
Kubernetes
the Very Hard Way

Laurent Bernaille

Staff Engineer, Infrastructure

@lbernail



lbernail

Datadog

Over 350 integrations
Over 1,200 employees
Over 8,000 customers
Runs on millions of hosts
Trillions of data points per day

10000s hosts in our infra
10s of k8s clusters with 50-2500 nodes
Multi-cloud
Very fast growth



lbernail

Why Kubernetes?

Dogfooding

  Improve k8s integrations

Immutable

  Move from Chef

 

Multi Cloud

  Common API

Community

   Large and Dynamic

 



The very hard way?



It was much harder



lbernail

This talk is about the fine print

“Of course, you will need a HA master setup”

“Oh, and yes, you will have to manage your certificates”

“By the way, networking is slightly more complicated, look 
into CNI / ingress controllers”



lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Ingresses: Getting data in the cluster



lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Ingresses: Getting data in the cluster



Resilient and Scalable 
Control Plane



lbernail

Kube 101 Control Plane

kubelet kubectl

etcd

apiserver

controllersscheduler

Master

in-cluster 
apps

Service



lbernail

Making it resilient
etcd

apiserver

controllersscheduler

kubelet kubectl

Master

etcd

apiserver

controllersscheduler

Master

etcd

apiserver

controllersscheduler

Master

LoadBalancer

in-cluster 
apps

Service



lbernail

Kube 101 Control Plane

kubelet kubectl

etcd

apiserver

controllersscheduler

Master

in-cluster 
apps

Service



lbernail

apiserver

controllersscheduler

kubelet kubectl

Master
apiserver

controllersscheduler

Master
apiserver

controllersscheduler

Master

LoadBalancer

in-cluster 
apps

Service

Separate etcd nodes
etcd

etcd



lbernail

apiserver

controllersscheduler

kubelet kubectl

Master
apiserver

controllersscheduler

Master
apiserver

controllersscheduler

Master

LoadBalancer

in-cluster 
apps

Service

Single active Controller/scheduler
etcd

etcd



lbernail

apiserver

controllers

kubelet kubectl

apiserver apiserver

LoadBalancer

in-cluster 
apps

Service

Split scheduler/controllers

controllers

schedulers

schedulers

etcd



lbernail

apiserver

controllers

kubelet kubectl

apiserver apiserver

LoadBalancer

in-cluster 
apps

Service

Split etcd

controllers

schedulers

schedulers

etcd etcd 
events



lbernail

apiserver

controllers

kubelet kubectl

apiserver apiserver

LoadBalancer

in-cluster 
apps

Service

Sizing the control plane

controllers

schedulers

schedulers

2x (3 or 5 nodes)
disk + net ios

X nodes
RAM + net ios

2 nodes
CPU

2 nodes
CPU

etcd etcd 
events



lbernail

1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Ingresses: Getting data in the cluster

What happens after “Kube 101”



Kubernetes and 
Certificates



lbernail

From “the hard way”



lbernail

“Our cluster broke after ~1y”



lbernail

Certificates in Kubernetes

● Kubernetes uses certificates everywhere
● Very common source of incidents
● Our Strategy: Rotate all certificates daily



lbernail

Certificate management

etcd

apiserver

Vault

etcd PKIPeer/Server cert

Etcd Client cert



lbernail

Certificate management

etcd

apiserver

controllers

scheduler

Vault

etcd PKIPeer/Server cert

Etcd Client cert
kube PKI

Apiserver/kubelet client cert

Controller client cert

Scheduler client cert

kubelet Kubelet client/server cert



lbernail

Certificate management

etcd

apiserver

controllers

scheduler

Vault

etcd PKIPeer/Server cert

Etcd Client cert
kube PKI

Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

In-cluster 
app

SA token

kubelet Kubelet client/server cert



lbernail

Certificate management

etcd

apiserver

controllers

scheduler

apiservice
webhook...

