Kotlin in Action

DMITRY JEMEROV
AND SVETLANA ISAKOVA

MANNING
SHELTER ISLAND

contents

Jforeword xv

preface xvii

acknowledgments xix

about this book xxi

about the authors xxiv

about the cover illustration xxv

ParT 1 INTRODUCING KOTLIN .coiccencennscsascorsssscoscossossss 1

/' Kotlin: what and why 3
N 1.1 A taste of Kotlin 3
1.2 Kotlin’s primary traits 4

Target platforms: server-side, Android, anywhere Java runs 4
Statically typed 5 = Functional and object-oriented 6
Free and open source 7

1.3 Kotlin applications 7

Kotlin on the server side 8 = Kotlin on Android 9
1.4 The philosophy of Kotlin 10

Pragmatic 10 » Concise 11 = Safe 12 = Interoperable 12
1.5 Using the Kotlin tools 13

Compiling Kotlin code 13 = Plug-in for Intelli] IDEA and Android
Studio 14 = Interactive shell 15 = Eclipse plug-in 15
Online playground 15 = Java-to-Kotlin converter 15

1.6 Summary 15

CONTENTS

Kotlin basics 17

2.1 Basic elements: functions and variables 18

Hello, world! 18 = Functions 18 = Variables 20
Easier string formatting: string templates 22

2.2 Classes and properties 23

Properties 23 = Custom accessors 25 = Kotlin source code
layout: directories and packages 26

2.3 Representing and handling choices: enums and “when”

Declaring enum classes 28 = Using “when” to deal with enum
classes 29 = Using “when” with arbitrary objects 30

Using “when” without an argument 31 = Smart casts: combining
type checks and casts 31 = Refactoring: replacing “if” with
“when” 33 = Blocks as branches of “if” and “when” 34

2.4 Iterating over things: “while” and “for” loops 35

The “while” loop 35 = Iterating over numbers: ranges and
progressions 36 = Iterating over maps 37 » Using “in” to check
collection and range membership 38

2.5 Exceptions in Kotlin 39

» o«

“try”, “catch”, and “finally” 40 = “try” as an expression 41
2.6 Summary 42

- Defining and calling functions 44
~ 3.1 Creating collections in Kotlin 45
3.2 Making functions easier to call 46

Named arguments 47 = Default parameter values 48
Getting rid of static utility classes: top-level functions and
properties 49

3.3 Adding methods to other people’s classes: extension
functions and properties 51

Imports and extension functions 53 = Calling extension
Sfunctions from Java 53 = Utility functions as extensions 54
No overriding for extension functions 55 = Extension
properties 56

3.4 Working with collections: varargs, infix calls,
and library support 57

Extending the Java Collections API 57 « Varargs: functions that
accept an arbitrary number of arguments 58 » Working with pairs:
infix calls and destructuring declarations 59

28

CONTENTS

3.5 Working with strings and regular expressions 60

Splitting strings 60 = Regular expressions and triple-quoted
strings 61 « Multiline triple-quoted strings 62

3.6 Making your code tidy: local functions and
extensions 64

3.7 Summary 66

4 Classes, objects, and interfaces 67

4.1 Defining class hierarchies 68

Interfaces in Kotlin 68 = Open, final, and abstract modifiers:
Jinal by default 70 « Visibility modifiers: public by default 73
Inner and nested classes: nested by default 75 = Sealed classes:
defining restricted class hierarchies 77

4.2 Declaring a class with nontrivial constructors
or properties 78

Initializing classes: primary constructor and initializer blocks 79
Secondary constructors: initializing the superclass in different
ways 81 = Implementing properties declared in interfaces 83
Accessing a backing field from a getter or seiter 85

Changing accessor visibility 86

4.3 Compiler-generated methods: data classes and class
delegation 87

Universal object methods 87 » Data classes: autogenerated
implementations of universal methods 89 = Class delegation:
using the “by” keyword 91

4.4 The “object” keyword: declaring a class and creating an
instance, combined 93

Object declarations: singletons made easy 93 = Companion
objects: a place for factory methods and static members 96
Companion objects as regular objects 98 = Object expressions:
anonymous inner classes rephrased 100

4.5 Summary 101

po

“ Programming with lambdas 103

. 5.1 Lambda expressions and member references 104
Introduction to lambdas: blocks of code as function parameters 104
Lambdas and collections 105 = Syntax for lambda
expressions 106 = Accessing variables in scope 109

Member references 111

CONTENTS

5.2 Functional APIs for collections 113

Essentials: filter and map 113 = “all”, “any”, “count”,
and “find”: applying a predicate to a collection 115
groupBy: converting a list to a map of groups 117
flatMap and flatten: processing elements in nested
collections 117

5.3 Lazy collection operations: sequences 118

Executing sequence operations: intermediate and terminal
operations 120 = Creating sequences 122

5.4 Using Java functional interfaces 123

Passing a lambda as a parameter to a Java method 124
SAM constructors: explicit conversion of lambdas to
Sfunctional interfaces 126

