
For free Primary Computing resources please visit…	

	

KS2: Python
Programming Unit

Jon Chippindall

@drchips_
www.primarycomputing.co.uk

For free Primary Computing resources please visit…	

	

Introduction
This document sets out a scheme of work aimed to introduce
upper Key Stage 2 pupils to the Python programming language.
The scheme intends to familiarise pupils with the Python
programming environment and syntax, and equip pupils with the
skills and knowledge to write simple programs.

It is anticipated that pupils will have had prior experience of coding
using a visual based programming language, such as Scratch or
Kodu, and that this is likely to be the first time they will code using
a scripting language. i.e. writing lines of code as opposed to
dragging blocks to build algorithms and programs. The example
below illustrates the difference between a visual programming
language and a scripting language.

An if/else condition block in Scratch and the equivalent coding in Python

Pedagogy
There are four lessons in this scheme of work followed by a final
project. Lessons broadly follow a model in which skills and
knowledge are taught using worked/modelled examples before
pupils tackle a ‘Coding Challenge’ requiring application of such
skills and knowledge. Whilst suggested ‘Coding Challenges’ have
been presented here, I encourage those using this resource to
also generate coding challenges for pupils (or encourage pupils to
generate their own challenges), which may link into areas of pupils’
topic work making the programming more relevant to pupils’ wider
learning. Similarly, whilst two suggestions have been made for the
final project, it is anticipated that teachers using this resources
may choose to adapt these for their pupils or encourage pupils to
generate their own ideas for the final project programs they wish to
code.

For free Primary Computing resources please visit…	

	

Whilst answers to ‘Coding Challenges’ are presented, it should be
noted that there will often be different ways to program a
successful solution, and pupils should be encouraged to
experiment and explore their own methods as opposed to being
funnelled towards a predefined solution, since it is the journey of
experimentation, trial and error that will facilitate learning.

It is hoped class and school organisation will be such that pupils
are given the opportunity to tackle some challenges independently
and others cooperatively, helping to develop pupils’ collaborative
skills as well as independent perseverance and resilience in
problem solving.

Proposed Computing National Curriculum coverage
This scheme aims to cover the following objectives from the
proposed Key Stage 2 National Curriculum for Computing. Specific
NC objectives appear at the beginning of each lesson.

• design and write programs that accomplish specific goals; solve problems
by decomposing them into smaller parts

• use sequence, selection, and repetition* in programs; work with variables
and various forms of** input and output; generate appropriate inputs and
predicted outputs to test programs

• use logical reasoning to explain how a simple algorithm works and to
detect and correct errors in algorithms and programs

* Note this scheme does not cover repetition (loops)
** This scheme only covers one form of input/output (that of the program user
entering data via a keyboard)

Lesson Overview

Lesson Lesson objectives Vocab
1. Introducing
Python

- Navigate Idle (create, save, run
programs)
- Understand and use
mathematical operation and ‘print’
statement

Python, scripting
language, visual
programming
language, syntax,
Idle

2. Variables and
comments

-Declare a variable

-Write comments within Python
code

-Use mathematical operations and
print statement with variables

variables, declare,
comment

For free Primary Computing resources please visit…	

	

Vocabulary
A glossary of terms used throughout this SoW is included at the
end of this document. Any term appearing in bold in lesson plans
appears in the glossary and should be introduced to pupils using
the definition provided.

It is suggested that starters including matching words with
definitions or code are used to help develop pupils’ knowledge of
the technical terminology of coding and the syntax of Python.

Code representation and line numbering
Within this document Python code to be written appears in a
different font as shown below. Also note that lines of code are
numbered for ease of reference within the text however you do
not include these numbers when coding. Code that would be one
long line in Python but which spans several lines when presented
here does not start with a new number to indicate this. Finally,
please note that Python reads the indentation of code so layout is
important (i.e. in the example below ‘print’ is deliberately indented).

1.num1	
 =	
 input	
 (“Please	
 enter	
 a	
 number”)	

2.num2	
 =	
 input	
 (“Please	
 enter	
 a	
 second	
 number”)	

3.if	
 num1	
 >	
 100:	

4.	
 print	
 “Your	
 first	
 number	
 is	
 greater	
 than	
 100”	

5.else:	

6.	
 print	
 “Your	
 first	
 number	
 is	
 less	
 than	
 100”	

	

Pupil resources
At the end of this document there are pupil resources to print to
accompany each lesson with the model code and Coding
Challenges.

3. User inputs - Use raw_input() statement

- Use input() statement
- Print sentences

Input

4. Selection and
inequalities

-Use conditional statements if, else
if (elif) and else
-Use comparison operators

conditional
statement,
comparison
operator

5. Final project Reinforcement and application of
skills and knowledge covered
above

For free Primary Computing resources please visit…	

	

Lesson 1: Introducing Python

L.Os:

1. Navigate Idle (create, save, run programs)
2. Understand and use mathematical operation and ‘print’

statement
N.C: design	
 and	
 write	
 programs	
 that	
 accomplish	
 specific	
 goals;	
 use	
 sequence	
 in	

programs;	

Vocabulary: Python, scripting language, visual programming
language, syntax, Idle

Introducing Python and mathematical functions: Explain that
pupils will be using a language called Python to write programs.
Recap that pupils will have had prior experience of writing
programs using Scratch, which is a visual programming
language as we built up programs by visually dragging
programming blocks. Explain that Python is a scripting
language, so instead of dragging blocks we have to write code
and we have to learn the language of Python’s code (called the
syntax) - just like we may learn languages such as French of
Urdu.

Ask pupils to open Idle (which is on both Windows and Mac).
Explain this is a program we use to write our Python codes.
Introduce the following code to pupils:

Mathematical operation Python code
Addition +

Subtraction -
Multiplication *

Division /

Demonstrate that we can use this code to communicate in Python
to work out numeracy calculations for us. For example, try writing
the following into Idle and press return after each. Give time for
pupils to try using Python to complete calculations.

300+400
987-653
12*9
30/6

For free Primary Computing resources please visit…	

	

Hello World program: We are now going to move on to teaching
pupils how to write a program to display text within Python. When
run, the text displayed will read ‘Hello World’, as traditionally this is
the first program anyone learns to write in a new programming
language!

