp:row id="row3" columns="4" xforms:repeat nodeset="recordset1" xforms:repeat
 number="1" maximum-number="4">
<itp:cell>
<itp:question>
<itp:text>Record set example:</itp:text>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:input ref="/recordset1/question9">
<xforms:label>TEXT</xforms:label>
</xforms:input>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:input ref="/recordset1/question10">
<xforms:label>NUMBER</xforms:label>
</xforms:input>
</itp:question>
</itp:cell>
<itp:cell>
<itp:question>
<xforms:select ref="/recordset1/question11" appearance="full">
<xforms:label>BOOL</xforms:label>
<xforms:item>
<xforms:value>TRUE</xforms:value>
</xforms:item>
</xforms:select>
</itp:question>
</itp:cell>
</itp:row>
</itp:table>

95

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

itp:button element
<itp:button
 id=
>
 <xforms:submit/>
 (<itp:layout-hint/>)?
</itp:button>

Description
The <itp:button> element specifies a button that appears on the form. These buttons are used to
submit the content back to the server.

Attributes
id: Identification of the button.

Content
<itp:button>: This element defines an XForms submit element that is used to submit the form back
to the server. This <xforms:submit> element has an submission= attribute whose value is ultimately
passed to the COM API as the action parameter.

<itp:layout-hint>: This optional element specifies a layout hint for the row. It is only generated if the
row has an LAYOUT element.

The following buttons can be generated.

id= Action Description

ok ok Submit form and continue.

cancel cancel Cancels the Master Template. This button is
only available on key selection screens or if the
FORM has an ON EXIT statement.

back back1 Go back one form. This button is not available
on the first form of a Master Template.

next next Requests the next screen with keys in a key
selection form.

Example
<itp:button id="ok">
<xforms:submit submission="ok">
<xforms:label>Ok</xforms:label>
</xforms:submit>
</itp:button>

96

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Subelements
This section describes the XML elements that occur as attributes/modifiers to a main element. The section
Occurs within describes a nested structure of each element that occurs.

itp:cell
<itp:cell>
 (<itp:question/>)?
</itp:environment>

Description
Defines a cell within a table definition. This element can currently only contain a question.

Occurs within
<itp:table><itp:row>

itp:environment
<itp:environment>
 environment
</itp:environment>

Description
Defines the environment of the KCM/TextBlock Server that should be queried to retrieve Text Blocks for a
Text Block selection.

Occurs within
<itp:question><itp:textblockserver>

itp:feedback
itp:feedback
 reason=
>
 text
</itp:feedback>

97

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Description
Specifies feedback messages when a form is represented to the user due to errors in the response or
feedback programmed in the KCM Master Template.

Attributes
reason: Identifies the source of the feedback message. Possible values are "error-condition" if the
feedback is triggered by an ERRORCONDITION attribute, or validation if the answer failed to satisfy the
base requirements of the question, such as acceptable values and data type.

Occurs within
<itp:question>

itp:group-label
<itp:group-label>
 text
</itp:group-label>

Description
Specifies the heading for the grouped set of questions.

Occurs within
<itp:group>

itp:helptext
<itp:helptext>
 text
</itp:helptext>

Description
Specifies the help text for a question.

Occurs within
<itp:question>

itp:keylist-prompt
<itp:keylist-prompt>

text

</itp:keylist-prompt>

98

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Description
Specifies the description for a keylist selection screen.

Occurs within
<itp:question>

itp:order
<itp:order>
 number
</itp:order>

Description
Specifies the sequence number of a textblock in a textblock selection list. Every item in the XForms
element representing the textblock view is numbered in the order in which it is retrieved from the textblock
server. The renderer can use these fields to order the textblocks visually.

Occurs within
<itp: question><xforms:select1><xforms:item>
<itp:question><xforms:select><xforms:item>

itp:order-response
<itp:order-response/>

Description
Indicates that responses should be ordered.

Occurs within
<itp:question>

itp:paragraph-set
<itp:paragraph-set>
 text
</itp:paragraph-set>

99

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Description
Indicates the paragraph set from which textblocks are selected.

Occurs within
<itp:question>

itp:port
<itp:port>
 portnumber
</itp:port>

Description
Defines the TCP/IP port for the KCM/TextBlock Server that is queried to retrieve Text Blocks for a Text
Block selection.

Occurs within
<itp:question><itp:textblockserver>

itp:screen-fields
<itp:screen-fields>
 text
</itp:screen-fields>

Description
Specifies a user-readable representation of a record in the keyselection screen. The renderer should
either reprocess this data or display this line in a fixed-width font.

Occurs within
<itp:question><xforms:submit>

itp:server
<itp:server>
 hostname or IP address
</itp:server>

100

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Description
Defines the TCP/IP hostname or IP address for the KCM/TextBlock Server that should be queried to
retrieve Text Blocks for a Text Block selection.

Occurs within
<itp:question><itp:textblockserver>

itp:table-label
<itp:table-label>
 text
</itp:table-label>

Description
Specifies the heading for a table of questions.

Occurs within
<itp:table>

itp:text
<itp:text>
 text
</itp:text>

Description
Fixed text.

Occurs within
<itp:question>

itp:textblockserver
<itp:textblockserver>
 <itp:server/>
 <itp:port/>
 <itp:environment/>
 <itp:repository-project/>?
 <itp:repository-user/>?
</itp:textblockserver>

Description
Specifies the location of the KCM/TextBlock Server and the default project in the KCM Repository that is
searched for non-qualified objects.

The optional <itp:repository-user> element is provided if the model is started from within the KCM
Repository.

101

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Occurs within
<itp:question>

itp:title
<itp:title>
 text
</itp:title>

Description
Title of the form.

Occurs within
<itp:header>

The <response> element
The <xforms:instance> element describes the result <response> XML structure that is submitted with the
answers to the form.

This structure contains entries for all the questions in the form with their default values. Also, it contains
additional information that is used by KCM to track the order of the responses and state of elements in the
form.

Processing applications always copy this structure and replace the values that are changed by the user.
The additional elements with internal values as used by KCM are copied verbatim. The application is
aware of and able to handle new values introduced in future versions of KCM.

Structure
<response
 xmlns=""
>
 (<questionN/>)*
 (<expandedN/>)*
 (<recordsetN>
 (<questionX/>)*
 </recordsetN>)*
 <ITP-interact-step/>
 <ITP-interact-count/>
 <ITP-interact-ID/>
</response>

102

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Element

Element Description

<questionN> This element contains the value of the Nth question.
Note that TEXTBLOCK elements on the form are counted
as questions but do not have a representation in the
<response> element.

<expandedN> This element contains the state of the Nth group on the
form. If its value is TRUE the group is shown expanded.
Otherwise the group is shown collapsed.
Clients can update this field in the response to remember
the state of the groups when the response was
submitted. If the form is shown again the states are
remembered.

<recordsetN> This element contains <questionsX> elements for the
questions in the Nth recordset.

<ITP-interact-step> Identifies the occurrence of this specific form during the
execution of the model.
This element should be copied verbatim from the
XForms instance into the response structure.

<ITP-interact-count> Identifies the form during the execution of the model.
This element should be copied verbatim from the
XForms instance into the response structure.

<ITP-interact-ID> Identifies the form.
This element should be copied verbatim from the
XForms instance into the response structure.

Formatting
The default values and responses are formatted based on the basic KCM type of the variable where the
result is stored. Some of the basic types can be modified by KCM keywords, which affects the format
where the results are specified.

TEXT
Text variables can contain any text.

<question>This is some text</question>

NUMBER
Numerical values must always use the US notation. They are allowed to contain a decimal point and must
not contain thousands-separators.

