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Diagonalization

 Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P 

such that P-1AP is diagonal?

 Diagonalizable matrix:

A square matrix A is called diagonalizable if there exists an 

invertible matrix P such that P-1AP is a diagonal matrix.

(P diagonalizes A) Notes:

(1) If there exists an invertible matrix P such that                  , 

then two square matrices A and B are called similar.

(2) The eigenvalue problem is related closely to the 

diagonalization problem.
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 Thm : (Similar matrices have the same eigenvalues)

If A and B are similar nn matrices, then they have the 

same eigenvalues.
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Thus A and B have the same eigenvalues.



 Ex 1: (A diagonalizable matrix) check the following matrix is diagonal or not. 
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 Thm : (Condition for diagonalization)

An nn matrix A is diagonalizable if and only if it has n 

linearly independent eigenvectors.



 Ex 4: (A matrix that is not diagonalizable)
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A does not have two linearly independent eigenvectors, 

so A is not diagonalizable.



 Steps for diagonalizing an nn square matrix:

Step 2: Let
1 2

[ ]
n

P p p p

Step 1: Find n linearly independent eigenvectors

for A with corresponding eigenvalues.1 2
, ,

n
p p p

Step 3: 1

21

0 0

0 0

0 0
n

P AP D









 
 
  
 
 
 

where, ,   1,  2, ,  
i i i

Ap p i n 



 Thm 5.6: (Sufficient conditions for diagonalization)

If an nn matrix A has n distinct eigenvalues, then the 

corresponding eigenvectors are linearly independent and 

A is diagonalizable.

 Ex 5: (Determining whether a matrix is diagonalizable)
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Sol: Because A is a triangular matrix, its eigenvalues are

3 ,0 ,1 321  

These three values are distinct, so A is diagonalizable.



 Ex 6: (Diagonalizing a matrix)

diagonal. is such that  matrix  a Find      
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Sol:  Characteristic equation:
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