To do this (and from here onwards when programming in Python)
we are not going to write our code in the ‘outer’ Idle window we
have just been using but rather from within Idle ask pupils to select
File > New Window to create a window which we can code into
and save. Show in the screenshots below. From this new
window, pupils should click File > Save and name the file
helloworld.py. Explain it is important to include the .py file
extension to indicate this is a Python file. Ask pupils to save the file
to an appropriate location.

3 screenshots showing outer window of Idle (Python shell) then opening a
new window to write programs into.

Similarly to introducing the code for mathematical operations
above, introduce pupils to the statement ‘print””’. Explain that
when using the statement ‘print””’ programs will display the text
with the quotation marks. So to create a ‘Hello World’ program ask
pupils to write the following code into the window. Note there is no
capital P for the statement print. This is important as Python is a
case-sensitive language.

1. print “Hello world!”

Once pupils have written this line of code, explain that to run their
program they must first save the changes they have made to their
file. Once they have done this, they must select ‘Run’ then ‘Run
Module’.

For free Primary Computing resources please visit…	

	

The window they have been coding in will close and their program
will run in the ‘outer’ Python window we used earlier. If they have
typed the code correctly their program will display the words ‘Hello
World!’. They’ve now written their first Python program!

Coding Challenge: Can pupils write a program which displays
more lengthily text on different lines? For example:

Hello, how are you today?
I hope you are enjoying learning Python.
What shall we code next?

Challenge solution: Pupils need to use the ‘print’ statement on
each new line to display text over several lines. e.g. Remember
not to include the numbers

1.print “Hello, how are you today?”
2.print “I hope you are enjoying learning Python”
3.print “What shall we code next?”

For free Primary Computing resources please visit…	

	

Lesson 2: Variables and comments

L.Os:

1. Declare a variable
2. Write comments within Python code
3. Use mathematical operations and print statement with

variables
N.C: design and write programs that accomplish specific goals; use sequence in
programs; work with variables and output; generate appropriate inputs and
predicted outputs to test programs; use logical reasoning to explain how a simple
algorithm works and to detect and correct errors in algorithms and programs.

Vocabulary: variables, declare, comment

Introducing variables: Explain to pupils that variables may be
thought of as boxes within our program where we can place data
(numbers or text). Explain that we can then use the contents of the
boxes within our program and that the values assigned to our
variable (the contents of our boxes) may change as our program
runs.

Explain that when we create a variable and assign data (get a box
and put something in it) it is called declaring a variable.
Demonstrate that to declare a variable we use the following code:

1.variable1 = 8

Explain that in this example above we have created a variable
called ‘variable1’ and assigned the value 8 to it. Demonstrate that
we can create more than one variable and that we can assign text
as well as numbers to variables by writing the following code:

A variable may be
though of as a box
where we place data for
use in our programs
e.g.
‘Hello world’

 ‘4.78’

We need to name our
variable e.g. variable1

For free Primary Computing resources please visit…	

	

1.name = sarah
2.laps = 8

Can pupils names the 2 variables you have created using the code
above and their values? Explain here that naming variables with
names that relate to the data they hold (e.g. name & laps), as
opposed to using generic terms such as variable1, makes
subsequently writing code using these variables easier.

Ask pupils to now create a new Python file: i.e. open Idle, select
File > New window then Save as, and call the file variables.py and
save to an appropriate location.

Ask pupils to create a variable called ‘children’ with a value of 30
and a variable called ‘sweets’ with a value of 5. Explain that we will
be using these variables to write a program that calculates the total
number of sweets required to give a defined number of sweets to a
defined number of children.

Solution code:

1.children = 30
2.sweets = 5

Comments in Python: Explain that a comment is a line of code
that isn’t part of the program but is there to explain to the
programmer what parts of the code are doing. We write comments
in regular clear English (or whatever language we as programmers
may speak) as opposed to the language of Python. Explain that
comments are important as when we write longer pieces of code
we may forget the function of different parts, or we may work on
code collaboratively with others and therefore we need to explain
what we are doing.

However, explain that the trouble with writing in regular English
within our program is that our computer thinks we are still writing in
Python and may try and interpret commands from what we have
said. As such, we need to indicate when we are writing a comment
and we do that by using ‘#’. Explain that the computer will ignore
any line starting with # as it knows this is a comment to the
programmer and not part of the code. Demonstrate adding
comments to the variable we just created to add explanation about
what we are coding and ask the children to do the same i.e.

For free Primary Computing resources please visit…	

	

1.children = 30
2.#The number of children in the class
3.sweets = 5
4.#The number of sweets each child will get

Using mathematical operations and print statement with
variables: Explain we are now going to continue coding to write a
program that uses the variables we have just declared as well as
the mathematical operations and print statement we covered in the
previous lesson.

Recap that the purpose of this program was to work out the total
number of sweets required based on the two variables we have
declared: the number of children and the number of sweets they
get each.

To write the program to calculate this, add the code beneath our
variables and comments that appears on line 4&5 below and is
highlighted for clarity – and ask pupils to add the same to their
program.

1.children = 30
2.#The number of children in the class
sweets = 5
3.#The number of sweets each child will get
4. total = children*sweets
5. print total

Take a moment to discuss with pupils lines 4&5 of code above.
Can children spot a new variable being declared? What is the
name of this new variable? Can children spot the mathematical
operator? What mathematical operation is it? (Note the scope here
to reinforce numeracy problem solving objectives on choice of
operation) Can pupils see the print statement we used in lesson 1?
Note – we don’t need to use quotation marks when requesting to
print a variable.

What do pupils anticipate the output of this program will be? Can
pupils interpret into English what line 4 is asking the computer to
do? ‘Create a new variable called total and assign it the value of

For free Primary Computing resources please visit…	

	

the value in variable children multiplied by the value in variable
sweets’.

Ask pupils to now save their program and select Run then Run
Module. The window they have been coding in will close and their
program will run in the ‘outer’ Python window we used earlier. If
they have entered the code correctly their program will display the
total number of sweets required for all children i.e. 150.