<question>3.1415</question>

103

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

BOOL
The text TRUE is mapped to TRUE, and any other values are mapped to FALSE.

<question>TRUE</question>

NUMBER / DATE
Dates must be formatted in the XML Scheme xsd:date yyyy-mm-dd format.

<question>2005-12-31</question>

NUMBER / TIME
Times must be formatted in the XML Scheme xsd:time HH:MM:SS format. Note that this format uses a 24-
hour clock.

<question>16:08:00</question>

TEXT / FILE
Since KCM ComposerUI automatically transfers files for questions that use the FILE keyword, it is
necessary to store both the name of the remote file as well as the temporary copy of the local file. KCM
ComposerUI requires two elements in the response XML file for such questions:

<question>File name as stored on the server</question>
<question-local>File name selected by the user </question-local>

MULTISELECT / TEXT
Responses to MULTISELECT questions are Base-64 encoded to allow the use of spaces, which would
otherwise be interpreted as separators by the XForms specification.

Every response value must be Base-64 encoded and appropriately padded. Each encoded value must be
prefixed with an "@" that serves as a separator while decoding the responses.

It is allowed to use whitespace and/or linebreaks to split long encodings over multiple lines but such splits
are only allowed between encoded quadruplets.

<question>@MQ== @Mg== @Mw==</question>

which decodes to the response ('1'; '2'; '3').

ITP-interact-ID
The <ITP-interact-ID> uniquely distinguishes each FORM statement within a single instance of an
KCM Master Template.

The <ITP-interact-ID> is not suitable to uniquely identify forms:
• Unrelated forms in different KCM Master Templates can have the same <ITP-interact-ID> value

104

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• Any changes in an KCM Master Templates, even unrelated to the form, can affect the <ITP-
interact-ID> value

Example
<xforms:instance>
<response xmlns="">
<question0>1.000</question0>
<question1>2.000</question1>
<question2>3.000</question2>
<question6>4.000</question3>
<question7>O (EXPAND)</question10>
<expanded1>TRUE</expanded1>
<expanded2>TRUE</expanded2>
<expanded3 />
<ITP-interact-step>1</ITP-interact-step>
<ITP-interact-count>3</ITP-interact-count>
<ITP-interact-ID>
 bf4e0c358d5e205c97661f93c4ec3b4b
</ITP-interact-ID>
</response>
</xforms:instance>

Key selection
The key selection XForms form contains two major parts:
• The <response> structure, which holds a Base-64 encoded representation of the keys which can be

selected on this screen.
• For each key an <xforms:submit> element, which is labeled with the human-readable description of

the record.

The client application should use the Keys parameter on the COM API instead of manually generating a
response on a key selection form.

A client must return the <response> element unmodified to the COM API and pass the
submission=attribute as the selected action to indicate the record that has been chosen.
<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="string">
<xsd:length value="11" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0 />
<key0>QUxGS0kAAAAAAAA=</key0>
<key1>QU5BVFIAAAAAAAA=</key1>
<key2>QU5UT04AAAAAAAA=</key2>
<ITP-interact-step>1</ITP-interact-step>
<ITP-interact-count>2</ITP-interact-count>
<ITP-interact-ID>
a1ca34fceb0dec2e67f064d129633ce8
</ITP-interact-ID>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" />

105

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<xforms:submission id="keylist0" />
<xforms:submission id="keylist1" />
<xforms:submission id="keylist2" />
<xforms:submission id="next" />
<itp:question>
<xforms:input ref="question0">
<xforms:label>
Unique_five_character_code_bas
</xforms:label>
</xforms:input>
</itp:question>
<itp:question>
<itp:keylist-prompt>Select Customer</itp:keylist-prompt>
<xforms:submit submission="keylist0">
<xforms:label>Select</xforms:label>
<itp:screen-fields>
ALFKI Alfreds Futterkiste Maria Anders
</itp:screen-fields>
</xforms:submit>
<xforms:submit submission="keylist1">
<xforms:label>Select</xforms:label>
<itp:screen-fields>
ANATR Ana Trujillo Emparedados y helados Ana Trujillo
</itp:screen-fields>
</xforms:submit>
<xforms:submit submission="keylist2">
<xforms:label>Select</xforms:label>
<itp:screen-fields>
ANTON Antonio Moreno Taquería Antonio Moreno
</itp:screen-fields>
</xforms:submit>
</itp:question>

Representation of KCM FORM elements
This section shows what XForms primitives and structures are used to represent questions on KCM
forms.

See XForms 1.0 reference documentation for details on XForms functionality.

TEXT question
Text questions are directly mapped onto <xforms:input> elements. Default values are directly written into
the XForms instance data. The length attribute is encoded in the XSchema declaration.

QUESTION "Text question"

LEN (16)

DFT "dft"

ANSWER text_variable

<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="string" />
<xsd:length value='16' />

106

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>dft</question0>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" />
<itp:question>
<xforms:input ref="question0">
<xforms:label>Text question</xforms:label>
</xforms:input>
</itp:question>

NUMBER question
Number questions are directly mapped into <xforms:input> elements. Default values are directly
written into the XForms instance data. The length attribute is encoded in the XSchema declaration.

QUESTION "Number questions"

LEN (12 3)

DFT 43

ANSWER number_variable

<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="decimal">
<xsd:totalDigits value="12" />
<xsd:fractionDigits value="3" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>42.000</question0>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" />
<itp:question>
<xforms:input ref="question0">
<xforms:label>Number question</xforms:label>
</xforms:input>
</itp:question>

BOOLEAN question
Boolean questions are represented as a multi-select <xforms:select> with only a single option to
select. Default values are directly written into the XForms instance data.

QUESTION "Boolean question"

DFT FALSE

ANSWER bool_variable

<xsd:schema targetNamespace="http://example.info/types">

107

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<xsd:simpleType name="question1">
<xsd:restriction base="string" />
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0 />
</response>
</xforms:instance>
<xforms:bind nodeset="question1" id="question1" type="type:question1" />
<itp:question>
<xforms:select ref="question0" appearance="full">
<xforms:label>Boolean question</xforms:label>
<xforms:item>
<xforms:value>TRUE</xforms:value>
</xforms:item>
</xforms:select>
</itp:question>

FILE attribute
Text questions with a FILE attribute ask for a filename. KCM ComposerUI downloads that file from the
client into the server. A FILE question requires two elements in the <response> structure:

• <questionX>: The name of the downloaded file.
• <questionX-local>: The name as selected on the client.

An application that generates the <response> structure needs only to ensure that the <questionX> file
exists. The <questionX-local> element is optional.

QUESTION "File question"

FILE

DFT "C:\My Documents\sample.doc"

ANSWER text_variable

<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="anyURI" />
</xsd:simpleType>
<xsd:simpleType name="question0-local">
<xsd:restriction base="string" />
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0 />
<question0-local>
c:\My Documents\sample.doc
</question0-local>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" />
<xforms:bind nodeset="question0-local" id="question0-local" type="type:question0-
local" />
<itp:question>
<xforms:upload ref="question0">
<xforms:label>File question</xforms:label>

108

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<xforms:filename ref="../question0-local" />
</xforms:upload>
</itp:question>

DATE attribute
Number questions with a DATE attribute ask for a date to be entered. The interactive clients can represent
this with a date picker. The resulting date should be written in the XScheme xsd:date YYYY-MM-DD
format.

QUESTION "Date question"

DATE

DFT 20060307

ANSWER number_variable

<xsd:schema targetNamespace="http://example.info/types">
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>2006-03-07</question0>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="xsd:date" />
<itp:question>
<xforms:input ref="question0">
<xforms:label>Date question</xforms:label>
</xforms:input>
</itp:question>

TIME attribute
Number questions with a TIME attribute ask for a time to be entered. The interactive clients can represent
this with a time picker. The resulting time should be written in the XScheme xsd:time HH:MM:SS format.

