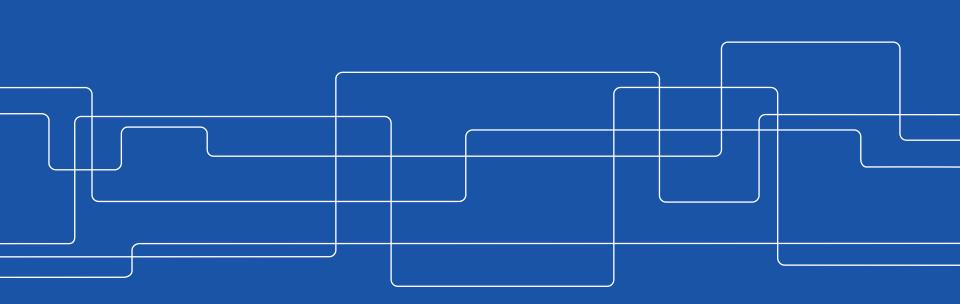


Structured Model Reduction of Networks of Passive Systems

Henrik Sandberg

Department of Automatic Control KTH, Stockholm, Sweden

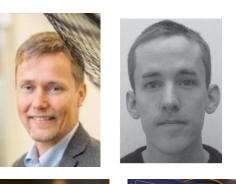


Joint Work With...

Bart Besselink Univ. of Groningen

Karl Henrik Johansson Christopher Sturk KTH Automatic Control

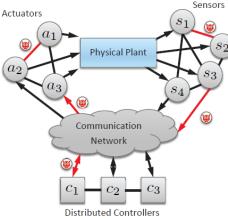
Luigi Vanfretti Yuwa Chompoobutrgool KTH Power Systems



Outline

- Introduction
- Part I: Clustering-based model reduction of networked passive systems
- Part II: Coherency-independent structured model reduction of power systems
- Summary

Motivation: Networked Systems

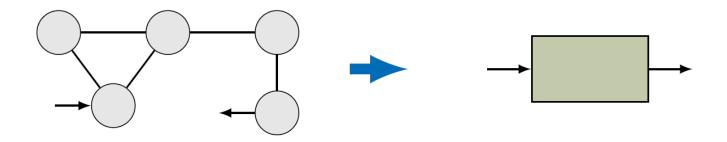


Challenges

- Dynamics dependent on subsystems and interconnection
- Large-scale interconnection complicates analysis, simulation, and synthesis

Goal. Model reduction of large-scale networked systems

Related Work



General methods

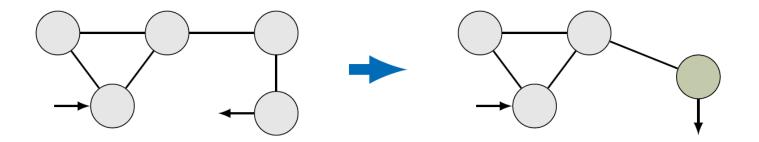
- Balanced truncation (Moore, Glover,...)
- Hankel-norm approximation (Glover,...)
- Moment matching/Krylov-subspace methods (Antoulas, Astolfi, Benner,...)

Related Work

Reduction of subsystems, i.e., structured reduction

- Controller reduction/closed-loop model reduction (Anderson, Zhou, De Moor, ...)
- Structured balanced truncation (Beck, Van Dooren, Sandberg,...)
- Example in Part II

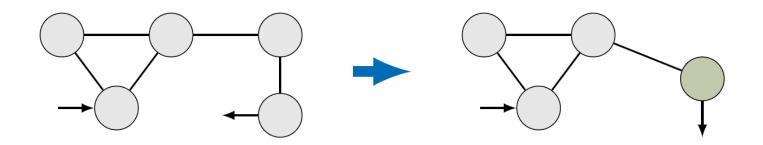
Related Work



Clustering-based model reduction

- Time-scale separation (Chow, Kokotovic,...)
- Graph-based clustering (Ishizaki, Monshizadeh, Trentelman...)
- Structured balanced truncation (Besselink,...)
- Example in Part I and II

Part I: Clustering-based model reduction of networked passive systems



Problem and results

- Subsystems with identical higher-order dynamics
- Controllability/observability-based cluster selection
- A priori H_{∞} -error bound and preserved synchronization (cf. balanced truncation)

Reference. Besselink, Sandberg, Johansson: "Clustering-Based Model Reduction of Networked Passive Systems". IEEE Trans. on Automatic Control, 61:10, pp. 2958--2973, October 2016.