Pupils have now written a program which, when the number of
children and sweets per child has been entered, can calculate the
total number of sweets required. Pupils should have some time to
edit their program by changing the values for the two variables. To
modify the program pupils should return to the window it was
written in and make changes before selecting Save the Run then
Run Module.

Coding Challenge 1: Can you write a program to calculate the
number of cakes needed for a children’s party? Choose your own
number of children and how many cakes they should each get!

Solution 1:

1. #Variable for number of children
2. children = 27
3. #Variable for number of cakes they should get
4. cakes = 4
5. #Declare variable for total number of cakes
6. total = children*cakes
7. print total

Coding challenge 2: Write a program to calculate the total
number of house points 4 classes got in a school. Choose your
own numbers for how many house points each class got!

Solution 2:

1. #Declare variables for each house
2. class1 = 345
3. class2 = 265
4. class3 = 265

5. class4 = 189

For free Primary Computing resources please visit…	

	

6. #Declare variable for total number of house
points
7. total = class1+class2+class3+class4
8. print total

Coding challenge 3: In an enterprise activity, 3 students make
£620 by selling products they have made. Their total costs were
£400. Write a program to calculate how much money they make
each after they have paid their costs.

Solution 3:

1. #Declare variables for income, costs and
number of students
2. income = 620
3. costs = 500
4. students = 3
5. #Calculate total profit and profit each by
declaring two new variables
6. profit = income – costs
7. each = profit/students
8. #print solution
9. print each

For free Primary Computing resources please visit…	

	

Lesson 3: User inputs

L.Os:

1. Use raw_input() statement
2. Use input() statement
3. print sentences

NC: design and write programs that accomplish specific goals; solve problems
by decomposing them into smaller parts; use sequence; work with variables and
input and output; generate appropriate inputs and predicted outputs to test
programs; use logical reasoning to explain how a simple algorithm works and to
detect and correct errors in algorithms and programs

Vocabulary: input

Using the input function: Explain that Python has statements,
which can be used to accept an input of data from the user. The
type of input statement to use depends on the data type to be
entered (either text or numerical). The table below shows the
statement to use for the two data types:

Data type Input statement for coding
Text (Crumpsall Lane… etc) raw_input()

Numerical (5, 345….. etc) input()

The data which is entered can be used to declare variables, so
rather than us defining the values assigned to variables when
writing a program, we can ask the user to enter the data. Write in
the following code into a new window within Idle to demonstrate
this:

1. name = raw_input (“What is your name?”)
2. print name, ”is a lovely name.”

What do pupils think this program will do when it is run? Run the
program and demonstrate that it asks for a users name and then
output the sentence: ….. is a lovely name, with the user’s name
starting the sentence.

Talk through the following points with the pupils about using this
piece of input code:

For free Primary Computing resources please visit…	

	

Line 1: Firstly, if we work through what line 1 is doing we can see
that we are declaring a variable called ‘name’ but instead of
assigning it a value we use the raw_input()statement which
allows us to write a question to the user inside the brackets – note
the text must also be inside quotation marks. When the user
responds to this question, whatever response they give will be
assigned to the variable ‘name’.

Line 2: The second line uses the print command to print the
variable ‘name’ and then the text “is a lovely name.”. Importantly
the variable and text are separated by a comma and the text is in
quotation marks - as pupils learnt to do in the ‘Hello World’ lesson
1.

Inputs and mathematical operations: Explain to pupils that we
are now going to return to problems similar to those that we
tackled last week, but make our programs more complex, so the
user can input data.

Explain that together you are going to write a program which will:
Allow the user to enter the number of children in a class and the
number of exercise books they require each and output the total
number of books required.

Ask pupils how they would tackle this coding problem based on the
demonstration of using the input statement above (remember we
are using numerical data now so we will use a slightly different
input statement).

Working jointly with pupils via questioning and prompting construct
the following code (obviously comment lines may vary)

1. #write input code to declare variables for
number of children and number of books
2. children = raw_input(“How many children are
there?”)
3. books = raw_input (“How many books does each
child need?”)
4. # declare ‘total’ variable from children and
books
5. total = children*books
6. #print total along with text
7. print “You will need”, total, “books”

For free Primary Computing resources please visit…	

	

Run the program to demonstrate that the user is asked for the
number of children and the number of books each child requires
before it outputs the total number of books required.

Coding challenge 1: Write a program which asks the user to
enter how many children are in a class and how many children are
in each group. The program should then output how many whole
groups there will be in a sentence reading: The will be …. whole
groups.

Solution:

1. # Declare two variables based on user input
2. children = input(“How many children are in the
class?”)
3. number = input(“How many children are in each
group?”)
4. # Use mathematical operator to define solution
and print this with text explanation
5. groups = children/number
6. print “There will be”, groups, “whole groups.”

***Please note, and explain to pupils, that this program will only
return the number of whole groups as within Python we need to
change numbers to ‘floats’ to handle decimals. We will cover this in
a future lesson***

Coding challenge 2: Write a program which asks the user their
name and how many days until their next birthday. The program
should then output a personalised sentence with a rough
approximation of the number of seconds until their next birthday.

Solution:

1. # declare variable of name and days till birthday from user input
2. name = raw_input (“What is your name?”)
3. days = input (“How many days until your next birthday?”)
4. # calculate seconds using mathematical operations
5. seconds = days*24*60*60
6. # print result
7. print “Hi”, name, “there are approximately”, seconds, “ seconds
till your next birthday!”

For free Primary Computing resources please visit…	

	

Lesson 4: Selection

L.Os:

1. Use conditional statements if, else if (elif) and else
2. Use comparison operators

N.C: design and write programs that accomplish specific goals; solve problems
by decomposing them into smaller parts; use sequence and selection in
programs; work with variables and input and output; generate appropriate inputs
and predicted outputs to test programs; use logical reasoning to explain how a
simple algorithm works and to detect and correct errors in algorithms and
programs

Vocabulary: conditional statement, comparison operator

Introducing conditional statements: Recap that in the previous
lesson we wrote code that allowed users to interact with our
programs by entering data for variables. However, the program
was quite simple in that it always performed the same operation
with the data that had been entered. Explain that to extend this
further we are now going to learn how to write code that responds
differently depending on what data the user enters and offers the
user options - making our programs more interactive. The
concepts covered in this lesson underpin programming computer
games as well as simple forms of artificial intelligence.