QUESTION "Time question"

DATE

DFT 211632

ANSWER number_variable

<xsd:schema targetNamespace="http://example.info/types">
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>21:16:32</question1>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="xsd:time" />
<itp:question>
<xforms:input ref="question0">
<xforms:label>Time question</xforms:label>
</xforms:input>
</itp:question>

109

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

MULTISELECT questions
Multiselect questions expect a list of elements as their response. Since spaces are used as separators in
the list, the elements are encoded.

Each element is Base-64 encoded and starts with an "@". Any whitespace is ignored.

QUESTION "Text list question"

VALUES ("qqqwww1";

"qqqwww2";

"qqqwww3";

"qqqwww4";

"The quick brown fox jumps over the lazy dog")

DFT "qqqwww1"

ANSWER text_list

<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="string" />
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>@cXFxd3d3MQ==</question0>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" />
<itp:question>
<xforms:select ref="question0">
<xforms:label>Text list question</xforms:label>
<xforms:item>
<xforms:label>qqqwww1</xforms:label>
<xforms:value>@cXFxd3d3MQ==</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>qqqwww2</xforms:label>
<xforms:value>@cXFxd3d3Mg==</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>qqqwww3</xforms:label>
<xforms:value>@cXFxd3d3Mw==</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>qqqwww4</xforms:label>
<xforms:value>@cXFxd3d3NA==</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>
 The Quick Brown Fox Jumps Over The Lazy Dog.
</xforms:label>
<xforms:value>
 @VGhlIFF1aWNrIEJyb3duIEZveCBKdW1wcyBP

110

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

dmVyIFRoZSBMYXp5IERvZy4=
</xforms:value>
</xforms:item>
</xforms:select>
</itp:question>

READONLY questions
Readonly questions are tagged in the XForms binding. Values in the <response> element are ignored on
submission.

QUESTION "Text question (read-only)"

READONLY TRUE

DFT "dft"

ANSWER text_variable

<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="string" />
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>dft</question0>
</response>
</xforms:instance>
<xforms:bind nodeset="question0" id="question0" type="type:question0" readonly="true()"
 />
<itp:question>
<xforms:input ref="question0">
<xforms:label>Text question (read-only)</xforms:label>
</xforms:input>
</itp:question>

Text Block selections
The Text Block selection through the VIEW question expect a list of elements formatted in the same
fashion as the MULTISELECT questions do. Only the Text Block IDs should be encoded in the response.
<xsd:schema targetNamespace="http://example.info/types">
<xsd:simpleType name="question0">
<xsd:restriction base="string" />
</xsd:simpleType>
</xsd:schema>
<xforms:instance>
<response xmlns="">
<question0>@NTAwMw== @NTAwNA==</question0>
</response>
</xforms:instance>
<itp:question>
<itp:paragraph-set>Claims</itp:paragraph-set>
<itp:textblockserver>
<itp:server>textblock-server</itp:server>
<itp:port>7777</itp:port>
<itp:environment>Default</itp:environment>
</itp:textblockserver>
<xforms:select ref="question0">
<xforms:label>Select textblocks</xforms:label>

111

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

<xforms:item>
<xforms:label>5003 - Send Invoice</xforms:label>
<xforms:value>@NTAwMw==</xforms:value>
<itp:order>0</itp:order>
</xforms:item>
<xforms:item>
<xforms:label>5004 - Provide Estimate</xforms:label>
<xforms:value>@NTAwNA==</xforms:value>
<itp:order>1</itp:order>
</xforms:item>
<xforms:item>
<xforms:label>5005 - Condition breached - reserve rights</xforms:label>
<xforms:value>@NTAwNQ==</xforms:value>
<itp:order>2</itp:order>
</xforms:item>
… … … …
</xforms:select>
</itp:question>

112

Chapter 11

KCM ComposerUI Server customization APIs

KCM ComposerUI provides a number of built-in APIs for use by custom versions of aspx or jsp pages
in KCM ComposerUI custom applications. This chapter describes these APIs. See Behavior for more
information about custom aspx and jsp pages.

Customization APIs for KCM ComposerUI ASP.NET
The ASP.NET edition of KCM ComposerUI provides a number of APIs to customize aspx pages. These
APIs are distinct from those provided in the JBoss edition. All APIs are provided as static members of
public class itp. Among other things, these APIs provide for access to KCM Core, validation of session
identifiers, the creation of temporary files, and the storage and retrieval of files on a per-session basis.

CreateITPServerJob
The API itp.CreateITPServerJob allows a custom aspx page to call an KCM Core Service.

Aia.ITP.Server.Job CreateITPServerJob (Page page,
 String service,
 params string[] parameters)

Parameters:
• The parameter page should be passed a reference to the current aspx Page object, which is usually
this.

• The parameter service defines which KCM Core service should be called.
• The parameter parameters is a variable length list of strings of arguments that should be passed to

the KCM Core service.

The returned object is of type Aia.ITP.Server.Job, provided by the KCM Core .NET API. See the
KCM Core Developer's Guide for more information on this API. The properties of the returned Job object
have been initialized to point to the KCM Core instance that KCM ComposerUI has been configured
for. Also, the SessionID property has been pre-filled with the session ID provided as a parameter to the
current request. When the object is returned, the job is not yet submitted, so it is possible to add event
handlers to the object. For instance, you can add event handlers to send and receive files or to exchange
data, and to modify the properties of the object. After preparing the events and properties of the Job
object, it can be submitted using the method Submit.

This job will be submitted to KCM Core as a batch request and is prioritized accordingly.

Example usage of the CreateITPServerJob API:

Aia.ITP.Server.Job job = itp.CreateITPServerJob (this,
 "MyService",

113

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

 "Parameter1",
 "Parameter2");
job.Submit();

This example calls service MyService with parameters Parameter1 and Parameter2.

CreateITPOnLineJob
The API itp.CreateITPOnLineJob allows a custom aspx page to call an KCM Core Service.
Aia.ITP.Server.Job CreateITPOnLineJob (Page page,
 String service,
 params string[] parameters)

Parameters:
• The parameter page should be passed a reference to the current aspx Page object, which is usually
this.

• The parameter service defines which KCM Core service should be called.
• The parameter parameters is a variable length list of strings of arguments that should be passed to

the KCM Core service.

The returned object is of type Aia.ITP.Server.Job, provided by the KCM Core .NET API. See the
KCM Core Developer's Guide for more information on this API. The properties of the returned Job object
are initialized to point to the KCM Core instance that KCM ComposerUI is configured for. Also, the
SessionID property is pre-filled with the session ID provided as a parameter to the current request. When
the object is returned, the job is not yet submitted, so it is possible to add event handlers to the object. For
example, you can add event handlers to send and receive files or to exchange data, and to modify the
properties of the object. After preparing the events and properties of the Job object, it can be submitted
using the method Submit.

This job will is submitted to KCM Core as an online request and prioritized accordingly.

Example usage of the CreateITPServerJob API:

Aia.ITP.Server.Job job = itp.CreateITPOnLineJob (this,
 "MyService",
 "Parameter1",
 "Parameter2");
job.Submit();

This example calls service MyService with parameters Parameter1 and Parameter2.

GetRequestTemporaryFile
The API itp.GetRequestTemporaryFile provides the custom aspx page with the path to a temporary
file which is deleted at the end of the request.

String GetRequestTemporaryFile (String extension)

The parameter extension defines the extension of the file name that is generated. The return value is a
full path to a storage location.