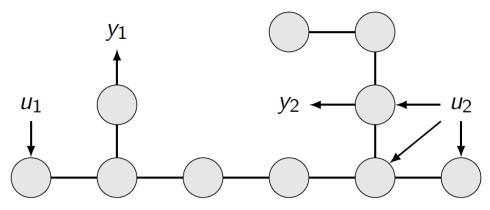
Modeling y_1 y_2 y

1. *Identical* subsystem dynamics

 Σ_i : $\dot{x}_i = Ax_i + Bv_i$, $z_i = Cx_i$, $x_i \in \mathbb{R}^n$, $v_i, z_i \in \mathbb{R}^m$

- 2. Interconnection topology with $w_{ij} \ge 0$ $v_i = \sum_{j=1, j \ne i}^{\bar{n}} w_{ij}(z_j - z_i) + \sum_{j=1}^{\bar{m}} g_{ij} u_j$
- 3. External outputs $y_i = \sum_{j=1}^{\bar{n}} h_{ij} z_j$

Assumptions



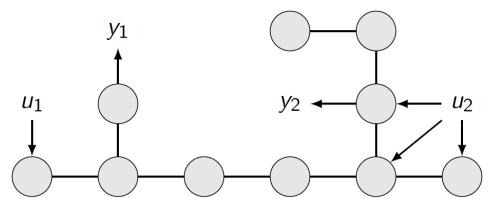
A1. The subsystems Σ_i are *passive* with storage function $V_i(x_i) = \frac{1}{2}x_i^T Q x_i$ (supply_i = $v_i^T z_i$)

A2. The graph $G = (\mathcal{V}, \mathcal{E})$ with graph Laplacian L is such that

- a) The underlying undirected graph is a tree
- b) *G* contains a directed rooted spanning tree

$$(L)_{ij} = \begin{cases} -w_{ij}, & i \neq j \\ \sum_{j=1, j \neq i}^{\bar{n}} w_{ij}, & i = j \end{cases}$$

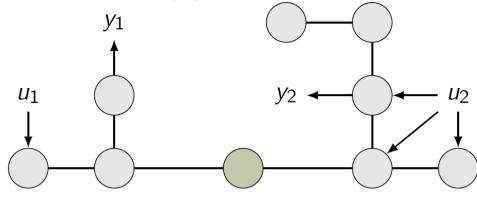
Network Synchronization



Lemma. Under A1 and A2, the subsystems of Σ synchronize for u = 0, i.e., for all $(i, j) \in \mathcal{V} \times \mathcal{V}$,

$$\lim_{t\to\infty} \left(x_i(t) - x_j(t) \right) = 0$$

Problem and Approach

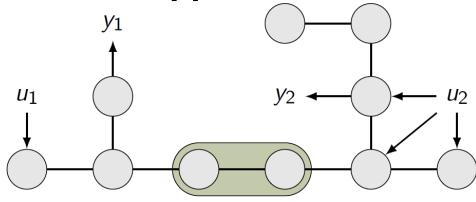


$$\Sigma: \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u\\ y = (H \otimes C)x \end{cases}$$

Goal. Approximate the input-output behavior of Σ by a clustering-based reduced-order system $\hat{\Sigma}$

$$\hat{\Sigma}: \begin{cases} \dot{\xi} = (I \otimes A - \hat{L} \otimes BC)\xi + (\hat{G} \otimes B)u\\ \hat{y} = (\hat{H} \otimes C)\xi \end{cases}$$

Problem and Approach

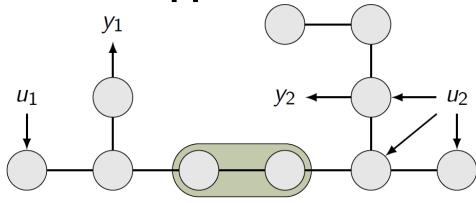


$$\Sigma: \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u\\ y = (H \otimes C)x \end{cases}$$