Explain that the statements we are going to use to achieve this are
called conditional statements. i.e. what the code does depends
on a condition being met or not met. We will go through an
example shortly to make this clearer but first here are the new
statements we will be using in this lesson – we are developing our
knowledge of Python’s syntax!

Conditional statements Comparison operators

If == Check is equal to
else != Checks if not equal to

elif (else if) > Checks if greater than
 < Checks if less than
 >= Checks if greater than

or equal to
 <= Checks if less than or

equal to

For free Primary Computing resources please visit…	

	

Explain in the table above we have also introduced the syntax for
comparison operators as we will require these to work with our
conditional statements. Pupils may be reasonably familiar with the
notation here since they will have encountered inequalities within
numeracy.

Explain that we are going to write a short piece of code using
conditional statements and comparison operators.

Use the following code as an example:

1.#Declare	
 name	
 variable	
 using	
 input	
 from	
 user	

2.name	
 =	
 raw_input	
 (“Hi,	
 What	
 is	
 your	
 name?”)	

3.print	
 “It	
 is	
 lovely	
 to	
 meet	
 you”,	
 name,	
 “.”	

4.	
 #	
 Declare	
 feeling	
 variable	
 using	
 number	
 input	
 from	

user	
 	

5.	
 feeling	
 =	
 input	
 (“How	
 are	
 you	
 feeling	
 today?	

Excited	
 =	
 1,	
 Happy	
 =	
 2,	
 Miserable	
 =	
 3,	
 Nervous	
 =	
 4”)	

6.	
 #	
 Use	
 conditional	
 statement	
 with	
 ‘equal	
 to’	

comparison	
 to	
 determine	
 which	
 response	
 is	
 given	
 	

7.	
 if	
 feeling	
 ==	
 1:	

8.	
 print	
 “Fantastic.	
 What	
 are	
 you	
 feeling	
 excited	

about?”	

9.	
 elif	
 feeling	
 ==	
 2:	

10.	
 print	
 “I	
 am	
 happy	
 too.	
 Yay”	

11.elif	
 feeling	
 ==	
 3:	

12.	
 print	
 “I	
 am	
 sorry	
 to	
 hear	
 that	
 you	
 are	
 miserable.	

How	
 can	
 I	
 cheer	
 you	
 up?”	

13.elif	
 feeling	
 ==	
 4:	

14.	
 print	
 “What	
 are	
 you	
 nervous	
 about?”	

	

Discussing how this code works. Work through the code above
with your pupils to explain the following points.

1. Firstly we have used a raw input to declare the variable
name and used print to return a sentence which includes the
user’s name. This portion of the code is similar to that which
we have covered in previous lessons.

2. We have then declared a second variable called feeling. The
user is asked to enter a number which corresponds to a list
of feelings i.e. we have provided a menu for the user

3. We have then used our new syntax, the ‘if’ statement, along
with a comparison operator to say (in English): if the value of

For free Primary Computing resources please visit…	

	

the variable feeling is equal to 1 then print ‘Fantastic. What
are you feeling excited about?’ Note the use of the colon
and that print is indented. Also note that the code to
check if feeling is equal to 1 uses a double equals sign
(==) as a single equals sign (=) is used to declare
variables.

4. Since we have several options in our menu of feelings, we
then use another conditional statement called ‘else if’ (written
in code as elif) along with the comparison operator == to
provide a different response for the other feelings that the
user may select.

Programming a calculator: Here is a second example which
uses a range of comparison operators. In this example the user’s
inputs also cause the program to perform mathematical operations
on the variables declared, like a calculator

1.num1	
 =	
 input	
 (“Please	
 enter	
 a	
 number”)	

2.num2	
 =	
 input	
 (“Please	
 enter	
 a	
 second	
 number”)	

3.if	
 num1	
 >	
 100:	

4.	
 print	
 “Your	
 first	
 number	
 is	
 greater	
 than	
 100”	

5.else:	

6.	
 print	
 “Your	
 first	
 number	
 is	
 less	
 than	
 100”	

7.if	
 num2	
 >	
 100:	

8.	
 	
 	
 print	
 “Your	
 second	
 number	
 is	
 greater	
 than	
 100”	

9.else:	

10.	
 print	
 “Your	
 second	
 number	
 is	
 less	
 than	
 100”	

11.	
 op	
 =	
 input	
 (“Select	
 an	
 operation:	
 1.	
 Add	
 2.	

Subtract	
 3.	
 Multiply”)	

12.if	
 op	
 ==	
 1:	

13.	
 add	
 =	
 num1	
 +	
 num2	

14.	
 print	
 add	

15.elif	
 op	
 ==	
 2:	

16.	
 sub	
 =	
 num1	
 –	
 num2	

17.	
 print	
 sub	

18.elif	
 op	
 ==	
 3:	

19.	
 mul	
 =	
 num1*num2	

20.	
 print	
 mul	
 	
 	

For free Primary Computing resources please visit…	

	

Coding Challenge: Can you program a French dictionary that
provides the user with a range of English words to chose from and
returns the translation in French?

Solution:
1.	
 print	
 “Welcome	
 to	
 this	
 English	
 –	
 French	
 translator	

for	
 animals”	

2.	
 word	
 =	
 input	
 (“Please	
 select	
 a	
 number:	
 1	
 –	
 Cat,	
 2	

–	
 Dog,	
 3	
 –	
 Fish,	
 4	
 –	
 Hamster,	
 5	
 –	
 Rabbit)	

3.	
 If	
 word	
 ==	
 1:	

4.	
 print	
 “In	
 French	
 cat	
 is	
 le	
 chat.”	

5.	
 elif	
 word	
 ==	
 2:	

6.	
 print	
 “In	
 French	
 dog	
 is	
 le	
 chien.”	

7.	
 elif	
 word	
 ==	
 3:	

8.	
 print:	
 “In	
 French	
 fish	
 is	
 le	
 poisson.”	

9.	
 elif	
 word	
 ==	
 4:	

10.	
 print:	
 “In	
 French	
 hamster	
 is	
 le	
 hamster.”	

