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Bar Graphs and Dot Plots

L E S S O N

1.1

CONDENSED

In this lesson you will 

● interpret and create a variety of graphs

● find some summary values for a data set

● draw conclusions about a data set based on graphs and summary values

This pictograph shows the number of pets of various types that were
treated at Uptown Animal Hospital in one week.

Specific information, such as the number of pets of each type, is called
data. You can often display data in tables and graphs.

EXAMPLE Create a table of data and a bar graph from the pictograph above.

� Solution This table shows the number of
pets of each type. Remember that 
each symbol on the pictograph 
represents two pets.

The bar graph shows the same data.
The height of a bar shows the total in 
that category, in this case, a particular 
type of pet. You can use the scale on
the vertical axis to measure the height 
of each bar.

Bar graphs gather data into categories, allowing you to quickly compare values for
each category.

A dot plot shows each item of numerical data above a number line, or horizontal axis.
Dot plots make it easy to see gaps and clusters in a data set, as well as how the data
spreads along the axis.

Investigation: Picturing Pulse Rates

This investigation uses data about pulse rates. Pulse rates vary, but a healthy person
at rest usually has a pulse rate between certain values. A person with a pulse rate that
is too fast or too slow may need medical attention.
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Lesson 1.1 • Bar Graphs and Dot Plots (continued)

This data set gives pulse rates, in beats per minute, for a group of 30 students.

68 60 76 68 64 80 72 76 92 68 56 72 68 60 84

72 56 88 76 80 68 80 84 64 80 72 64 68 76 72

For this data set, the minimum (lowest) value is 56 and the maximum (highest)
value is 92. The minimum and maximum describe the spread of the data. For
example, you could say, “The pulse rates are between 56 and 92 bpm.” Based only on
this data, it appears that a pulse rate of 80 bpm would be “normal,” while a pulse rate
of 36 bpm would be too low.

To make a dot plot of the pulse rates, first draw a number line with the minimum
value, 56, at the left end. Select a scale and label equal intervals until you reach the
maximum value, 92.

For each value in the data set, put a dot above that value on the number line. When a
value occurs more than once, stack the dots. For example, the value 64 occurs three
times in the data set, so there are three dots above 64. Be sure to label the axis so that
it is clear what the data are.

The range of a data set is the difference between the maximum and minimum values.
For this data, the range is 92 � 56 or 36 bpm. Note that the range does not tell you
about the actual values in a data set. If a paramedic tells you that normal pulse rates
have a range of 12, this would not tell you anything about the minimum or
maximum value or any values in-between.

Looking at the dot plot, you can see that there are a few values near the maximum
and minimum, but most values cluster between 64 and 80. The value 68 occurs most
often, followed by 72. This information gives you an idea of what is a normal pulse
for this class, but it could not be used to say what is a “normal” pulse for all people.
Many factors, including age, affect pulse rates.

Statistics is a word we use many ways. It is often used to refer to numbers that
describe or summarize data. For example, you could collect pulse-rate data from
thousands of people and then determine a single value that can be considered
“normal.” This single value can also be called a statistic.

56 60 64 68 72 76 80 84 88 92

Pulse rate (bpm)

56 60 64 68 72 76 80 84 88 92

Minimum pulse
rate is 56 bpm.

Maximum pulse
rate is 92 bpm.

Every 4-bpm interval
is the same length.

�
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Summarizing Data 
with Measures of Center

L E S S O N

1.2

CONDENSED

In this lesson you will

● find measures of center for a data set

● choose the most meaningful measure of center for a situation

● look at the influence of outliers on the mean of a data set

Read the statements at the beginning of the lesson. Each statement uses a single
number—called a measure of center—to describe what is typical about a set of data.
The first statement uses the mean, or average. The second statement uses the median,
or middle value. The third statement uses the mode, or most frequent value.

Investigation: Making “Cents” of the Center

You can use this collection of pennies to help you understand the mean, median,
and mode.

To find the median of the mint years, line up the pennies from oldest to newest.

To find the mode, stack the pennies with the same mint year.

To find the mean, find the sum of the mint years for all the pennies and divide by the
number of pennies.
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� � 1990.68. You might round the mean up to 1991.

