## L 33 <br> Diagonalization

## Diagonalization

- Diagonalization problem:

For a square matrix $A$, does there exist an invertible matrix $P$ such that $P^{-1} A P$ is diagonal?

- Diagonalizable matrix:

A square matrix $A$ is called diagonalizable if there exists an invertible matrix $P$ such that $P^{-1} A P$ is a diagonal matrix.

- Notes: $\quad(P$ diagonalizes $A)$
(1) If there exists an invertible matrix $P$ such that $B=P^{-1} A P$, then two square matrices $A$ and $B$ are called similar.
(2) The eigenvalue problem is related closely to the diagonalization problem.
- Thm : (Similar matrices have the same eigenvalues)

If $A$ and $B$ are similar $n \times n$ matrices, then they have the same eigenvalues.
Pf:
$A$ and $B$ are similar $\Rightarrow B=P^{-1} A P$

$$
\begin{aligned}
|\lambda \mathrm{I}-B| & =\left|\lambda \mathrm{I}-P^{-1} A P\right|=\left|P^{-1} \lambda \mathrm{I} P-P^{-1} A P\right|=\left|P^{-1}(\lambda \mathrm{I}-A) P\right| \\
& =\left|P^{-1}\right|\left|\lambda \mathrm{I}-A\left\|P\left|=\left|P^{-1}\right|\right| P\right\| \lambda \mathrm{I}-A\right|=\left|P^{-1} P\right||\lambda \mathrm{I}-A| \\
& =|\lambda \mathrm{I}-A|
\end{aligned}
$$

Thus $A$ and $B$ have the same eigenvalues.

- Ex 1: (A diagonalizable matrix) check the following matrix is diagonal or not.

$$
A=\left[\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & -3 & 0 \\
-3 & \lambda-1 & 0 \\
0 & 0 & \lambda+2
\end{array}\right|=(\lambda-4)(\lambda+2)^{2}=0
$$

The eigenvalue s: $\lambda_{1}=4, \lambda_{2}=-2, \lambda_{3}=-2$
(1) $\lambda=4 \Rightarrow$ the eigenvector $p_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
$\begin{aligned} \text { (2) } \lambda=-2 \Rightarrow \text { the eigenvector } p_{2} & =\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], p_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\end{aligned}$

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right], \\
& \text { such that } P^{-1} A P=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

- Note: If $P=\left[\begin{array}{lll}p_{2} & p_{1} & p_{3}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \Rightarrow P^{-1} A P=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

- Thm : (Condition for diagonalization)

An $n \times n$ matrix $A$ is diagonalizable if and only if it has $n$ linearly independent eigenvectors.

- Ex 4: (A matrix that is not diagonalizable)

Show that the following matrix is not diagonalizable.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-1 & -2 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0
$$

The eigenvalue : $\lambda_{1}=1$

$$
\lambda I-A=I-A=\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \Rightarrow \text { eigenvector } p_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$A$ does not have two linearly independent eigenvectors, so $A$ is not diagonalizable.

- Steps for diagonalizing an $n \times n$ square matrix:

Step 1: Find $n$ linearly independent eigenvectors

$$
p_{1}, p_{2}, \cdots p_{n} \text { for A with corresponding eigenvalues. }
$$

Step 2: Let $\boldsymbol{P}=\left[\boldsymbol{p}_{\mathbf{1}}\left|\boldsymbol{p}_{\mathbf{2}}\right| \cdots \mid \boldsymbol{p}_{\boldsymbol{n}}\right]$
Step 3:

$$
\begin{aligned}
& P^{-1} A P=D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \\
& \text { where, } A p_{i}=\lambda_{i} p_{i}, i=1,2, \ldots, n
\end{aligned}
$$

- Thm 5.6: (Sufficient conditions for diagonalization)

If an $n \times n$ matrix $A$ has $n$ distinct eigenvalues, then the corresponding eigenvectors are linearly independent and $A$ is diagonalizable.

- Ex 5: (Determining whether a matrix is diagonalizable)

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right]
$$

Sol: Because $A$ is a triangular matrix, its eigenvalues are

$$
\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=-3
$$

These three values are distinct, so A is diagonalizable.

- Ex 6: (Diagonalizing a matrix)

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

Find a matrix $P$ such that $P^{-1} A P$ is diagonal.
Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|=(\lambda-2)(\lambda+2)(\lambda-3)=0
$$

The eigenvalue s: $\lambda_{1}=2, \lambda_{2}=-2, \lambda_{3}=3$

$$
\begin{aligned}
& \lambda_{1}=2 \Rightarrow \lambda_{1} \mathrm{I}-A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
3 & -1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right] \Rightarrow \text { eigenvector } p_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] } \\
& \lambda_{2}=-2 \\
& \Rightarrow \lambda_{2} \mathrm{I}-A=\left[\begin{array}{ccc}
-3 & 1 & 1 \\
-1 & -5 & -1 \\
3 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{4} \\
0 & 1 & \frac{1}{4} \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} t \\
-\frac{1}{4} t \\
t
\end{array}\right] \Rightarrow \text { eigenvector } p_{2}=\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{3}=3 & \Rightarrow \lambda_{3} \mathrm{I}-A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
3 & -1 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right] \Rightarrow \text { eigenvector } p_{3}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] } \\
& P=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & -1 & 1 \\
1 & 4 & 1
\end{array}\right], \therefore P^{-1}=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
1 / 5 & 0 & 1 / 5 \\
1 / 5 & 1 & 1 / 5
\end{array}\right]
\end{aligned}
$$

$$
\text { s.t. } P^{-1} A P=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