Vault

etcd PKIPeer/Server cert

Etcd Client cert

apiservice PKI

Apiservice cert (proxy/webhooks)

kube PKI
Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

In-cluster 
app

SA token

kubelet Kubelet client/server cert



lbernail

Certificate management

etcd

apiserver

controllers

scheduler

apiservice
webhook...

Vault

etcd PKIPeer/Server cert

Etcd Client cert

apiservice PKI

Apiservice cert (proxy/webhooks)

kube PKI
Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

OIDC 
provider

kubectl

OIDC auth

In-cluster 
app

SA token

kubelet Kubelet client/server cert



Exception ?
Incident...



lbernail

Kubelet: TLS Bootstrap

apiserver

controllers
Vault

kube PKI

kube kv3- Get signing key

admin

1- Create Bootstrap token

2- Add Bootstrap token to vault



lbernail

Kubelet: TLS Bootstrap

apiserver

controllers
Vault

kube PKI

kube kv

kubelet

5- Verify RBAC for CSR creator
6- Sign certificate 

1- Get Bootstrap token

2- Authenticate with token
4- Create CSR

7- Download certificate
8- Authenticate with cert
9- Register node 

3- Verify Token and map groups



lbernail

Kubelet certificate issue
1. One day, some Kubelets were failing to start or took 10s of minutes
2. Nothing in logs
3. Everything looked good but they could not get a cert
4. Turns out we had a lot of CSRs in flight
5. Signing controller was having a hard time evaluating them all

CSR resources in the cluster
Lower is better!



lbernail

Why?
Kubelet Authentication
● Initial creation: bootstrap token, mapped to group “system:bootstrappers”
● Renewal: use current node certificate, mapped to group “system:nodes“

Required RBAC permissions
● CSR creation
● CSR auto-approval

CSR creation CSR auto-approval

system:bootstrappers OK OK

system:nodes OK



Exception 2?
Incident 2...



lbernail

Temporary solution
apiserver

webhook

Vault

kube kv
Get cert and key

admin

Create webhook with 
self-signed cert as CA

Add self-signed cert + key to Vault

One day, after ~1 year
● Creation of resources started failing (luckily only a Custom Resource)
● Cert had expired...



lbernail

Take-away
● Rotate server/client certificates 
● Not easy

But, “If it’s hard, do it often”
> no expiration issues anymore



Impact of 
Certificate rotation



Apiserver 
certificate rotation



lbernail

Impact on etcd
apiserver restarts

etcd slow queries

etcd traffic

We have multiple apiservers
We restart each daily

Significant etcd network impact
(caches are repopulated)

Significant impact on etcd performances



Impact on Load-balancers
apiserver restarts

ELB surge queue Significant impact on LB as connections are reestablished

Mitigation: increase queues on apiservers
  net.ipv4.tcp_max_syn_backlog
  net.core.somaxconn



lbernail

Impact on apiserver clients
apiserver restarts

coredns memory usage

● Apiserver restarts
● clients reconnect and refresh their cache

> Memory spike for impacted apps

No real mitigation today



lbernail

Impact on traffic balance

Number of connections / traffic very unbalanced
Because connections are very long-lived

More clients => Bigger impact clusterwide

15MB/s

2.5MB/s

2300 connections

300 connections



lbernail

Why? Simple simulation

Simulation for 48h
● 5 apiservers
● 10000 connections (4 x 2500 nodes)
● Every 4h, one apiserver restarts
● Reconnections evenly dispatched

Cause
● Cloud TCP load-balancers use round-robin
● Long-lived connections
● No rebalancing