Wish list for approximation method

- 1. Preserve synchronization and passivity
- 2. Identify suitable clusters
- 3. Provide a priori bound on $||y \hat{y}||$
- 4. Be scalable in system size (#nodes = \overline{n} , state dim. $\Sigma = n \times \overline{n}$)

Problem and Approach

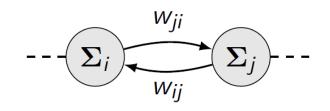


$$\Sigma: \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u \\ y = (H \otimes C)x \end{cases}$$

Idea. Find neighboring subsystems Σ_i that are

- hard to steer individually from the inputs
- hard to distinguish from the outputs

Edge Laplacian *L*_e



Lemma. Consider L and let E be an oriented incidence matrix of the underlying undirected graph. Then,

$$L = FE^{\mathrm{T}} \in \mathbb{R}^{\bar{n} \times \bar{n}}$$

Lemma. Under A2, the edge Laplacian

$$L_{e} = E^{T}F \in \mathbb{R}^{(\bar{n}-1) \times (\bar{n}-1)}$$

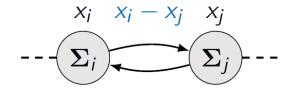
has all eigenvalues in the open right-half complex plane

$$E = [* e_i - e_j *], \quad F = [* w_{ij}e_i - w_{ji}e_j *]$$

$$\# \text{ nodes} = \bar{n}$$

15

Edge Dynamics and Controllability



Edge system in coordinates $x_e = (E^T \otimes I)x$ $\Sigma_e : \dot{x}_e = (I \otimes A - L_e \otimes BC)x_e + (E^T G \otimes B)u, y_e = (H_e \otimes C)x_e$



Edge controllability gramian Pe characterizes controllability

$$x_{e}^{T} P_{e}^{-1} x_{e} = \inf_{\{u \mid 0 \rightsquigarrow x_{e}\}} \int_{-\infty}^{0} |u(t)|^{2} dt$$

Challenges

- P_e dependent on subsystems and interconnection topology
- Role of individual edges not apparent from P_e

Edge Dynamics and Controllability

Theorem. The edge controllability Gramian P_e can be bounded as $P_e \preccurlyeq \Pi^c \otimes Q^{-1}$ if there exists $\Pi^c = \text{diag}\{\pi_1^c, \dots, \pi_{\bar{n}-1}^c\} \succcurlyeq 0$ such that $L_e \Pi^c + \Pi^c L_e^T - E^T G G^T E \succcurlyeq 0$

Properties

- Gramian can be defined as Σ_e is asymptotically stable
- $\Pi_c \in \mathbb{R}^{(\bar{n}-1) \times (\bar{n}-1)}$ only dependent on interconnection properties
- Measure of controllability for each individual edge

Edge Singular values

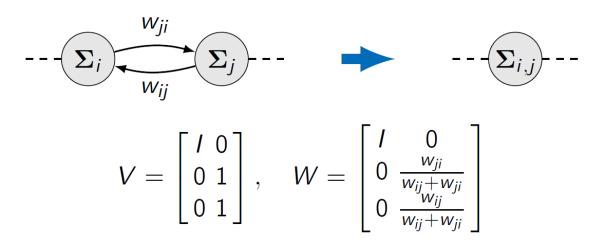
$$\begin{split} \textbf{Generalized edge controllability Gramian} \\ \Pi^{c} = \text{diag}\{\pi_{1}^{c}, \ldots, \pi_{\bar{n}-1}^{c}\}, \quad \textit{L}_{e}\Pi^{c} + \Pi^{c}\textit{L}_{e}^{T} - \textit{E}^{T}\textit{G}\textit{G}^{T}\textit{E} \succcurlyeq 0 \end{split}$$

$$\begin{split} & \textbf{Generalized edge observability Gramian} \\ & \Pi^{o} = \text{diag}\{\pi_{1}^{o}, \ldots, \pi_{\bar{n}-1}^{o}\}, \quad \textit{L}_{e}^{T}\Pi^{o} + \Pi^{o}\textit{L}_{e} - \textit{F}^{T}\textit{H}^{T}\textit{H}\textit{F} \succcurlyeq 0 \end{split}$$