114

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

GetSessionStoragePath
The API itp.GetSessionStoragePath provides custom aspx pages with a means of storing files that
belong to a session, namely, a Master Template run across requests.

String GetSessionStoragePath (String sessionid,
 String element,
 String extension)

Parameters:
• The parameter sessionid contains the KCM Core session ID for which the storage path is retrieved.
• The parameter element indicates the name of the storage element.
• The parameter extension defines the extension of the file name that is generated.

The return value is a full path to a storage location. This function provides the following stability guarantee:
for the same values of sessionid, element and extension, this function always returns the same file
name when used in the same ASP.NET session. If the ASP.NET session is different, or if the ASP.NET
session ID is the same but the session has expired since the previous time the function was called, the
answer may be different. Because of the stability guarantee, this function can be used to provide short
term temporary storage that is valid across requests.

Here is an example of how the GetSessionStoragePath API can be used to get the result document of
a prepared model run from the modelend.aspx page, and then download it through a separate URL. In
the modelend.aspx pageб the result document is downloaded using an KCM Core service to a session
storage path, as follows:

String sessionid = Request.QueryString["sessionid"];

// Get a storage path that stays the same in the next page
String path = itp.GetSessionStoragePath (sessionid,
 "result", "doc");

// Create a Job object to call ITP/Server service GetMyResult
Aia.ITP.Server.Job job = itp.CreateITPServerJob (this,
 "GetMyResult");

// Register a handler for the FileDownload event that tells
// the Job object to download the file to the path we just
// calculated.
job.FileDownload +=
 delegate (String file)
 {
 return path;
 };

// Submit the job to ITP/Server.
job.Submit();

The modelend page now provides the user with a link to a different page "downloadresult.aspx?
sessionid=<the session id>" to download the document. This page sends the stored document to the web
browser:

String sessionid = Request.QueryString["sessionid"];
String path = itp.GetSessionStoragePath (sessionid,
 "result", "doc");
Response.ContentType = "application/msword";
Response.TransmitFile(path);

115

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

ServerCallEx
The API itp.ServerCallEx provides the ability to call KCM Core services that use the KCM
ComposerUI submission protocol, such as ITPOLSSuspendSession.

Stream ServerCallEx (Page page,
 string service,
 string sessionid,
 Stream uploadableStream,
 string uploadType,
 out string downloadedStreamType,
 out string newSessionId,
 params string[] parameters)

Parameters:
• The parameter page is the current ASP.NET Page object, usually passed as this parameter.
• The parameter service indicates the KCM Core service that should be called.
• The parameter sessionid indicates the KCM Core session ID that is used. This is usually
Request.QueryString["sessionid"], but can be null to indicate that the script should not be run
in an KCM Core session.

• The parameter uploadableStream can be used to upload a file to the KCM Core service. If no
upload is necessary, this parameter should be null.

• The parameter uploadType is used to indicate the type of information that is being uploaded. The file
is only uploaded to KCM Core if the called service specifies this same string in the Src parameter of the
ReceiveFile command that it uses to receive the file.

• The output parameter downloadedStreamType indicates the type of information that is contained
in a stream that was downloaded, if any. This corresponds to the value of the Dest parameter of the
SendFile command that is issued by the KCM Core service to send the file.

• The output parameter newSessionId is filled with the new session ID issued by KCM Core, if it did in
fact issue a new one. This session ID is only filled if it is communicated by the called KCM Core service
using the exchange_data function, with key "sessionid".

• At the end of the parameter list, you can specify a variable list of parameters that are passed to the
called KCM Core service.

The return value of the itp.ServerCallEx API is a Stream object for the file that was downloaded
from KCM Core, if any. The type of data that was downloaded is indicated by the output parameter
downloadedStreamType.

The following example is based on the default implementation of the modelsuspend.aspx exit point. It calls
the ITPOLSSuspendSession service on KCM Core to suspend the current session, returning a file stream
containing the information of the suspended session:
String downloadedStreamType;
String newSessionId;
String sessionid = Request.QueryString["sessionid"];

// Call ITP/Server service ITPOLSSuspendSession.
Stream s = itp.ServerCallEx (this,
 "ITPOLSSuspendSession",
 sessionid,
 null,
 "",
 out downloadedStreamType,

116

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

 out newSessionId,
 "dummy parameter value");

// Make sure that we received a file with name "session".
if (s == null || downloadedStreamType != "session")
{
 throw new Exception("ITPOLSSuspendSession service sent" +
 " no file or an unexpected file type \"" +
 downloadedStreamType +
 "\", expecting type \"session\"");
}

In this example, the parameter value "dummy parameter value" is passed as a parameter to the
ITPOLSSuspendSession service. Because the uploadableStream parameter is null, no file is
uploaded to KCM Core in this call.

Session ID validation functions
The API functions validate a session ID and allow custom web pages to verify the validity of the KCM
Core session ID. These functions provide for implementation of custom pages in Secure Mode custom
applications. See Securing CM ComposerUI for more information on Secure Mode applications.

Ad hoc requests, which use URL parameters to specify their own parameters, are not allowed in Secure
Mode applications. Only prepared requests, either prepared Master Template lists or prepared Master
Template runs, are allowed. See Integration for more information on prepared requests. The session ID
validation functions verify that the query parameter sessionid of a custom web page corresponds to KCM
Core session that represents a prepared request of a particular session type.

Note The usage of session ID validation functions is not sufficient to guarantee the security of a KCM
ComposerUI web application. See Securing CM ComposerUI for more information on the security
guidelines.

1. ValidateListModelsSessionId function
The API itp.ValidateListModelsSessionId allows custom ASP.NET web pages to verify
whether or not:
• KCM Core session ID that is passed by the web client corresponds to a valid KCM Core session
• KCM Core session is configured for a prepared Master Template list

void ValidateListModelsSessionId (String sessionid)

Parameters:
• The parameter sessionid specifies the session ID that should be validated

If the passed session ID is invalid, the API itp.ValidateListModelsSessionId throws
an exception. The session ID is also considered invalid if it corresponds to a session that is not
prepared for listmodels functionality.

117

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

2. ValidateRunModelSessionId function
The API itp.ValidateRunModelSessionId allows custom ASP.NET web pages to verify
whether or not:
• KCM Core session ID that is passed by the web client corresponds to a valid KCM Core session
• KCM Core session is configured for a prepared Master Template run

void ValidateRunModelSessionId (String sessionid)

Parameters:
• The parameter sessionid specifies the session ID that should be validated.

If the passed session ID is invalid, the API itp.ValidateRunModelSessionId throws an exception. The
session ID is also considered invalid if it corresponds to a session that is not prepared for runmodel
functionality.

3. ValidateSessionId function
The API itp.ValidateSessionId is deprecated. Use one of the specific validation functions
instead, such as ValidateRunModelSessionId.

SetRunModelSession
The API itp.SetRunModelSession allows custom ASP.NET web pages to set a KCM Master Template
for a session that is prepared for listmodels functionality. This results in a session prepared for runmodel
functionality.

void SetRunModelSession (Page page,
 string sessionid,
 string model,
 out string newsessionid)

Parameters:
• The parameter page should be the current ASP.NET Page object, usually the user should pass this

parameter
• The parameter sessionid specifies the current session ID, which is checked for valid listmodels

functionality
• The parameter model specifies the KCM Master Template to be run
• The parameter newsessionid will receive a new session ID, which will identify a session with

runmodel functionality

This function validates the given session ID and throws an exception if the session is invalid, or if the
session does not support listmodels functionality.