	
 	

For free Primary Computing resources please visit…	

	

Lesson 5&6: Final project

Once pupils have completed the scheme of 4 lessons above,
including the coding challenges, it is intended that they have the
opportunity to program a final project to help reinforce the skills
and knowledge covered. As mentioned in the introduction, whilst
two suggestions are presented below for final projects, it is
envisaged those using this resource may also generate ideas
relating to topic work and thus linking programming with pupils’
wider learning. In addition, pupils may be encouraged to think of
their own ideas for programs they wish to code.

Final project 1: Artificial Intelligence

Project question: ‘Can you write a program to bring a

computer to life?’

Introducing the project: The first idea is an extension of the
example used in lesson 4 which is to write a program that appears
to transform our computer into an ‘intelligent robot’ which may
have a conversation with you.

The videos below can be used to introduce the project. The first is
a short clip of a Horizon documentary on artificial intelligence
whereby robots are seen learning from each other, and the second
is a compilation of different robots. When watching the second clip
explain that all robots (including those featured) are made up of
both their physical construction and the code they are programmed
to operate to – such as that we have been learning to write.

For free Primary Computing resources please visit…	

	

Horizon clip on Artificial Intelligence:
http://www.youtube.com/watch?v=lmoXByLkK14

Robots are Awesome:
http://www.youtube.com/watch?v=rjernKRnLRo

It is my understanding that ‘actual’ artificial intelligence is the ability
for a system to learn and evolve which is a little beyond the scope
of the content of this introduction to Python! However, explain to
pupils that through the extended use of inputs and selection
algorithms we can write code that appears to turn our computer
into a robot able to communicate with us!

An example of code that a pupil may write for this final project
appears below. Pupils should start by recapping the code in lesson
4 in which the program asks and responds to the user about how
they are feeling. Pupils can build up more lengthily code from this
starting point.

Notes on the code: in the example below inputs have been used
within conditional statement so ‘if’ the user responds yes to the
question about going to school (line 5) the next line of code is an
input asking about the lessons they are doing (line 6) – this has
been highlighted below in yellow. What’s more, a second condition
statement follows (line 8) which has been nested (meaning
embedded within) within the first condition.

Nesting is achieved by indenting the ‘if’ statement as can be seen
on line 8 – this has been highlighted blue. Nesting the condition
statements like this means that if the user responds to say they are
going to school (line 5) the code asks a question about studying
numeracy and responds to this (lines 8-11) but if the user says
they are not going to school the code skips to line 12 and misses
any questions about what they might be studying. Note the lesson
on selection did not extend to nesting conditions in this
manner but I have included an example as once shown I am
sure some pupils will be able to understand and apply this
concept to enhance their coding.

For free Primary Computing resources please visit…	

	

Example ‘AI’ code:

1.print	
 "Hello,	
 my	
 name	
 is	
 Compu"	

2.name	
 =	
 raw_input("What	
 is	
 your	
 name?")	

3.print	
 "Well	
 it	
 is	
 nice	
 to	
 meet	
 you",	
 name	

day	
 =	
 raw_input	
 ("	
 What	
 day	
 is	
 it	
 today?”)	

4.print	
 "Thanks",	
 name,	
 "now	
 I	
 remember	
 it	
 is",	
 day,	

"."	

5.today	
 =	
 input("So	
 are	
 you	
 going	
 to	
 school	
 today?	
 1	

-­‐	
 yes	
 2	
 -­‐	
 no")	

6.if	
 today	
 ==	
 1:	

7.	
 	
 	
 	
 lesson	
 =	
 input("Are	
 you	
 studying	
 maths	
 today?	
 1	

=	
 yes	
 2	
 =	
 no")	

8.	
 	
 	
 	
 if	
 lesson	
 ==	
 1:	

9.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "Great	
 I	
 like	
 maths,	
 I’ll	
 help!"	

10.	
 	
 	
 else:	

11.	
 	
 	
 	
 	
 	
 	
 print	
 "That’s	
 a	
 shame	
 as	
 I	
 like	
 maths"	

12.elif	
 today	
 ==	
 2:	

13.	
 	
 	
 print	
 "Oh	
 sorry	
 I	
 forgot	
 you	
 don't	
 go	
 to	
 school	

on",	
 day	

14.	
 print	
 "Lets	
 play	
 a	
 game",	
 name,"."	

15.	
 number=input("I'm	
 thinking	
 of	
 a	
 number	
 between	

1&10	
 and	
 you've	
 got	
 to	
 guess	
 it.	
 What's	
 your	
 first	

guess?")	

16.	
 if	
 number	
 ==	
 7:	

17.	
 	
 	
 	
 	
 	
 print	
 "Yay	
 you	
 guessed	
 it!"	

18.	
 elif	
 number	
 <	
 7:	

19.	
 	
 	
 	
 print	
 "Higher"	

20.elif	
 number	
 >	
 7:	

21.	
 	
 	
 	
 print	
 "Lower"	

22.	
 print	
 "I'll	
 give	
 you	
 one	
 more	
 guess"	

23.number1	
 =	
 input("Have	
 another	
 go?")	

24.if	
 number1	
 ==	
 7:	

25.	
 	
 	
 	
 print	
 "Yay	
 you	
 guessed	
 it!"	

26.elif	
 number1	
 <	
 7:	

27.	
 	
 	
 	
 print	
 "That's	
 too	
 low	
 it	
 was	
 7"	

28.elif	
 number1	
 >	
 7:	

29.	
 	
 	
 	
 print	
 "That's	
 too	
 high	
 it	
 was	
 7"	

For free Primary Computing resources please visit…	

	

Final project 2: Text Adventure Game

Project question: Can you create and code a section

of a text adventure game?

Introducing the project: An adventure game is a video game in
which the player assumes the role of a protagonist in an interactive
story. The screenshot above is from the Dr Who adventure game
for the PC.

Whilst modern day adventure games are often graphics based,
original adventure games were text based. These were some of
the earliest computer games and represented the cutting edge of
technology when they were released.

Adventure games are based on providing the user with a story to
engage with and make decisions about. The decisions they make
influence the direction of the story and the path their character
(often written in the first person such that the player is the
character) takes through the adventure.