Generalized squared edge singular values $(\mathcal{L}_{e}^{-1})_{ii}^{2}\pi_{i}^{c}\pi_{i}^{o} \geq (\mathcal{L}_{e}^{-1})_{i+1,i+1}^{2}\pi_{i+1}^{c}\pi_{i+1}^{o} \geq 0, \quad i = 1, \dots, \bar{n}-1$

Note. Minimize trace of Π_c and Π_o to obtain unique Gramians and small singular values

One-step Clustering



Reduced-order system

Petrov-Galerkin projection of graph Laplacian

$$\begin{split} \hat{\Sigma}_{\bar{n}-1} : \ \dot{\xi} &= (I \otimes A - \hat{L} \otimes BC)\xi + (\hat{G} \otimes B)u, \ \hat{y} = (\hat{H} \otimes C)\xi \\ \text{with} \quad \hat{L} &= W^{\mathrm{T}}LV, \quad \hat{G} = W^{\mathrm{T}}G, \quad \hat{H} = HV \end{split}$$

One-step Clustering

	[0]		[]	0
V =	01,	W =	0	$\frac{w_{ji}}{w_{ij}+w_{ji}}$
			0	$\frac{w_{ij}}{w_{ij}+w_{ji}}$

Theorem. Consider Σ and the one-step clustered Σ̂_{n-1}. Then,
1. The edge controllability Gramian of Σ̂_{n-1} satisfies
P̂_e ≼ Π̂^c ⊗ Q⁻¹, Π̂^c = diag{π^c₁,...,π^c_{n-2}}
2. The edge observability Gramian of Σ̂_{n-1} satisfies

 $\hat{Q}_{\mathsf{e}} \preccurlyeq \hat{\Pi}^{\mathsf{o}} \otimes Q, \quad \hat{\Pi}^{\mathsf{o}} = \mathsf{diag}\{\pi_{1}^{\mathsf{o}}, \dots, \pi_{\bar{n}-2}^{\mathsf{o}}\}$

Opens up for repeated one-step clustering!

Performance Guarantees

Theorem. The subsystems of $\hat{\Sigma}_{\bar{k}}$ synchronize for u = 0, i.e., $\lim_{t \to \infty} (\xi_i(t) - \xi_j(t)) = 0, \qquad (i,j) \in \hat{\mathcal{V}} \times \hat{\mathcal{V}}$

Theorem. For trajectories $x(\cdot)$ of Σ and $\xi(\cdot)$ of $\hat{\Sigma}_{\bar{k}}$ for the same input $u(\cdot)$ and x(0) = 0, $\xi(0) = 0$, the output error is bounded as

$$\|y - \hat{y}\|_{2} \le 2 \left(\sum_{l=\bar{k}}^{\bar{n}-1} (L_{e}^{-1})_{ll} \sqrt{\pi_{l}^{c} \pi_{l}^{o}} \right) \|u\|_{2}$$

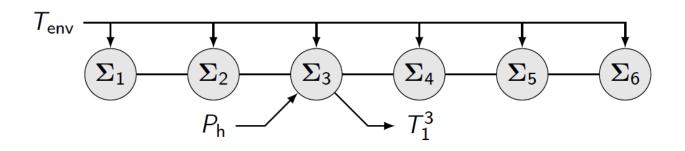
Generalized edge singular values

Summary So Far

Wish list for approximation method

- 1. Preserve synchronization and passivity
 - OK
- 2. Identify suitable clusters
 - Use generalized edge singular values
- 3. Provide a priori bound on $||y \hat{y}||$
 - Generalized edge singular values provide bounds
- 4. Be scalable in system size (#nodes = \overline{n} , state dim. $\Sigma = n \times \overline{n}$)
 - Solve two LMIs of size n
 (independent of subsystem size n) [and possibly one Riccati equation of size n to verify passivity]

Example: Thermal Model of a Corridor of Six Rooms



Subsystems: thermal dynamics within a room

$$C_1 \dot{T}_1^i = R_{\text{int}}^{-1} (T_2^i - T_1^i) - R_{\text{out}}^{-1} T_1^i + P_i$$