Kubelet certificate 
rotation



Pod graceful termination
apiserver

kubelet containerd

admin or 
controller Delete pod

Stop Container
with timeout 
“terminationGracePeriodSeconds”

container

Send SIGTERM
After timeout, send SIGKILL



Restarts impact graceful termination

apiserver

containerd

admin or 
controller Delete pod

container

Send SIGTERM
After timeout, or Context Cancelled
send SIGKILL

Kubelet restarts end graceful termination
Fixed upstream
“Do not SIGKILL container if container stop is cancelled”
https://github.com/containerd/cri/pull/1099

kubelet

https://github.com/containerd/cri/pull/1099


Impact on pod readiness

Issue upstream
“pod with readinessProbe will be not ready when kubelet restart”
https://github.com/kubernetes/kubernetes/issues/78733

kubelet restarts on “system” nodes (coredns + other services)

coredns endpoints NotReady

On kubelet restart
● Readiness probes marked as failed
● Pods removed from service endpoints
● Requires readiness to succeed again

https://github.com/kubernetes/kubernetes/issues/78733


lbernail

Take-away
Restarting components is not transparent

It would be great if
○ Components could transparently reload certs (server & client)
○ Clients could wait 0-Xs to reconnect to avoid thundering herd
○ Reconnections did not trigger memory spikes
○ Cloud TCP load-balancers supported least-conn algorithm
○ Connections were rebalanced (kill them after a while?)



lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Ingresses: Getting data in the cluster



Efficient 
networking



lbernail

Throughput
Trillions of data points daily

Scale
1000-2000 nodes clusters

Network challenges

Latency
End-to-end pipeline 

Topology
Multiple clusters
Access from standard VMs



Giving pods IPs & 
Routing them



lbernail

From “the Hard Way”

node IP

Pod CIDR for this node



lbernail

Small cluster? Static routes

Node 1

IP: 192.168.0.1
Pod CIDR: 10.0.1.0/24

Routes (local or cloud provider)
10.0.1.0/24 => 192.168.0.1
10.0.2.0/24 => 192.168.0.2

Node 2

IP: 192.168.0.2
Pod CIDR: 10.0.2.0/24

Limits
local: nodes must be in the same subnet
cloud provider: number of routes



lbernail

Mid-size cluster? Overlay

Limits
Overhead of the overlay
Scaling route distribution (control plane)

Node 1

IP: 192.168.0.1
Pod CIDR: 10.0.1.0/24

Node 2

IP: 192.168.0.2
Pod CIDR: 10.0.2.0/24

VXLAN VXLAN
Tunnel traffic between hosts
Examples: Calico, Flannel



lbernail

Large cluster with a lot of traffic?
Native pod routing

Performance

Datapath: no overhead
Control plane: simpler

Addressing

Pod IPs are accessible from
● Other clusters
● VMs



lbernail

In practice

On premise

BGP
Calico
Kube-router

Macvlan 

AWS

Additional IPs on ENIs
AWS EKS CNI plugin
Lyft CNI plugin 
Cilium ENI IPAM

GCP

IP aliases



lbernail

How it works on AWS

eth1

agent Pod 1 Pod 2

kubelet

cni

containerd
CRI

CNI

eth0

Attach ENI
Allocate IPs

Crea
te 

ve
th

ip 1
ip 2
ip 3

Routing rule
“From IP1, use eth1”

Routing

eth0
ip 1



lbernail

Address space planning
Pod Cidr: /24

● /24 leads to inefficient address usage
● sig-network: remove contiguous range requirement for CIDR allocation
● But also

○ Address space for node IPs (another /20 per cluster for 4096 nodes)
○ Service IP range (/20 would make sense for such a cluster)

● Total: 1 /15 for pods, 2 /20 for nodes and service!

pod cidr 8bitsnode prefix: 12bits10. (8bits) 4bits

Up to 255 pods per node
Simple addressingUp to 4096 nodes4 bits available

Up to 16 clusters



lbernail

Take-away

● Native pod routing has worked very well at scale
● A bit more complex to debug
● Much more efficient datapath
● Topic is still dynamic (Cilium introduced ENI recently)
● Great relationship with Lyft / Cilium
● Plan your address space early



Ingresses



lbernail

Ingress: cross-clusters, VM to clusters

A A

A

B B

B

C

C

D

D

Cluster 1

Cluster 2Classic (VM)

C?