The programming concepts which underpin the coding of an
adventure game are similar to the artificial intelligence project
above, namely inputs and conditional statements. The code for the
beginnings of an example adventure text game appears below.
This code could be shared as a starting point and developed
further. Explanations of various parts of the code appears beneath.

For free Primary Computing resources please visit…	

	

1.	
 print	
 “Welcome	
 to	
 the	
 Dragon’s	
 Cave	
 Adventure”	

2.print	
 "You	
 wake	
 in	
 a	
 cave	
 and	
 can	
 see	
 a	
 dragon!"	

3.	
 print	
 “Luckily	
 it	
 appears	
 to	
 be	
 sleeping.”	

4.print	
 "You	
 look	
 around	
 for	
 a	
 way	
 out.	
 What	
 should	

you	
 do?	
 Maybe	
 you	
 could	
 climb	
 over	
 the	
 dragon's	
 tail"	

5.choice1	
 =	
 input("	
 Should	
 you	
 1	
 -­‐	
 Explore	
 the	
 cave	

more?	
 2	
 -­‐	
 Climb	
 over	
 the	
 dragon's	
 tail?")	

6.if	
 choice1	
 ==	
 1:	

7.	
 	
 	
 	
 print	
 "You	
 look	
 into	
 the	
 darkness	
 of	
 the	
 cave	

but	
 it	
 is	
 so	
 pitch	
 black	
 you	
 can't	
 see	
 a	
 thing!"	

8.elif	
 choice1	
 ==	
 2:	

9.	
 	
 	
 	
 print	
 "You	
 try	
 gently	
 climbing	
 over	
 the	

dragon's	
 tail	
 but	
 it	
 lets	
 out	
 a	
 large	
 huff,	
 smokes	
 a	

little	
 and	
 you	
 decide	
 climbing	
 his	
 tail	
 isn't	
 a	
 very	

good	
 idea!"	

10.print	
 "The	
 dragon	
 shuffles	
 and	
 now	
 you	
 can	
 get	

past	
 and	
 out	
 the	
 cave	
 but	
 just	
 then	
 you	
 hear	
 a	
 noise	

coming	
 from	
 the	
 darkness	
 to	
 your	
 right.	
 It	
 sounds	

like	
 someone	
 calling	
 your	
 name."	

11.choice2	
 =	
 input("Do	
 you	
 1	
 -­‐	
 Go	
 to	
 investigate	
 the	

noise	
 2	
 -­‐	
 Try	
 and	
 sneak	
 past	
 the	
 dragon?")	

12.if	
 choice2	
 ==	
 1:	

13.	
 	
 	
 choice3	
 =	
 input("You	
 go	
 to	
 investigate	
 and	
 the	

noise	
 stops	
 but	
 you	
 can	
 see	
 a	
 light.	
 Do	
 you	
 continue	

1	
 -­‐	
 Yes	
 2	
 -­‐	
 No")	

14.	
 	
 	
 	
 if	
 choice3	
 ==	
 1:	

15.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "You	
 get	
 deeper	
 into	
 the	
 cave	
 and	

see	
 the	
 light	
 is	
 actually	
 a	
 passage	
 to	
 the	
 outside	

where	
 your	
 friend	
 is	
 calling	
 your	
 name"	

16.	
 	
 	
 	
 elif	
 choice3	
 ==	
 2:	

17.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "You	
 turn	
 around	
 but	
 as	
 you	
 do	
 you	

are	
 met	
 by	
 the	
 dragon...	
 GAME	
 OVER"	

18.elif	
 choice2	
 ==	
 2:	

19.	
 	
 	
 	
 print	
 "Slowly	
 you	
 edge	
 past	
 the	
 dragon	

desperate	
 not	
 to	
 make	
 a	
 sound!"	

20.print	
 "You	
 emerge	
 from	
 the	
 cave	
 and	
 see	
 your	

friend.	
 What	
 a	
 lucky	
 escape!"	

For free Primary Computing resources please visit…	

	

Notes on this code: The code is built on selection statements and
inputs as covered in previous lessons. The interactively of the
adventure text starts on line 5 when an input is used along with a
condition statement when the user is asked whether they should
explore the cave more or climb over the dragon (highlighted in
yellow). Depending on their choice the user will receive different
text progressing the story.

However, you’ll see that whilst the user receives a different
response depending on their choice, no matter what choice the
user makes they will always arrive at line 10 when the text
continues with “The dragon shuffles…” (also highlighted in yellow).

As such, to make the programming more complex and truly vary
the outcome of this adventure text based on user decisions, the
section highlighted in blue uses a nested condition. Please refer
to the artificial intelligence project above for an explanation of
what ‘nesting’ is and how to program nested conditional
statements.

For free Primary Computing resources please visit…	

	

Glossary:

Algorithm: A process or set of rules to be followed in calculations
or other problem-solving operations often by a computer.

Comment: Text which is not part of an algorithm but explains
details of the program to those working on it

Comparison operator: These are used to test relationships
between entities i.e. is a == 1 or is b > 5

Conditional statement: Programing commands that test for a
condition and action subsequent code depending on whether the
condition is met or otherwise.

Declare: When a variable is created and assigned a value

Idle: A environment for programming Python.

Input: Data that is accepted into a program

Output: Data that is produced from a program

Python: A programming language developed in 1989 which is
ideal for beginners to learn as the syntax for many commands are
close to the English language that describes their function e.g.
print “”

Scripting language: A programming language that requires users
to learn the syntax of the language and write lines of code

Syntax: The set of rules, structure and commands that make up a
programming language.

Variables: A parameter which can be created to store a value
which may be retrieved, changed and used in programs at any
point.

Visual programming language: A coding language that uses a
graphical method of constructing algorithms such as Scratch.

For free Primary Computing resources please visit…	

	

Lesson 1 pupil sheet: Introducing Python

Mathematical operation Python code
Addition +

Subtraction -
Multiplication *

Division /

Hello World program code:

1. print “Hello world!”

Coding Challenge:

Can you write a Hello world program which displays more lengthily
text on different lines? For example:

Hello, how are you today?
I hope you are enjoying learning Python.
What shall we code next?