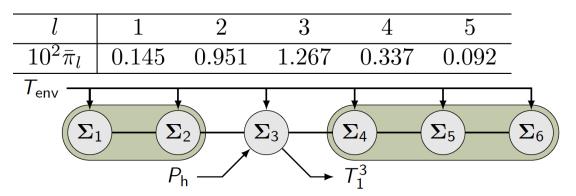
$$C_2 \dot{T}_2^i = R_{\text{int}}^{-1} (T_1^i - T_2^i)$$

Edges: thermal resistances of walls, $u_j = [P_h \ T_{env}]^T$ $P_i = \sum_{j=1, j \neq i}^{\bar{n}} R_{wall}^{-1} (T_1^j - T_1^j) + \sum_{j=1}^{\bar{m}} g_{ij} u_j$

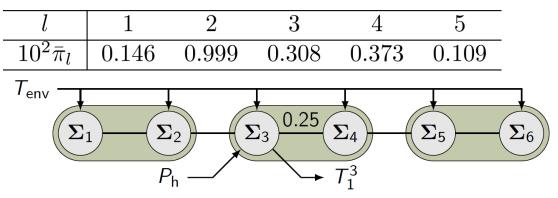
Reduction from $\bar{n} = 6$ to $\bar{k} = 3$

Example: Thermal Model of a Corridor of Six Rooms

Edge singular values: $\bar{\pi}_l := (L_e^{-1})_{ll} \sqrt{\pi_l^c \pi_l^o}$

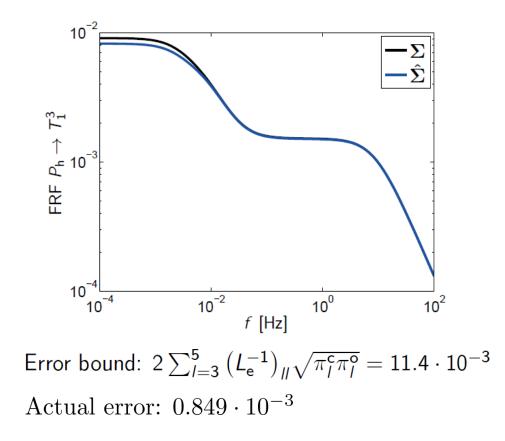


75% reduction of wall 3 resistance



Example: Thermal Model of a Corridor of Six Rooms

Frequency response function from input P_h to output T_1^3



Summary Part I

- Clustering-based reduction procedure
- Edge controllability and observability properties
- Preservation of synchronization and error bound

Possible extensions

- Arbitrary network topology
- Non-identical subsystems
- Nonlinear networked systems
- Lower bounds

Reference. Besselink, Sandberg, Johansson: "Clustering-Based Model Reduction of Networked Passive Systems". IEEE Trans. on Automatic Control, 61:10, pp. 2958--2973, October 2016

Part II: Coherency-independent structured model reduction of power systems

Problem and results

- Model reduction of nonlinear large-scale power system
- Clustering, linearization, and reduction of external area
- Application of structured balanced truncation

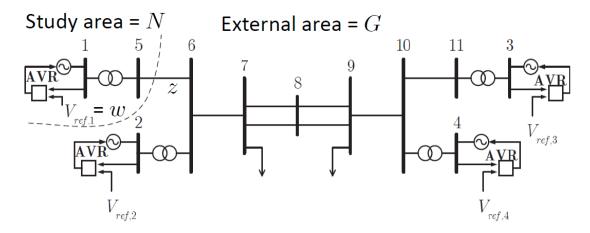
Reference. Sturk, Vanfretti, Chompoobutrgool, Sandberg: "Coherency-Independent Structured Model Reduction of Power Systems". IEEE Trans. on Power Systems, 29:5, pp. 2418--2426, September 2014.

