KUKA KR 16-2

User Manual

Outline

- Introduction
- How to Edit Codes
- How to Control the Robot Arm
- Others

Outline

- Introduction
- How to Edit Codes
- How to Control the Robot Arm
- Others

Introduction to KR 16-2

- Payload

$$
-16 \mathrm{~kg}
$$

- Number of Axes
-6 axes
- Control Method
- Manual
- Program

Begin to Use

1. Boot the computer
2. Press to continue (windows bug)
3. Wait for minutes

Outline

- Introduction
- How to Edit Codes
- How to Control the Robot Arm
- Others

\log On (1/6)

- We have to log on to edit codes
- It will be logged out automatically when turning from manual mode to program mode
- Be sure to log on again

Log On (2/6)

Log On (36)

Log On (4/6)

Log On (56)

Log On (6/6)

Create a New Code File (1/3)

Create a New Code File (2/3)

Create a New Code File (3/3)

Edit a Code File (1/4)

Edit a Code File (2/4)

Edit a Code File (3/4)

Edit a Code File (4/4)

Tips for Editting

- "Delete" key will delete one whole line - Use "Backspace" to revise characters instead.
- Shortcut key
- Ctrl + X (cut)
- Ctrl + C (copy)
- Ctrl + V (paste)

Coding Guideline

Example Codes

Basic Motion Types

- PTP
- Point-to-point motion
- LIN
- Linear motion
- CIRC
- Circular motion
- HALT
- Halt the moving prosess

PTP Motion (1/3)

- The point-to-point motion (PTP) is the quickest way of moving the tip of the tool (Tool Center Point: TCP) from the current position to a programmed end position.
- To do this, the controller calculates the necessary angle differences for each axis.
- Syntax

PTP \{P0S: X 1000.00, Y $0.00, \mathrm{Z} 1000.00$, A 90.00 , B $0.00, \mathrm{C} 90.00, \mathrm{~S} 6, \mathrm{~T} 50\}$
or

```
PTP {AXIS:A1 0, A2 -90, A3 90, A4 90, A5 0, A6 -180}
```


PTP Motion (2/3)

- In order to increase velocity, points for which exact positioning is not necessary can be approximated. The robot takes a shortcut as illustrated below


```
INI Pseudo Code
$VEL.CP = 0.5
PTP Start point
PTP Auxiliary point C_PTP
PTP End point
```


PTP Motion (3/3)

Linear Motion (1/2)

- In the case of a linear motion, the server calculates a straight line from the current position (the last point programmed in the program) to the position specified in the motion command.
- Syntax

```
LIN {X 1000.00, Y 0.00, Z 1000.00, A 90.00, B 0.00, C }90.00
```

INI \quad Pseudo Code
SVEL.CP $=0.5$
PTP Start point
LIN End point

Linear Motion (2/2)

Circular Motion (1/3)

- To define a circle or arc in space unambiguously, three points are needed which are different from one another and do not lie on a straight line.
- The start point of a circular motion is again formed, as with PTP or LIN, by the current position.
- Syntax

```
CIRC {X 1000.00, Y 1.00, Z 1000.00, A 90.00, B 0.00, C 90.00},
{X 1000.00, Y -1.00, Z 1000.00, A 90.00, B 0.00, C 90.00 }, CA
```


Circular Motion (2/3)

- In addition to the auxiliary and end positions it is also possible to program a circular angle using the option CA (Circular Angle).
$\mathrm{CA}>\mathrm{O}^{\circ}$

$$
C A<0^{\circ}
$$

Circular Motion (3/3)

Halt

- Pause the moving process.
- Resume the motion by pressing
- Syntax

HALT

Outline

- Introduction
- How to Edit Codes
- How to Control the Robot Arm
- Others

Two Way to Control

- Program Control
- Execute program codes
- Have to write your codes first
- Just like running script
- Manuel Control
- Control the robot arm manually
- Just like playing game with joystick

Program Control (1/9)

Program Control (2/9)

Program Control (3/9)

Program Control (4/9)

Program Control (5/9)

Program Control (6/9)

Program Control (7/9)

Program Control (8/9)

Program Control (9/9)

Reset Pointer to Run Again

Exit

Revise Codes in Running Mode (1/2)

Revise Codes in Running Mode (2/2)

Change the Moving Speed (1/3)

Change the Moving Speed (2/3)

Change the Moving Speed ${ }_{(3 / 3)}$

Monitor the Robot Position Under Cartesian System (1/2)

Monitor the Robot Position Under Cartesian System (2/2)

Monitor the Robot Position Under Axis System (1/2)

Monitor the Robot Position Under Axis System (2/2)

Emergency Stop

Manuel Control (1/6)

Manuel Control (26)

Manuel Control ${ }_{(3 / 6)}$

Manuel Control (4/6)

Manuel Control (56)

Manuel Control (6/6)

Change Values Under Cartesian System (1/3)

Change Values Under Cartesian System (2/3)

Change Values Under Cartesian System (3/3)

Change the Moving Speed in Manual Mode

Outline

- Introduction
- How to Edit Codes
- How to Control the Robot Arm
- Others

Reboot Timing

Further Reading

- If you want to write fancier codes, please refer to Expert Programming Manual.