StringResource and RetrieveStringResource
The itp.StringResource and itp.RetrieveStringResource APIs give access to custom string resources
stored in the <lang>_custom.msg file of your application. For more information on .msg files and
string resources, see Text and JavaScript behavior.

void StringResource (Page page,
 string resourceKey)
String RetrieveStringResource (Page page,
 string resourceKey)

118

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Parameters:
• The parameter page should be the current ASP.NET Page object, usually the user should pass this

parameter
• The parameter resourceKey indicates the name of the value that should be retrieved

The itp.StringResource API retrieves the string resource value and immediately writes it to the HTTP
response. For instance, the result can be output to the web page. The itp.RetrieveStringResource
API returns the string resource value to the caller.

WriteError
The itp.WriteError API allows custom ASP.NET web pages to write exceptions to the output using the
standard KCM ComposerUI error reporting mechanism.

void WriteError (Page page,
 Exception exception)

Parameters:
• The parameter page should be the current ASP.NET Page object, usually the user should pass this

parameter
• The parameter exception indicates the error that should be reported

This function can be called at any point in an ASP.NET page. It clears the output that is already generated,
generates an error page, and finalizes the HTTP response so that no more output is sent to the client.
Typically, it is not necessary to call this function, because any exceptions unhandled by ASP.NET pages
are handled by KCM ComposerUI. If it is required to report errors during the generation of a web page,
this function provides access to the KCM ComposerUI Server error reporting mechanism.

119

Chapter 12

Securing KCM ComposerUI

By default, KCM ComposerUI is configured to be used as an intranet application. In the default
configuration, it is not designed to be used over the Internet. This chapter describes which steps should
be taken to expose KCM ComposerUI on the Internet in a secure way. The functionality described in this
chapter is currently only available for KCM ComposerUI ASP.NET.

Securing custom applications
If a KCM ComposerUIASP.NET custom application is going to be exposed to the Internet, it must be
configured to run in Secure Mode. To secure the application from Internet attackers, KCM ComposerUI
applies strict conditions on the communication between the KCM ComposerUI application and web
browser. The configuration setting Secure Mode can be enabled from the Customization section of
the application configuration page. Changes to this setting only take full effect when the application is
deployed. It can be done from the KCM ComposerUI ASP.NET main configuration page.

When an application is running in Secure Mode, the following changes are applied:
• By default, a file in the application folder is not exposed as a web URL, unless it is explicitly configured

to be exposed. The configuration file securemode-urls.xml, which can be found in the root folder of the
application, defines which files are exposed through web URLs.

• Ad hoc Master Template runs, which use URL parameters to specify the Master Template run
parameters, are not allowed. Only prepared Master Template runs can be used.

• Because the KCM Repository uses ad hoc Master Template runs when testing Master Templates in
KCM ComposerUI, it is not possible to use a Secure Mode application to test Master Templates from
the KCM Repository.

• For the non-customizable web pages exposed by KCM ComposerUI ASP.NET, strict parameter checks
are applied, and the web pages cannot be loaded when these parameter checks fail.

• Users are no longer authenticated using Windows Authentication, because this authentication method
is not applicable in an Internet situation. Instead, access to the web pages is restricted to authorized
users by verifying the session ID provided by the Internet user. However, configuration pages do
still require the use of Windows Authentication, so that they cannot be accessed by unauthenticated
Internet users.

• Some internal workings of KCM ComposerUI are modified compared to the non-secure mode so that
they no longer pass information through URLs.

120

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Note The SecureSample application that is installed with KCM ComposerUI is written so that it can run
when Secure Mode is enabled. If you use the application SecureSample as a starting point for creating
a new application, always make sure that you are using the most recent version. We recommend not to
use the Sample or Sample2 applications as a starting point for creating a new Secure Mode application,
because they are not designed for this purpose.

Also, SecureSample is designed in such a way that it can also be used as a stand-alone letterbook.
For this purpose, it contains a page preparelist.aspx, which automatically creates a prepared Master
Template list. This page merely serves as an example and should therefore never be used in Secure
Mode. See the comments in the preparelist.aspx.cs source for more information on this subject.

Exposing web URLs
In the KCM ComposerUI ASP.NET application that is running in Secure Mode, content in the application
folder is not exposed to the web by default. To expose a certain file through a web URL, it must be listed
in the file securemode-urls.xml, which can be found in the root of the application folder. Changes to this
file are applied when the application is deployed. This can be done from the KCM ComposerUI ASP.NET
main configuration page.

The following format of the file securemode-urls.xml is supported:
<?xml version="1.0" encoding="UTF-8" ?>
<itp:secure-mode-urls xmlns:itp=
 "http://www.aia-itp.com/namespaces/online-secure-mode-urls/1">
 <itp:exposed>
 <itp:pattern pattern="/modelbegin.aspx" />
 <itp:pattern pattern="/css/*.css" />
 <itp:pattern pattern="*.js" />
 </itp:exposed>
</itp:secure-mode-urls>

This example contains three itp:pattern entries. Each itp:pattern entry specifies a pattern for URLs
that are exposed. All URL patterns are specified relative to the application folder.

Three types of patterns are supported: single URLs, sets of URLs in a specific folder, and sets of URLs in
any folder.
• A single URL pattern exposes a single URL in the application. A single URL pattern always starts with

a slash (/), and specifies the entire path to the URL that should be exposed. For instance, the first entry
in the example specifies pattern /modelbegin.aspx. Because the path is relative to the application
folder, this exposes the URL /itp/app/<application name>/modelbegin.aspx. The pattern
only exposes the exact URL that is specified, so the example pattern /modelbegin.aspx does not
expose /itp/app/<application name>/some/folder/modelbegin.aspx.

• A pattern may also specify a set of URLs in a specific folder. This type of pattern also starts with a slash
(/), and specifies the entire path to the application subfolder in which URLs should be exposed. Instead
of specifying a single URL within the folder, a set of URLs is specified by using wildcard characters.
For instance, the second itp:pattern entry in the example specifies the pattern /css/*.css. This
exposes all URLs in the application subfolder /css that end with extension .css, but no URLs in any
other folders.
To specify a set of URLs, patterns can use wildcard characters * and ?. The character * matches any
sequence of characters. The character ? matches a single character. In addition, URL patterns can use
the construct (a|b|c|...|z) to allow for multiple alternatives. For instance, the pattern /(modelbegin|
modelend).aspx can be used to expose both /modelbegin.aspx and /modelend.aspx.

121

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• The third type of pattern exposes a set of URLs in any folder of the application. This type of pattern
does not start with a slash (/) and does not specify a path. The pattern specifies only the pattern of the
exposed URLs, which are then exposed in all application subfolders. This is shown in the third entry
itp:pattern entry in the example. The specified pattern *.js exposes all files that end with .js, in all
folders of the application.

Customizing securemode-urls.xml
The SecureSample applications that are installed with KCM ComposerUI ASP.NET contain an example
securemode-urls.xml. This file displays the URLs that must be exposed for the SecureSample application
to function properly. We recommend that the developer always modifies securemode-urls.xml to expose
only the URLs that are required by the specific application, when building based on the SecureSample
custom application. This may involve exposing additional URLs, but we also recommend removal of any
URLs that are not required by the custom application. The following list contains URLs that are provided
by KCM ComposerUI ASP.NET and that may need to be exposed or unexposed. The column Exposed by
default? indicates whether or not a URL is exposed in the default configuration of SecureSample.

URL Exposed by default? Description

/download.aspx
/opendocument.aspx

Yes Required when PDF previews are
used.

/textblockview.aspx
/viewtextblock.aspx

Yes Required when Text Block preview is
used.