Background

- Increasingly interconnected power systems
- New challenges for dynamic simulation, operation, and control of large-scale power systems
- Coherency-based power system model reduction not always suitable

Approach

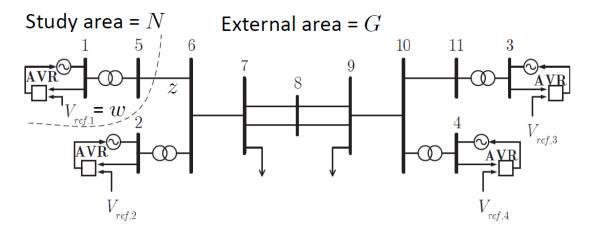
Divide system into a study area and an external area



Objective: Reduce the external area so that the effect of the approximation error in the study area is as small as possible

Approach

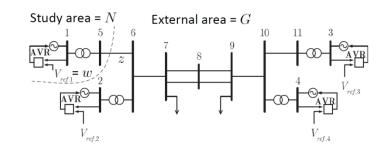
Divide system into a study area and an external area



- Study area *N* often set by utility ownership or market area. Nonlinear model will be retained here
- External area *G* denotes other utilities. Will be linearized and reduced here
- Insight from structured/closed-loop model reduction: Reduction of *G* should depend on *N*!

Four-Step Procedure

1. Define the model (DAE)



$$\dot{x} = f(x, x_{\text{alg}}, u)$$

$$0 = g(x, x_{\text{alg}}, u)$$

$$\dot{x}^{N} = f^{N} \left(x^{N}, x^{N}_{\text{alg}}, u^{G} \right)$$

$$\dot{x}^{N} = f^{N} \left(x^{N}, x^{N}_{\text{alg}}, u^{N}_{1}, u^{N}_{2} \right)$$

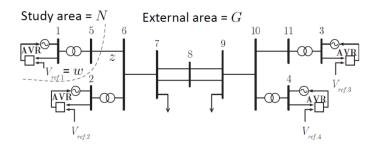
$$0 = g^{N} \left(x^{N}, x^{N}_{\text{alg}}, u^{N}_{1}, u^{N}_{2} \right)$$

2. Linearizing

$$\begin{pmatrix} \dot{x}^{G} \\ 0 \end{pmatrix} = \begin{pmatrix} A_{11}^{G} & A_{12}^{G} \\ A_{21}^{G} & A_{22}^{G} \end{pmatrix} \begin{pmatrix} x^{G} \\ x_{alg}^{G} \end{pmatrix} + \begin{pmatrix} B_{1}^{G} \\ B_{2}^{G} \end{pmatrix} u^{G} \qquad x_{alg}^{G} = - \\ \begin{pmatrix} \dot{x}^{N} \\ 0 \end{pmatrix} = \begin{pmatrix} A_{11}^{N} & A_{12}^{N} \\ A_{21}^{N} & A_{22}^{N} \end{pmatrix} \begin{pmatrix} x^{N} \\ x_{alg}^{N} \end{pmatrix} + \begin{pmatrix} B_{11}^{N} & B_{12}^{N} \\ B_{21}^{N} & B_{22}^{N} \end{pmatrix} \begin{pmatrix} u_{1}^{N} \\ u_{2}^{N} \end{pmatrix}.$$

$$x_{\text{alg}}^{G} = -A_{22}^{G^{-1}} \left(A_{21}^{G} x^{G} + B_{2}^{G} u^{G} \right)$$
$$x_{\text{alg}}^{N} = -A_{22}^{N^{-1}} \left(A_{21}^{N} x^{N} + B_{21}^{N} u_{1}^{N} + B_{22}^{N} u_{2}^{N} \right)$$

Four-Step Procedure



- 3. Structured/closed-loop model reduction of external area model, $G \rightarrow \hat{G}$ (details next)
- 4. Nonlinear complete reduced model

$$\begin{split} \dot{x}^{\hat{G}} &= A^{\hat{G}} x^{\hat{G}} + B^{\hat{G}} u^{\hat{G}} \\ u_{2}^{N} &= y^{\hat{G}} = C^{\hat{G}} x^{\hat{G}} + D^{\hat{G}} u^{\hat{G}} \\ \dot{x}^{N} &= f^{N} \left(x^{N}, x^{N}_{\text{alg}}, u^{N}_{1}, u^{N}_{2} \right) \\ 0 &= g^{N} \left(x^{N}, x^{N}_{\text{alg}}, u^{N}_{1}, u^{N}_{2} \right) \\ u^{\hat{G}} &= y^{N}_{2} = M^{N} x^{N}_{\text{alg}}. \end{split}$$