5.5 Lambdas with receivers: “with” and “apply” 128

The “with” function 128 = The “apply”
Sfunction 130

5.6 Summary 131

/ The Kotlin type system 133

© 6.1 Nullability 133
Nullable types 134 = The meaning of types 136 = Safe call
operator: “2.7 137 = Elvis operator: “2:” 139 = Safe casts:
“as?” 140 = Not-null assertions: “!!” 141 = The “let”
Sfunction 143 « Late-initialized properties 145 = Extensions
for nullable types 146 = Nullability of type parameters 148
Nullability and Java 149

6.2 Primitive and other basic types 153

Primitive types: Int, Boolean, and more 153 = Nullable primitive
types: Int?, Boolean?, and more 154 = Number conversions 155
“Any” and “Any?”: the root types 157 = The Unit type:

Kotlin’s “void” 157 = The Nothing type: “This function

never returns” 158

6.3 Collections and arrays 159

Nullability and collections 159 = Read-only and mutable
collections 161 » Kotlin collections and Java 163
Collections as platform types 165 = Arrays of objects

and primitive types 167

6.4 Summary 170

CONTENTS xi

PART 2 EMBRACING KOTLIN ccvoveecerececoscosscocossscassncse 141

"7 Operator overloading and other conventions 173

4

7.1 Overloading arithmetic operators 174
Overloading binary arithmetic operations 174 = Overloading
compound assignment operators 177 = Overloading unary
operators 178

7.2 Overloading comparison operators 180
Equality operators: “equals” 180 = Ordering operators:
compareTo 181

7.3 Conventions used for collections and ranges 182

Accessing elements by index: “get” and “set” 182 = The “in”
convention 184 = The rangeTo convention 185 » The
“iterator” convention for the “for” loop 186

7.4 Destructuring declarations and component
functions 187
Destructuring declarations and loops 188

7.5 Reusing property accessor logic: delegated properties 189

Delegated properties: the basics 189 » Using delegated properties:
lazy initialization and “by lazy()” 190 = Implementing delegated
properties 192 = Delegated-property translation rules 195
Storing property values in a map 196 = Delegated properties

in frameworks 197

7.6 Summary 199

' Higher-order functions: lambdas as parameters
and return values 200

8.1 Declaring higher-order functions 201

Function types 201 = Calling functions passed as

arguments 202 = Using function types from Java 204
Default and null values for parameters with funciion types 205
Returning functions from functions 207 = Removing
duplication through lambdas 209

8.2 Inline functions: removing the overhead of lambdas 211

How inlining works 211 = Restrictions on inline functions 213
Inlining collection operations 214 = Deciding when fo declare
Sfunctions as inline 215 = Using inlined lambdas for resource
management 216

CONTENTS

8.3 Control flow in higher-order functions 217

Return statements in lambdas: return from an enclosing
Sfunction 217 » Returning from lambdas: return with a
label 218 = Anonymous functions: local returns by default 220

8.4 Summary 221

- Generics 223

9.1 Generic type parameters 224

Generic functions and properties 224 = Declaring generic
classes 226 » Type parameter constraints 227
Making type parameters non-null 229

9.2 Generics at runtime: erased and reified type parameters 230

Generics at runtime: type checks and casts 230 = Declaring
Jfunctions with reified type parameters 233 = Replacing class
references with reified type parameters 235 = Restrictions on reified
type parameters 236

9.3 Variance: generics and subtyping 237

Why variance exists: passing an argument to a function 237
Classes, types, and subtypes 238 = Covariance: preserved
subtyping relation 240 = Contravariance: reversed subtyping
relation 244 » Use-site variance: specifying variance for type
occurrences 246 = Star projection: using * instead of a type
argument 248

9.4 Summary 252

| Annotations and reflection 254

10.1 Declaring and applying annotations 255

Applying annotations 255 = Annotation targets 256

Using annotations to customize JSON serialization 258
Declaring annotations 260 = Meta-annotations: controlling how
an annotation is processed 261 = Classes as annotation
parameters 262 = Generic classes as annotation parameters 263

10.2 Reflection: introspecting Kotlin objects at runtime 264

The Kotlin reflection API: KClass, KCallable, KFunction, and
KProperty 265 = Implementing object serialization using
reflection 268 = Customizing serialization with annotations 270
JSON parsing and object deserialization 273 = Final
deserialization step: callBy() and creating objects using

reflection 277

10.3 Summary 281

CONTENTS xiii

DSL construction 282
11.1 From APIs to DSLs 283

The concept of domain-specific languages 284 = Internal
DSLs 285 = Structure of DSLs 286 = Building HTML with an
internal DSL 287

11.2 Building structured APIs: lambdas with receivers in DSLs 288

Lambdas with receivers and extension function types 288
Using lambdas with receivers in HTML builders 292
Kotlin builders: enabling abstraction and reuse 296

11.3 More flexible block nesting with the “invoke” convention 299

The “invoke” convention: objects callable as functions 299
The “invoke” convention and functional types 300 = The “invoke”
convention in DSLs: declaring dependencies in Gradle 301

11.4 Kotlin DSLs in practice 303

Chaining infix calls: “should” in test frameworks 303 = Defining
extensions on primitive types: handling dates 305 = Member
extension functions: internal DSL for SQL 306 = Anko: creating
Android Uls dynamically 309

11.5° Summary 310

appendix A Building Kotlin projects 313
appendix B Documenting Kotlin code 317
appendix C The Kotlin ecosystem 320

index 323