/xml2html.aspx
/html2xml.aspx

/editorpage.aspx

/fieldimage.aspx

Yes Required when Editable Text Block
Questions are used in dynamic
forms, or when TEXTBLOCK
questions are used in FORM
statements in KCM Master
Templates.

/empty.aspx Yes Required by the sample applications
to display an empty frame.

/upload.aspx Yes Required when FILE questions are
used in FORM statements in KCM
Master Templates, and when the
ActiveX file upload control is enabled.

/modelbegin.aspx Yes This is a customizable page, the
starting point for all Master Templates
runs.

/runmodel.aspx Yes Required for all Master Templates
runs.

/modelend.aspx Yes This is a customizable page, the end
point for all Master Templates runs.

/modelsuspend.aspx No This is a customizable page, which
is loaded when the end user uses
the button Suspend. The default
implementation sends the suspended
Master Template run information to
the web user as a downloadable file.

122

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

URL Exposed by default? Description

/modelresume.aspx No This is a customizable page, which
can be used to resume a Master
Template run that was suspended
by the page modelsuspend.aspx.
The default implementation allows
the user to upload a file containing
Master Template run information.
This is considered a security risk, so
the page is not exposed by default.

/modelselect.aspx Yes This is a customizable page, the
starting point for all Master Template
lists.

/listmodels.aspx
/openfolders.aspx

/modelselected.aspx

Yes Required for Master Templates lists,
used by the default implementation of
modelselect.aspx.

*.js
*.png

*.gif

*.jpg

*.htm

*.html

*.css

Yes KCM ComposerUI ASP.NET ships
files with these extensions that
should be available through the web.
Because files with these extensions
are normally public web content, they
are exposed by default in the sample
applications.

When exposing custom content through securemode-urls.xml, we recommend to be as specific as
possible. The reason for this is that KCM ComposerUI ASP.NET may ship files that should not be
exposed, and they could be inadvertently exposed when an overly broad pattern is used. For instance,
it is not wise to expose the patterns "*.xsl" or "*.xml", because they expose various internal KCM
ComposerUI files. However, it is acceptable to expose the more limited "/myfolder/*.xml".

Secure customization
When customizing an application that is intended to run in Secure Mode, it is necessary to conform to a
set of security guidelines. In general, it is always safe to apply styling customizations. Any customizations
that involve programming require special attention.

The following is a non-exhaustive list of recommendations to keep in mind while customizing Secure
Mode applications. Also be aware that following these guideline may not guarantee a secure
customization. Careful thought is always required.

• Whenever possible, require a session ID as the only query parameter. Validate this parameter using the
correct validation function before use. See Validation functions for more information on these functions.

• Be aware that multiple KCM Core sessions may be sharing the same ASP.NET session state.
Therefore, when you store items in the ASP.NET session state, use the session ID as a part of the key,
like this: Session[Request.QueryString["sessionid"] + "_my_data_item"].

• Perform extensive checks on all query string and form parameters that you use.
• Sometimes it is not possible to determine the set of allowed values for a query parameter at design

time. In such cases, it is often possible to determine which values are allowed when generating the

123

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

calling web page. The user can determine which values are allowed, store the set of allowed values
somewhere in the session state, and validate the parameters against that set.

• Pay attention when using the request parameter collections Request.Params, Request.Form
and Request.Querystring to retrieve query parameters. In general, instead of using the collection
Params, it is advisable to specify exactly which source is intended, such as Request.QueryString
or Request.Form. Furthermore, it is very important to ensure that a parameter is always accessed
using the same collection. This prevents the situation where the parameter value from one collection is
validated, but the value from another collection is actually used. An easy way to ensure success is to
read every parameter value only once.

• Always consider what happens if the value of a query parameter does not match one that is expected
because of the logic of the application. For instance, if you generate a page that includes a URL
"mythings.aspx?thingnumber=5", then note what happens when a malicious user changes this into
"mythings.aspx?thingnumber=7".

• Never use untrusted user data, such as query string parameters and form data, as file names
or parts of file names. This can be exploited by malicious users in numerous unexpected ways.
Instead, use the mechanisms provided by KCM ComposerUI ASP.NET for generating secure
request-temporary and session-temporary files. For more information, see the descriptions of
functions itp.GetRequestTemporaryFile and itp.GetSessionStoragePath in the chapter
Customization APIs for CM ComposerUI ASP.NET. These functions have the added advantage that the
files are automatically cleaned up when the request or session expires.

• Never include untrusted user data in command lines. Again, this can be exploited in numerous
unexpected ways.

• Never rely on client side validation logic. JavaScript validation logic is very useful to provide the user
with instant feedback, but a malicious user can easily circumvent the validation.
Furthermore, JavaScript can be disabled in the client browser. Therefore, server side validation logic is
always required.

• Never pass untrusted user data to KCM Core without applying validation, or without making sure that
KCM Core does not use the data in ways that pose a security risk. For instance, KCM Core should not
be allowed to use untrusted user data in file paths, in command lines, or even as extra parameters to a
Master Template run.

• Whenever a URL is constructed in the code, always make sure that query string parameters are
properly escaped. Unescaped query string parameters may lead to unexpected behavior that may be
exploited by malicious users.

• Whenever JavaScript code is generated by the code, always make sure that parameters are properly
escaped. Unescaped JavaScript parameters may lead to unexpected behavior that may be exploited by
malicious users.

CM ComposerUI pages with parameter checks
KCM ComposerUI ASP.NET exposes a number of web pages whose query parameters are explicitly
validated before the web page is generated. Some of these web pages are overridable in the application.
For these pages, it is not possible to customize the set of parameters of the query. The overridable web
pages that are subject to parameter validation are:
• modelsuspend.aspx
• modelend.aspx

Both of these web pages accept only a single query parameter sessionid, and nothing else.

124

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Securing CM ComposerUI Server installation
Configuring an application to run in Secure Mode is not enough to ensure security. Several security
measures outside of the custom application need to be taken, both on the server that runs KCM
ComposerUI and on the KCM Core installation.

Securing CM ComposerUI
Configuring the application to run in Secure Mode does not ensure security. It is not safe to expose the
entire KCM ComposerUI ASP.NET web application to the Internet, unless:
• All custom applications on that server are configured and deployed to run in Secure Mode.
• The custom applications are carefully written according to the guidelines in the section Secure

customizations, and do not contain any security vulnerabilities.
• The remainder of the server is shielded from the Internet by a firewall, or secured by some other

means.
• Web URLs on the server that are outside the KCM ComposerUI virtual directory are protected by the

firewall, or secured by some other means.

If the KCM ComposerUI installation contains Secure Mode as well as non-Secure Mode applications, it
is still possible to expose the Secure Mode applications to the Internet. In this case, one must place a
firewall between the Internet and KCM ComposerUI ASP.NET. The Internet exposes only the URLs that
belong to the Secure Mode applications, and no other URLs.

If the custom applications contain ASP.NET (aspx) pages that use ASP.NET web controls, it may be
necessary to expose the web URL /itp/WebResource.axd through the firewall, where itp is the name of
the virtual directory of KCM ComposerUI. This URL is used by ASP.NET to expose certain dynamically
generated content. The default content and sample applications delivered with KCM ComposerUI
ASP.NET do not use ASP.NET web controls and therefore do not require this URL to be exposed.

Securing CM Core
The following change might be required on the KCM Core installation. Do not apply this setting on KCM
Core versions that support the setting "DisableValidation." This setting is located on the General tab of the
Environments page in the KCM Core Administrator. Disabling validation on KCM Core creates a security
issue when used in combination with KCM ComposerUI Secure Mode.