Reduced linear external area

Unreduced nonlinear study area

Structured Model Reduction of G

(Following Schelfhout/De Moor, Vandendorpe/Van Dooren, Sandberg/Murray): $(N, G) = \Sigma(A, B, C, D)$

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0$$
$$P = \begin{bmatrix} P_{N} & P_{NG} \\ P_{NG}^{T} & P_{G} \end{bmatrix}, \qquad Q = \begin{bmatrix} Q_{N} & Q_{NG} \\ Q_{NG}^{T} & Q_{G} \end{bmatrix}$$

Local balancing of G only:

 $\Sigma_G = T_G^{-1} P_G T_G^{-T} = T_G^T Q_G T_G$

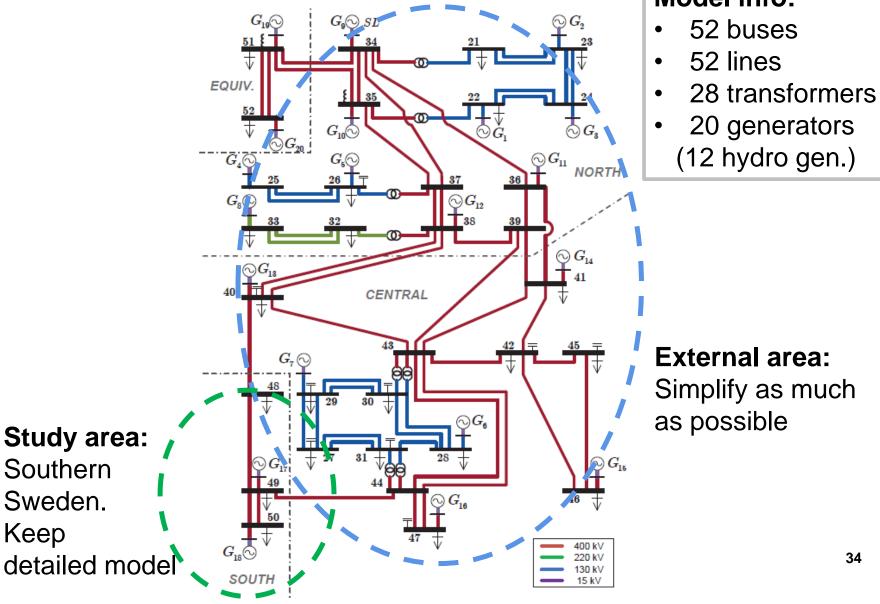
Structured (Hankel) singular values of *G*:

$$\Sigma_G = \operatorname{diag}\{\sigma_{G,1}, \sigma_{G,2}, \dots, \sigma_{G,n}\}$$

Truncation or singular perturbation of G yields \hat{G}

Note 1. \hat{G} depends on study area *N* **Note 2.** Error bound and stability guarantee require generalized Gramians (LMIs) [Sandberg/Murray]

Model Reduction of Non-Coherent Areas: KTH-Nordic32 System Model info:



Model Reduction of Non-Coherent Areas: KTH-Nordic32 System

- External area *G* has 246 dynamic states.
- Reduced external area \hat{G} has 17 dynamic states

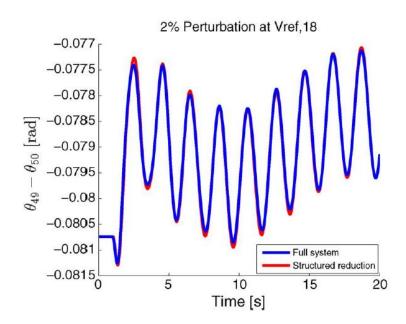


Fig. 8. Responses of $\theta_{49} - \theta_{50}$ after a 2% perturbation to $V_{ref,18}$.

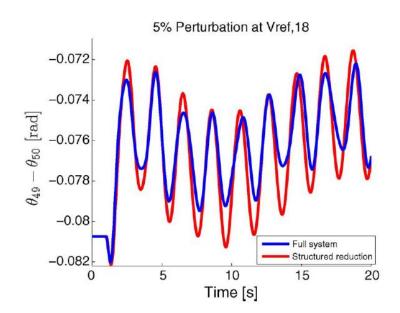


Fig. 9. Responses of $\theta_{49} - \theta_{50}$ after a 5% perturbation to $V_{ref,18}$.