Here is a dot plot of the mint years with the median, mode, and mean labeled.
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Lesson 1.2 • Summarizing Data with Measures of Center (continued)

Now enter the penny data into a calculator list, and use your calculator to find the
mean and median. (See Calculator Notes 1A and 1B. Refer to Calculator Note 1J to
check the settings on your calculator.)

Read the descriptions of the measures of center on page 45 of your book. The mean
and the median of a set of data may be quite different, and the mode, if it exists,
may not be useful. You will need to decide which measure is most meaningful for a
given situation.

EXAMPLE This data set shows the number of videos rented at a video store each day for
14 days. {54, 75, 2, 68, 49, 53, 5, 63, 54, 70, 65, 68, 71, 60}

a. Find the measures of center.

b. Which measure best represents the data?

� Solution a. The mean is about 54 videos.

Because there are an even number of values, the median is the number halfway
between the two middle values. In this case, the median is 61.5.

This data is bimodal—that is, it has two modes, 54 and 68.

b. To determine which measure best represents the data, look for patterns in the data
and consider the shape of the graph.

Except for two values (2 and 5), the data are clustered between 49 and 75. The
values 2 and 5, called outliers, bring the mean, 54, too far to the left of most of
the data values to be the best measure of center. One of the modes is the same as
the mean. The other is too high. The median, 61.5, seems to summarize the
data best.

In the example in your book, the outliers are much greater than the rest of the data.
These values pull the mean up. Using the mean to describe data that includes
outliers can be misleading. You need to be aware of these limitations when you read
advertisements and reports that give measures of center.

10 20 30 40 50 60 70 800

MeanVideos rented

Mode Mode61.5
Median

The median is halfway between 60 and 63.

Data values listed in order

2,  5,  49,  53,  54,  54,  60,  63,  65,  68,  68,  70,  71,  75�

54 � 75 � 2 � 68 � 49 � 53 � 5 � 63 � 54 � 70 � 65 � 68 � 71 � 60___________________________________________________________
14 �

Number of data values

Sum of the data values

54

mean
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Five-Number Summaries
and Box Plots

L E S S O N

1.3

CONDENSED

In this lesson you will

● find five-number summaries for data sets

● interpret and create box plots

● draw conclusions about a data set based on graphs and summary values

● use a calculator to make a box plot

The table on page 50 of your book shows the total number of points scored by each
player on the Chicago Bulls during the 1997–98 NBA season.

The five-number summary can give you a good picture of how the Bulls scored as a
team. A five-number summary uses five boundary points: the minimum and the
maximum, the median (which divides the data in half), the first quartile (the median
of the first half), and the third quartile (the median of the second half).

The first quartile (Q1), the median, and the third quartile (Q3) divide the data
into four equal groups. The example in your book illustrates how to find the
five-number summary.

A box plot, or box-and-whisker plot, is
a visual way to show the five-number
summary. This box plot shows the
spread of the Bulls’ scoring data. Notice
how the five-number summary is shown
in the plot.

Even though the four sections of the plot—the two whiskers and the two halves of
the box—are different lengths, each represents �

1
4

� of the data. So, for example, the
long, right whisker represents the same number of data items as the short, left
whisker. Notice that most of the data values are concentrated in the left part of the
graph. The long whisker that takes up most of the plot represents only �

1
4

� of the
values (including Michael Jordan’s).

Investigation: Pennies in a Box

In this investigation, you make a box plot of the penny data from Lesson 1.2.

Steps 1–6 First you need to list the values in order and find the five-number
summary. Here is some sample data with the minimum, maximum, median,
and quartiles labeled. You may want to follow the steps with your data from Lesson 1.2.

Median 1992

First half
of data

Minimum
The first quartile is 1986,
the median of the first half.

1973 1977 1980 1982 1984 1986 1986 1988 1991 1991 1991 1991

Second half
of data

The third quartile is 1996.5,
the median of the second half.