C? B?



lbernail

Master

Kubernetes default: LB service

External 
Client Load-Balancer

pod

pod

pod

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller



lbernail

Master

Inefficient Datapath & cross-application impacts

Web traffic Load-Balancer

web-1

web-2

web-3

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller

kafka



lbernail

Master

ExternalTrafficPolicy: Local?

Web traffic Load-Balancer

web-1

web-2

web-3

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller

kafka



lbernail

L7-proxy ingress controller

data path
health checks
configuration

from watching ingresses/endpoints on apiservers (ingress-controller)
from watching LoadBalancer services (service-controller)

External 
Client Load-Balancer

l7proxy

l7proxy

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Heathchecker

ingress-controller

pod
pod

pod
pod

Create l7proxy deployments
Update backends using service endpoints

Master
service-controller



lbernail

Limits

All nodes as backends (1000+)
Inefficient datapath
Cross-application impacts

Alternatives?

ExternalTrafficPolicy: Local?
> Number of nodes remains the same
> Issues with some CNI plugins

K8s ingress
> Still load-balancer based
> Need to scale ingress pods
> Still inefficient datapath

Challenges



lbernail

Our target: native routing

External 
Client ALB

pod

pod

pod

Healthchecker

data path
health checks

alb-ingress-controller

configuration (from watching ingresses/endpoints on apiservers)



lbernail

Limited to HTTP ingresses

No support for TCP/UDP

Ingress v2 should address this

Remaining challenges

Registration delay

Slow registration with LB
Pod rolling-updates much faster

Mitigations
- MinReadySeconds
- Pod ReadinessGates



lbernail

Workaround

External 
Client Load-Balancer

l7proxy

l7proxy

Heathchecker
pod
pod

pod
pod

Not managed by k8s Dedicated nodes
Pods in host network

TCP / Registration delay not manageable
> Dedicated gateways



lbernail

Take-away

● Ingress solutions are not great at scale yet
● May require workarounds
● Definitely a very important topic for us
● The community is working on v2 Ingresses



Conclusion



lbernail

A lot of other topics

● Accessing services (kube-proxy)
● DNS (it’s always DNS!)
● Challenges with Stateful applications
● How to DDOS <insert ~anything> with Daemonsets
● Node Lifecycle / Cluster Lifecycle
● Deploying applications
● ...



lbernail

Getting started?
“Deep Dive into Kubernetes Internals for Builders and Operators”
Jérôme Petazzoni, Lisa 2019
https://lisa-2019-10.container.training/talk.yml.html
Minimal cluster, showing interactions between main components

“Kubernetes the Hard Way”
Kelsey Hightower
https://github.com/kelseyhightower/kubernetes-the-hard-way
HA control plane with encryption

https://lisa-2019-10.container.training/talk.yml.html
https://github.com/kelseyhightower/kubernetes-the-hard-way


lbernail

You like horror stories?
“Kubernetes the very hard way at Datadog”
https://www.youtube.com/watch?v=2dsCwp_j0yQ

“10 ways to shoot yourself in the foot with Kubernetes”
https://www.youtube.com/watch?v=QKI-JRs2RIE

“Kubernetes Failure Stories”
https://k8s.af

https://www.youtube.com/watch?v=2dsCwp_j0yQ
https://www.youtube.com/watch?v=QKI-JRs2RIE
https://k8s.af


lbernail

Key lessons
Self-managed Kubernetes is hard
> If you can, use a managed service

Networking is not easy (especially at scale)

The main challenge is not technical
> Build a team
> Transforming practices and training users is very important



Thank you

We’re hiring!
https://www.datadoghq.com/careers/

laurent@datadoghq.com
@lbernail