Model Reduction of Non-Coherent Areas: KTH-Nordic32 System

- External area *G* has 246 dynamic states.
- Reduced external area \hat{G} has 17 dynamic states

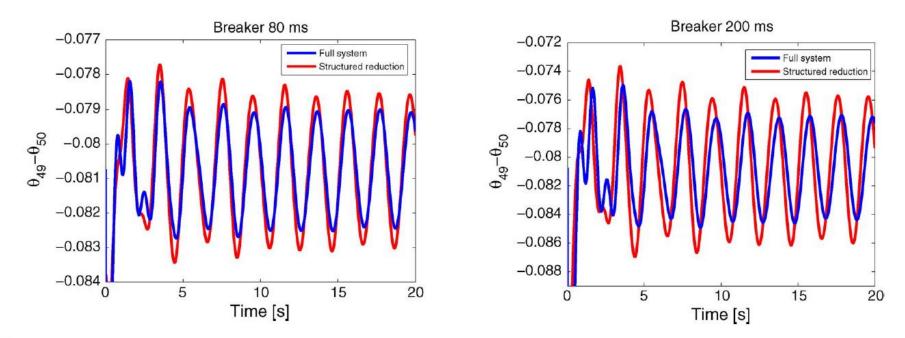


Fig. 12. Responses of $\theta_{49} - \theta_{50}$ after opening a line for 80 ms.

Fig. 13. Responses of $\theta_{49} - \theta_{50}$ after opening a line for 200 ms.

What If Open-Loop Reduction Used to Simplify External Area *G*?

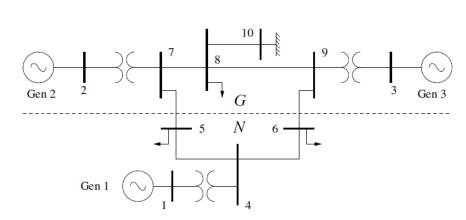


Fig. 3. The WSCC 3-machine, 9-bus system with an infinite bus.

[Sturk *et al.:* "Structured Model Reduction of Power Systems", ACC 2012]

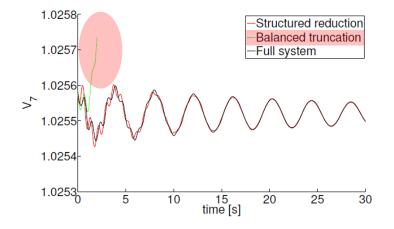


Fig. 5. Transients of V_7 at the tie-line bus with a third order system \hat{G} .

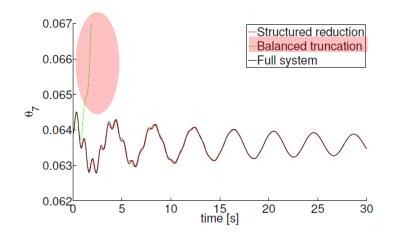


Fig. 6. Transients of θ_7 at the tie-line bus with a third order system \hat{G} . Structured model reduction and ordinary balanced truncation are compared with the full system.

Summary Part II

- Clustering, linearization, and reduction of external power system area
- Application of structured balanced truncation: Closed-loop behavior matters!
- Verification on a model of the Nordic grid

Possible extensions

 Nonlinear model reduction with error bounds and stability guarantees

Reference. Sturk, Vanfretti, Chompoobutrgool, Sandberg: "Coherency-Independent Structured Model Reduction of Power Systems". IEEE Trans. on Power Systems, 29:5, pp. 2418--2426, September 2014.

Concluding Remarks

- Model reduction of networked systems. Dynamics dependent on subsystems and interconnection. **Many applications!**
- Model reduction methods could reduce topology and/or dynamics

Challenge. Many heuristics possible. We want rigorous scalable methods with performance guarantees.

- Balanced truncation and Hankel-norm approximation do not preserve network structures very well
- LMIs are very expensive to solve [~ $\mathcal{O}(n^{5.5})$]

Thank You!

Sponsors

Vetenskapsrådet

Swedish Foundation for Strategic Research

Contact

Henrik Sandberg KTH Department of Automatic Control hsan@kth.se people.kth.se/~hsan/