Maximum

1993 1993 1994 1994 1994 1996 1997 1998 1998 1999 1999 2000

(continued)

Points scored

0 500 1000

Minimum MaximumMedian

Bulls

First quartile, Q1 Third quartile, Q3

1500 2000 2500
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Lesson 1.3 • Five-Number Summaries and Box Plots (continued)

To make a box plot, draw the horizontal axis (you can use the same scale you used
for the dot plot in Lesson 1.2). Draw a short vertical segment just above the median
value. Do the same for the first and third quartiles. Then, draw dots over the
minimum and maximum values.

To finish the plot, draw a “box” with ends at the first and third quartiles, and
draw “whiskers” extending from the ends of the box to the minimum and
maximum values.

Compare the box plot with a dot plot of the same data.

Both plots show that most of the values are greater than 1986. The box plot makes it
easier to locate the five-number summary, but, unlike the dot plot, it does not show
individual values or how many values there are. If seeing each data value is
important, then a box plot is not the best way to display your data.

Remember that the four sections of a box plot—the two whiskers and the two halves
of the box—each represent about the same number of data items. The box plot
shows that �

3
4

� of the mint years are between 1986 and 2000, while only �
1
4

� are between
1973 and 1986.

Steps 7–9 Clear any old data from your calculator and enter the mint years into
list L1. Draw a calculator box plot (see Calculator Note 1C). Compare your
calculator plot to the one above. If you use the trace function, you can see the
five-number summary for the data.

Step 10 The difference between the first quartile and the third quartile is the
interquartile range, or IQR. Like the range, the interquartile range helps describe
the spread in the data. For the sample penny data above, the range is 2000 � 1973 or
27 and the interquartile range is 1996.5 � 1986 or 10.5.

You can compare two data sets by making two box plots on the same axis. The box
plots on page 52 of your book summarize the final test scores for two algebra classes.
You can see that Class A has the greater range of scores and the greater IQR. In both
classes, half of the students scored above 80. In Class B, all the students scored above
65, whereas in Class A, fewer than three-quarters of the students scored above 65.

1972

Mint year

1976 1980 1984 1988 1992 1996 2000

1972 1976 1980 1984 1988 1992 1996 2000

Mint year

1972 1976

Min

Q1 Med

Max

Q3

1980 1984 1988 1992 1996 2000

Mint year
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Histograms and 
Stem-and-Leaf Plots

L E S S O N

1.4

CONDENSED

(continued)

In this lesson you will

● interpret and create histograms

● interpret stem-and-leaf plots

● choose appropriate bin widths for histograms

● use a calculator to make histograms

A dot plot includes a dot for each value in a data set. If a data set contains a large
number of values, a dot plot might not be practical. A histogram is related to a dot
plot but is more useful when you have a large set of data. Read the information
about histograms on page 57 of your book. Notice how the bin width chosen for the
histogram affects the appearance of the graph.

Investigation: Hand Spans

Your hand span is the distance from the tip of your thumb to the tip of your
little finger when your fingers are spread.

Steps 1–6 Here are hand spans, to the nearest half-centimeter, of students in
one algebra class.

19 18.5 20.5 21.5 18.5 17.5 22 22.5 19.5 20 24 18

16.5 28 19 20 20.5 24 15 17 19 18 21 21

To make a histogram of this data, you first need to choose a bin width. As a general
rule, try to choose an interval that will give you from 5 to 10 bins. For this data, the
range is 28 � 15 or 13. If you use a bin width of 2, you will have 7 bins.

Next, find the number of data values in each bin. These values are called
frequencies. Note that a bin contains the left boundary value, but not the right. So
the bin from 17 to 19 includes the values 17, 17.5, 18, and 18.5, but not 19. The value
19 belongs in the bin from 19 to 21.

Now, draw the axes. Scale the  
horizontal axis to show hand-span 
values from 15 to 29 in intervals 
of 2. Scale the vertical axis to show 
frequency values from 0 to 8.

Finally, draw in bars to show the 
frequency values in your table.
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Frequency 2 6 8 5 2 0 1

Hand span
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Lesson 1.4 • Histograms and Stem-and-Leaf Plots (continued)

Steps 7–9 If you enter the hand-span data into list L1 of your calculator, you can
experiment with different bin widths. (See Calculator Note 1D for instructions
on creating histograms.) Here are histograms of the same data using different
bin widths.