For free Primary Computing resources please visit…	

	

Lesson 2 pupil sheet: Variable and comments

Declaring variables:

1.name = sarah
2.laps = 8

Adding comments in Python:

1.children = 30
2.#The number of children in the class
3.sweets = 5
4.#The number of sweets each child will get

Using mathematical operations and print statement with
variables:

1.children = 30
2.#The number of children in the class
sweets = 5
3.#The number of sweets each child will get
4. total = children*sweets
5. print total

Coding Challenge 1: Write a program to calculate the total
number of cakes required for a class party if we know the number
of children attending the party and the number of cakes each child
should get. Choose your own number of children and how many
cakes they should get!

Coding challenge 2: Write a program to calculate the total
number of house points 4 classes got in a school. Choose your
own numbers for how many house points each class got!

Coding challenge 3: In an enterprise activity, 3 students make
£620 by selling products they have made. Their total costs were
£400. Write a program to calculate how much money they make
each after they have paid their costs.

For free Primary Computing resources please visit…	

	

Lesson 3 pupil sheet: User inputs

Input statements:

Data type Input statement for coding
Text (Crumpsall Lane… etc) raw_input()

Numerical (5, 345….. etc) input()

Using input statements:

1. name = raw_input (“What is your name?”)
2. print name, ”is a lovely name.”

Inputs and mathematical operations:

1. #write input code to declare variables for
number of children and number of books
2. children = raw_input(“How many children are
there?”)
3. books = raw_input (“How many books does each
child need?”)
4. # declare ‘total’ variable from children and
books
5. total = children*books
6. #print total along with text
7. print “You will need”, total, “books”

Coding challenge 1: Write a program which asks the user to
enter how many children are in a class and how many children are
in each group. The program should then output how many whole
groups there will be in a sentence reading: The will be …. whole
groups.

Coding challenge 2: Write a program which asks the user their
name and how many days until their next birthday. The program
should then output a personalised sentence with a rough
approximation of the number of seconds until their next birthday.

For free Primary Computing resources please visit…	

	

Lesson 4 pupil sheet 1: Selection and
comparison operators

Conditional statements Comparison operators

If == Check is equal to
else != Checks if not equal to

elif (else if) > Checks if greater than
 < Checks if less than
 >= Checks if greater than

or equal to
 <= Checks if less than or

equal to

1.#Declare	
 name	
 variable	
 using	
 input	
 from	
 user	

2.name	
 =	
 raw_input	
 (“Hi,	
 What	
 is	
 your	
 name?”)	

3.print	
 “It	
 is	
 lovely	
 to	
 meet	
 you”,	
 name,	
 “.”	

4.	
 #	
 Declare	
 feeling	
 variable	
 using	
 number	
 input	
 from	

user	
 	

5.	
 feeling	
 =	
 input	
 (“How	
 are	
 you	
 feeling	
 today?	

Excited	
 =	
 1,	
 Happy	
 =	
 2,	
 Miserable	
 =	
 3,	
 Nervous	
 =	
 4”)	

6.	
 #	
 Use	
 conditional	
 statement	
 with	
 ‘equal	
 to’	

comparison	
 to	
 determine	
 which	
 response	
 is	
 given	
 	

7.	
 if	
 feeling	
 ==	
 1:	

8.	
 print	
 “Fantastic.	
 What	
 are	
 you	
 feeling	
 excited	

about?”	

9.	
 elif	
 feeling	
 ==	
 2:	

10.	
 print	
 “I	
 am	
 happy	
 too.	
 Yay”	

11.elif	
 feeling	
 ==	
 3:	

12.	
 print	
 “I	
 am	
 sorry	
 to	
 hear	
 that	
 you	
 are	
 miserable.	

How	
 can	
 I	
 cheer	
 you	
 up?”	

13.elif	
 feeling	
 ==	
 4:	

14.	
 print	
 “What	
 are	
 you	
 nervous	
 about?”	

	

	

For free Primary Computing resources please visit…	

	

Lesson 4 pupil sheet 2: Selection and
comparison operators

Programming a calculator:

1.num1	
 =	
 input	
 (“Please	
 enter	
 a	
 number”)	

2.num2	
 =	
 input	
 (“Please	
 enter	
 a	
 second	
 number”)	

3.if	
 num1	
 >	
 100:	

4.	
 print	
 “Your	
 first	
 number	
 is	
 greater	
 than	
 100”	

5.else:	

6.	
 print	
 “Your	
 first	
 number	
 is	
 less	
 than	
 100”	

7.if	
 num2	
 >	
 100:	

8.	
 	
 	
 print	
 “Your	
 second	
 number	
 is	
 greater	
 than	
 100”	

9.else:	

10.	
 print	
 “Your	
 second	
 number	
 is	
 less	
 than	
 100”	

11.	
 op	
 =	
 input	
 (“Select	
 an	
 operation:	
 1.	
 Add	
 2.	

Subtract	
 3.	
 Multiply”)	

12.if	
 op	
 ==	
 1:	

13.	
 add	
 =	
 num1	
 +	
 num2	

14.	
 print	
 add	

15.elif	
 op	
 ==	
 2:	

16.	
 sub	
 =	
 num1	
 –	
 num2	

17.	
 print	
 sub	

18.elif	
 op	
 ==	
 3:	

19.	
 mul	
 =	
 num1*num2	

20.	
 print	
 mul	
 	
 	

	

Coding Challenge: Can you program a French dictionary that
provides the user with a range of English words to chose from and
returns the translation in French?
	
 	

For free Primary Computing resources please visit…	

	

Final project 1: Artificial Intelligence

Project question: ‘Can you write a program to bring a

computer to life?’
Example ‘AI’ code:
1.print	
 "Hello,	
 my	
 name	
 is	
 Compu"	

2.name	
 =	
 raw_input("What	
 is	
 your	
 name?")	

3.print	
 "Well	
 it	
 is	
 nice	
 to	
 meet	
 you",	
 name	

day	
 =	
 raw_input	
 ("	
 What	
 day	
 is	
 it	
 today?”)	

4.print	
 "Thanks",	
 name,	
 "now	
 I	
 remember	
 it	
 is",	
 day,	
 "."	