125

Chapter 13

ActiveX deployment on clients

KCM ComposerUI includes an ActiveX control that implements file upload and advanced editing
functionality for Internet Explorer on Windows clients. The ActiveX control is used in the sample
applications distributed with KCM ComposerUI and also supported for use in custom KCM ComposerUI
applications.

Two versions of the ActiveX control are available:
• Version 2 (ITPOLSActiveX2) is only available in a 32-bit version and only works with 32-bit versions of

Internet Explorer
• Version 3 (ITPOLSActiveX3) is available in both 32-bit and 64-bit versions

These controls are marked as safe for scripting.

This chapter describes the configuration and deployment of these controls.

Configuring Internet Explorer
To use the KCM ComposerUI ActiveX controls on a client, the following options must be enabled in
Internet Explorer:
• Run ActiveX controls and plug-ins
• Script ActiveX controls marked safe for scripting

The options must be enabled for the zone where the KCM ComposerUI server is located. Depending
on this zone, the options could already be enabled by default. The options can be applied manually, or
centralized through domain policies or the Internet Explorer Administration Kit.

If these options are not enabled, the ActiveX controls are either be blocked completely or the user is
prompted interactively for permission every time they are used.

Depending on the deployment method, additional options may have to be enabled to install the ActiveX
control before it can be used. These options are described in the appropriate sections.

KCM ComposerUI does not require the following option and we recommend that you keep it disabled:
• Initialize and script ActiveX controls not marked as safe.

Deploying the ActiveX controls
The ActiveX controls can be deployed using the following methods:
• Download on first use

126

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• Centralized deployment
• Manual installation

Download on first use
The KCM ComposerUI installation includes downloadable packages with the ActiveX controls. If the
controls are not already installed, Internet Explorer will attempt to download and install them on first use.

The user must be authorized to install the ActiveX. This requires that the following options are enabled in
Internet Explorer for the zone in which the KCM ComposerUI Server is located:
• Download signed ActiveX controls

The following option is not required by KCM ComposerUI and we recommend that you keep it disabled:
• Download unsigned ActiveX controls.

Centralized deployment
KCM ComposerUI includes a stand-alone OnLineActiveX installer for the ITPOLSActiveX3 control. This
installer can be used for administrative deployment of the ActiveX control, and is available both as an
executable and as an MSI package. It can be found in the KCM ComposerUI installation directory. The
MSI package is intended for Groups Policy deployment.

When using the MSI, to do a silent installation you need to add a CMDLINE variable: CMDLINE=/s.

Example: Example

msiexec -i OnLineActiveX.MSI /quiet /CMDLINE=/s /log <logfile>

The example silently installs the ActiveX and logs the results in <logfile>. Note that the ActiveX might not
initially be visible in Internet Explorer Manage add-ons.

The OnLineActiveX installer puts the 32-bit version, and on 64-bit systems also the 64-bit version, of the
ActiveX control in the Windows system directory and registers it for all users. This installation requires
administrative privileges.

Manual installation
It is possible to manually install the ActiveX controls for troubleshooting and testing purposes. During this
installation any problems are reported interactively.

To install the ITPOLSActiveX2 control:
• Locate the ITPOLSActiveX2.cab file in the support subdirectory of the KCM ComposerUI web

application directory
• Unpack this cabinet file to a temporary directory
• Right-click the ITPOLSActiveX2.inf file and select the Install option from the context menu

To install the ITPOLSActiveX3 control:
• Locate the ITPOLSActiveX3.cab file in the support subdirectory of the KCM ComposerUI web

application directory
• Unpack this cabinet file to a temporary directory
• Right-click the ITPOLSActiveX3.inf file and select the Install option from the context menu

127

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Validating the installation
KCM ComposerUI includes test pages to validate whether or not the ActiveX controls are installed
correctly.
• For version 2 open the page http:// ... /support/ITPOLSActiveX2.htm
• For version 3 open the page http:// ... /support/ITPOLSActiveX3.htm

Replace ... with the base URL of the KCM ComposerUI installation.

This URL loads a test page. If this page shows a KCM icon, the ActiveX is loaded correctly and is
accessible for the user. If no icon is shown, the ActiveX failed to install or is not permitted to run.

128

Chapter 14

Troubleshooting

This chapter gives you an information about issues that you may encounter while using the product.
Where applicable, suggested workaround are listed.

First use of KCM ComposerUI for ASP.NET is very slow
The first request to KCM ComposerUI (ASP.NET) may take significant time, sometimes even up to several
minutes. This is due to the behavior of Microsoft IIS, that uses worker processes to process requests. The
worker processes are recycled after a certain time, certain number of requests, or after a certain amount
of idle time. This behavior is configured and can be changed in the Microsoft IIS application pool. You can
change the Recycle worker process settings in your application pool properties.

Another cause of slow requests (>30 seconds) is often the Certificate Revocation List checking. See
http://blogs.msdn.com/b/pfedev/archive/2008/11/26/best-practice-generatepublisherevidence-in-aspnet-
config.aspx for more information. To solve this problem you can change a system-wide setting.

Add the following line to your ASPNET.CONFIG or APP.CONFIG file:
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <runtime>
 <generatePublisherEvidence enabled="false"/>
 </runtime>
</configuration>

Note the ASPNET.CONFIG file is located in the Framework Directory for the version of the Framework you
are using. For example:
• For a 64-bit ASP.NET application:

%SystemRoot%\Microsoft.NET\Framework64\v2.0.50727
• For a 32-bit ASP.NET application:

%SystemRoot%\Microsoft.NET\Framework\v2.0.50727

Preview documents are loaded in their own application window
If you have configured OnLine Server to show PDF preview documents, the preview may be loaded in
Acrobat reader rather than in a browser frame. This is caused by a setting on the client machine. The
sequence below shows how to correct the setting:
• Double-click My Computer on the client machine
• On the Tools menu, click Folder Options

129

http://blogs.msdn.com/b/pfedev/archive/2008/11/26/best-practice-generatepublisherevidence-in-aspnet-config.aspx
http://blogs.msdn.com/b/pfedev/archive/2008/11/26/best-practice-generatepublisherevidence-in-aspnet-config.aspx

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

• On the File Types tab, in the Registered file types box, click to select the file type that you want to
change, such as PDF extension

• Click Advanced
• In the Edit File Type dialog box, make sure the "Browse in same window" check box is checked
• This ensures that documents can be loaded in browser frames

Result document not opened in Word, error mentions OLE
container

The modelend page of the Sample2 application uses an ActiveX control to open the result document in
a Word instance. To do so, the ActiveX control looks for an existing instance and if none is found it starts
Word. The problem is that Word viewed in a browser counts as an instance but cannot be used by the
ActiveX control.

The solution is to open Word before anything else and leave it open. It is important that Word is the first
program started or it is started before any application that uses Word in any way. When the ActiveX looks
for a Word instance it will find this first opened ordinary Word instance to work with.

Result document not visible on desktop
This issue is probably caused by a Word or OpenOffice.org instance that is running in a background
process. The result document is opened in this background process and is not visible on the desktop. In
this scenario, the user who is trying the run a Word or OpenOffice.org Model is probably the same user
as for the KCM Core account. This problem can be avoided by using a dedicated account to run the KCM
Core processes.

Default File Upload method only works with Internet Explorer/
Windows clients

In the default KCM ComposerUI configuration, use an ActiveX control to upload files from the clients.
This restricts the file upload feature to users with Internet Explorer on the Windows platform. If a different
browser should be supported, switch to a generic HTML Forms File Selection control that is supported by
most browsers. See the Customization chapter for more information.

File Upload fails
In the default KCM ComposerUI configuration use an ActiveX control to upload files from the client. If the
file upload does not function in Internet Explorer, the ActiveX could not be loaded or ActiveX support is
disabled.

See ActiveX deployment on clients chapter for more information on the configuration and deployment of
the ActiveX control.

130

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide

Simultaneous sessions per user will fail
A new session is created for each Master Template run in KCM ComposerUI Server. Each session is
based on the user running the Master Template. This means that one user can only run one Master
Template at the same time.

"String index out of range: -128" error shown in browser
In rare cases, the error "String index out of range: -128" appears in the client's browser when calling KCM
ComposerUI Server. Most likely this error is caused by the computer name of the server being too long.

The NetBIOS name of a computer is limited to 15 bytes. If the computer name of a machine has a
name longer than 15 characters, the NetBIOS name is truncated. This causes a mismatch between the
computer name and NetBIOS name.

KCM ComposerUI Server internally uses both the machine name and the NetBIOS name of the server
running KCM ComposerUI. If the name limit of the NetBIOS causes a mismatch to occur, the error "String
index out of range: -128" is generated.

As a solution, the machine name must be changed to a shorter name that matches the NetBIOS
requirements.

Part of error message is hidden
If an error occurs, it is displayed in the browser. If the browser frame in which the error is shown is too
narrow, only part of the error page is visible. Hover on the error to display a tooltip that includes the entire
error message.

Sessions lost when running KCM ComposerUI in an IFrame
Privacy settings in web browsers may restrict the use of third-party session cookies. This may cause KCM
ComposerUI, when running in an IFrame, to lose its session state between subsequent forms.

A solution is to add the URL of KCM ComposerUI to the sites that are explicitly allowed to use cookies. In
Internet Explorer, this option is available under Internet Options > Privacy > Sites.

Alternatively, configure "P3P headers" on the Web Server. For Microsoft IIS, Microsoft Knowledge Base
article KB 324013 describes how to do this.

131

	Table of Contents
	Preface
	Related documentation
	Getting help with Kofax products

	Introduction
	Browser-based solution
	Result document

	Overview
	Installation
	Summary

	Sample workflow
	Analysis
	Summary

	Configuration
	Main configuration
	Administrator section
	CM Core section
	Application section

	Application configuration
	Main configuration section
	Customization section
	Secure mode
	Default Locale
	Locale Override
	Master Template List Frame
	Preview Frame
	Enable Suspend button

	Properties section
	Summary

	Configuration for CM ComposerUI ASP.NET
	Job scheduling in CM Core

	Calls
	Call parameters
	Configuration parameters
	Properties
	Listmodels
	Parameters (prepared model list)
	Parameters

	Runmodel
	Parameters (prepared model run)
	Parameters

	Applications
	Application folder
	Defaults
	Customization
	Styles
	Behavior
	Behavior examples
	Text and JavaScript behavior
	Customizing XSLT

	Suspend and Resume
	Default Suspend implementation
	Default Resume implementation
	Changing Forms during suspension

	Integration
	Sessions
	Client-side integration
	Server-side integration
	Prepare Master Template list
	Prepare Master Template run
	Preparation services
	ITPOLSSessionStart
	ITPOLSSessionUploadFile
	ITPOLSSessionDownloadFile
	ITPOLSSessionSetModelParams
	ITPOLSSessionPrepareModelList
	ITPOLSSessionPrepareLetterbook

	Exit points

	KCM Core: ComposerUI exit points
	CheckModelPathAccess.dss (previously CheckModelAccess)
	ErrorOccurred.dss
	MakeHTMLDocument.dss
	MakePDFDocument.dss
	ModelRunCompleted.dss
	PrepareSuspendSession.dss
	ProcessResult.dss
	ProcessPreview.dss
	ResumeSession.dss
	SessionResumed.dss
	SuspendSession.dss
	ValidateModel.dss
	Uploaded.dss

	KCM ComposerUI APIs
	.NET API
	Aia.ITP.OnLine.Model class
	Running an interactive CM model
	Methods
	Constructor
	Letterbook
	List
	Start
	Continue
	Finish
	Upload

	Properties
	Host
	Port
	JobID
	SessionID
	UserID
	ApplicationID
	Environment
	DBUserID / DBPassword
	History
	DataFile / DataFileOnServer
	InfoFile
	ResultDocument and related properties
	PreviewDocument and related properties
	ResultDocumentFileType
	ProcessPreviewParams
	ProcessResultParams
	FormVersion

	Java API
	Installation
	Model Class
	Run an interactive CM Template
	Properties
	Methods
	Types

	Job Class
	Properties
	Methods

	Form Version
	The interact.xml file format
	Descriptions
	Namespaces

	Top-level elements
	itp:interact element
	Description
	Attributes
	Content
	Example

	itp:header element
	Description
	Attributes
	Content
	Example

	itp:question element
	Description
	Attributes
	Content
	Example

	itp:question element (fixed text)
	Description
	Attributes
	Content
	Example

	itp:group element
	Description
	Attributes
	Content
	Example

	itp:table element
	Description
	Attributes
	Content
	Example

	itp:row element
	Description
	Attributes
	Content
	Example

	itp:button element
	Description
	Attributes
	Content
	Example

	Subelements
	itp:cell
	Description
	Occurs within

	itp:environment
	Description
	Occurs within

	itp:feedback
	Description
	Attributes
	Occurs within

	itp:group-label
	Description
	Occurs within

	itp:helptext
	Description
	Occurs within

	itp:keylist-prompt
	Description
	Occurs within

	itp:order
	Description
	Occurs within

	itp:order-response
	Description
	Occurs within

	itp:paragraph-set
	Description
	Occurs within

	itp:port
	Description
	Occurs within

	itp:screen-fields
	Description
	Occurs within

	itp:server
	Description
	Occurs within

	itp:table-label
	Description
	Occurs within

	itp:text
	Description
	Occurs within

	itp:textblockserver
	Description
	Occurs within

	itp:title
	Description
	Occurs within

	The <response> element
	Structure
	Element
	Formatting
	TEXT
	NUMBER
	BOOL
	NUMBER / DATE
	NUMBER / TIME
	TEXT / FILE
	MULTISELECT / TEXT

	ITP-interact-ID
	Example
	Key selection

	Representation of KCM FORM elements
	TEXT question
	NUMBER question
	BOOLEAN question
	FILE attribute
	DATE attribute
	TIME attribute
	MULTISELECT questions
	READONLY questions
	Text Block selections

	KCM ComposerUI Server customization APIs
	Customization APIs for KCM ComposerUI ASP.NET
	CreateITPServerJob
	CreateITPOnLineJob
	GetRequestTemporaryFile
	GetSessionStoragePath
	ServerCallEx
	Session ID validation functions
	SetRunModelSession
	StringResource and RetrieveStringResource
	WriteError

	Securing KCM ComposerUI
	Securing custom applications
	Exposing web URLs
	Customizing securemode-urls.xml

	Secure customization
	CM ComposerUI pages with parameter checks

	Securing CM ComposerUI Server installation
	Securing CM ComposerUI
	Securing CM Core

	ActiveX deployment on clients
	Configuring Internet Explorer
	Deploying the ActiveX controls
	Download on first use
	Centralized deployment
	Manual installation

	Validating the installation

	Troubleshooting
	First use of KCM ComposerUI for ASP.NET is very slow
	Preview documents are loaded in their own application window
	Result document not opened in Word, error mentions OLE container
	Result document not visible on desktop
	Default File Upload method only works with Internet Explorer/Windows clients
	File Upload fails
	Simultaneous sessions per user will fail
	"String index out of range: -128" error shown in browser
	Part of error message is hidden
	Sessions lost when running KCM ComposerUI in an IFrame