5.today	
 =	
 input("So	
 are	
 you	
 going	
 to	
 school	
 today?	
 1	
 -­‐	
 yes	
 2	
 -­‐	
 no")	

6.if	
 today	
 ==	
 1:	

7.	
 	
 	
 	
 lesson	
 =	
 input("Are	
 you	
 studying	
 maths	
 today?	
 1	
 =	
 yes	
 2	
 =	
 no")	

8.	
 	
 	
 	
 if	
 lesson	
 ==	
 1:	

9.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "Great	
 I	
 like	
 maths,	
 I’ll	
 help!"	

10.	
 	
 	
 else:	

11.	
 	
 	
 	
 	
 	
 	
 print	
 "That’s	
 a	
 shame	
 as	
 I	
 like	
 maths"	

12.elif	
 today	
 ==	
 2:	

13.	
 	
 	
 print	
 "Oh	
 sorry	
 I	
 forgot	
 you	
 don't	
 go	
 to	
 school	
 on",	
 day	

14.	
 print	
 "Lets	
 play	
 a	
 game",	
 name,"."	

15.	
 number=input("I'm	
 thinking	
 of	
 a	
 number	
 between	
 1&10	
 and	
 you've	

got	
 to	
 guess	
 it.	
 What's	
 your	
 first	
 guess?")	

16.	
 if	
 number	
 ==	
 7:	

17.	
 	
 	
 	
 	
 	
 print	
 "Yay	
 you	
 guessed	
 it!"	

18.	
 elif	
 number	
 <	
 7:	

19.	
 	
 	
 	
 print	
 "Higher"	

20.elif	
 number	
 >	
 7:	

21.	
 	
 	
 	
 print	
 "Lower"	

22.	
 print	
 "I'll	
 give	
 you	
 one	
 more	
 guess"	

23.number1	
 =	
 input("Have	
 another	
 go?")	

24.if	
 number1	
 ==	
 7:	

25.	
 	
 	
 	
 print	
 "Yay	
 you	
 guessed	
 it!"	

26.elif	
 number1	
 <	
 7:	

27.	
 	
 	
 	
 print	
 "That's	
 too	
 low	
 it	
 was	
 7"	

28.elif	
 number1	
 >	
 7:	

29.	
 	
 	
 	
 print	
 "That's	
 too	
 high	
 it	
 was	
 7"

For free Primary Computing resources please visit…	

	

Final project 2: Text Adventure Game

Project question: Can you create and code a section

of a text adventure game?

1.	
 print	
 “Welcome	
 to	
 the	
 Dragon’s	
 Cave	
 Adventure”	

2.print	
 "You	
 wake	
 in	
 a	
 cave	
 and	
 can	
 see	
 a	
 dragon!"	

3.	
 print	
 “Luckily	
 it	
 appears	
 to	
 be	
 sleeping.”	

4.print	
 "You	
 look	
 around	
 for	
 a	
 way	
 out.	
 What	
 should	
 you	
 do?	
 Maybe	

you	
 could	
 climb	
 over	
 the	
 dragon's	
 tail"	

5.choice1	
 =	
 input("	
 Should	
 you	
 1	
 -­‐	
 Explore	
 the	
 cave	
 more?	
 2	
 -­‐	
 Climb	

over	
 the	
 dragon's	
 tail?")	

6.if	
 choice1	
 ==	
 1:	

7.	
 	
 	
 	
 print	
 "You	
 look	
 into	
 the	
 darkness	
 of	
 the	
 cave	
 but	
 it	
 is	
 so	

pitch	
 black	
 you	
 can't	
 see	
 a	
 thing!"	

8.elif	
 choice1	
 ==	
 2:	

9.	
 	
 	
 	
 print	
 "You	
 try	
 gently	
 climbing	
 over	
 the	
 dragon's	
 tail	
 but	
 it	

lets	
 out	
 a	
 large	
 huff,	
 smokes	
 a	
 little	
 and	
 you	
 decide	
 climbing	
 his	

tail	
 isn't	
 a	
 very	
 good	
 idea!"	

10.print	
 "The	
 dragon	
 shuffles	
 and	
 now	
 you	
 can	
 get	
 past	
 and	
 out	
 the	

cave	
 but	
 just	
 then	
 you	
 hear	
 a	
 noise	
 coming	
 from	
 the	
 darkness	
 to	
 your	

right.	
 It	
 sounds	
 like	
 someone	
 calling	
 your	
 name."	

11.choice2	
 =	
 input("Do	
 you	
 1	
 -­‐	
 Go	
 to	
 investigate	
 the	
 noise	
 2	
 -­‐	
 Try	

and	
 sneak	
 past	
 the	
 dragon?")	

12.if	
 choice2	
 ==	
 1:	

13.	
 	
 	
 choice3	
 =	
 input("You	
 go	
 to	
 investigate	
 and	
 the	
 noise	
 stops	
 but	

you	
 can	
 see	
 a	
 light.	
 Do	
 you	
 continue	
 1	
 -­‐	
 Yes	
 2	
 -­‐	
 No")	

14.	
 	
 	
 	
 if	
 choice3	
 ==	
 1:	

15.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "You	
 get	
 deeper	
 into	
 the	
 cave	
 and	
 see	
 the	
 light	
 is	

actually	
 a	
 passage	
 to	
 the	
 outside	
 where	
 your	
 friend	
 is	
 calling	
 your	

name"	

16.	
 	
 	
 	
 elif	
 choice3	
 ==	
 2:	

17.	
 	
 	
 	
 	
 	
 	
 	
 print	
 "You	
 turn	
 around	
 but	
 as	
 you	
 do	
 you	
 are	
 met	
 by	
 the	

dragon...	
 GAME	
 OVER"	

18.elif	
 choice2	
 ==	
 2:	

19.	
 	
 	
 	
 print	
 "Slowly	
 you	
 edge	
 past	
 the	
 dragon	
 desperate	
 not	
 to	
 make	

a	
 sound!"	

20.print	
 "You	
 emerge	
 from	
 the	
 cave	
 and	
 see	
 your	
 friend.	
 What	
 a	
 lucky	

escape!"	