[15, 29, 1, 0, 5, 1] [15, 29, 1.5, 0, 15, 1] [15, 30, 3, 0, 15, 1]

For this data, a bin width of 1.5 or 2 works well. Both bin 
widths give a nice picture of how the values are 
distributed, indicating where data values are clustered 
and where there is a gap in the values. A bin width 
of 1 shows additional gaps but has a lot of bars. With a 
bin width of 3, there are too few bars to get a good 
picture of the distribution, and the gap on the right 
side is hidden.

At right a box plot has been drawn on the same axes as 
the histogram. Unlike the histogram, the box plot does 
not show the gap in the data, and it does not give any
indication of how many values are in each interval.

Like a histogram, a stem plot, or stem-and-leaf plot, groups data values into
intervals. However, a stem plot shows each individual data item. For this reason,
stem plots are most useful for fairly small data sets. Study the stem plot on page 59
of your book. Make sure you understand how to read the values.

The example on page 60 of your book shows how to use the data in a stem plot to
create a histogram. The values in the stem plot are years. The stem values show the
first three digits of the year, and the leaves show the last digit. So, for example,
the values next to the stem 184 represent the years 1840, 1841, 1843, and 1848.

Read through the example to see how the histogram was created. Then, enter
the data into your calculator and experiment with different bin widths. Here are
some possibilities.

Think about which bin widths best show the spread and distribution of the values.
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Two-Variable Data

L E S S O N

1.6

CONDENSED

In this lesson you will

● practice plotting points on the coordinate plane

● create a scatter plot

● look for a relationship between two variables based on a graph

● use your calculator to create a scatter plot

A variable is a quantity—such as pulse rate or mint year—whose value can vary. So
far in this chapter, you have been working with one-variable data. You have used dot
plots, box plots, histograms, and stem plots to display one-variable data.

It is often interesting to look at information about two variables to try to discover a
relationship. For example, you could collect data about height and shoe size to see if
taller people tend to have larger feet than shorter people. Making a scatter plot is a
good way to look for a relationship in two-variable data. Read the information
about two-variable graphs on page 67 of your book.

Investigation: Backed into a Corner

This investigation involves collecting and graphing two-variable data.

Steps 1–4 To collect the data, tape two rulers to a desk so that they form an angle.
Next, measure the diameter of a circular object. Then, place the object between the
rulers so that it fits snuggly, and measure the distance from the vertex of the angle to
the point where the object touches the ruler.

Here are some sample data for this activity.

Steps 5–7 To see if there might be a relationship between the variables diameter
and distance from vertex, you can make a scatter plot. Before plotting the data, you
need to set up and scale the axes to accommodate all the values.

You can put either variable on either axis. In the graph on the following page, the
diameter values are on the x-axis and the distance-from-vertex values are on the
y-axis. The greatest diameter value is 7.3, and the greatest distance-from-vertex value
is 15.7. If you let each grid unit on the x-axis represent 0.5 cm and each grid unit on
the y-axis represent 1 cm, all the values will fit on a 16-by-16 grid. Be sure to label
the axes with the names of the variables.

Diameter (cm) 4.6 6.7 1.9 4.0 7.3 3.1 2.4 5.5

Distance from vertex (cm) 9.6 14.2 3.7 8.8 15.7 6.4 5.4 11.5

Distance
from vertex

(continued)
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Lesson 1.6 • Two-Variable Data (continued)

To plot the data, think of each row as an ordered pair. For example, to graph the first
row of values, plot (4.6, 9.6) by moving along the horizontal axis to 4.6 and then
straight up until you are even with 9.6. On the right below is the completed
scatter plot.

Steps 8–9 Notice that the points form a straight-line pattern. The graph indicates
that the greater the diameter of an object, the greater its distance from the vertex
will be.

To make a scatter plot on your calculator, you need to enter the data into two
lists. Try making a scatter plot of the data above on your calculator. (See Calculator
Note 1E to learn how to make a scatter plot.)

Review the example on page 69 of your book. The graph in the example, like the
graph created in the investigation, is a first-quadrant graph because all the
values are positive. Sometimes data includes negative values and requires more
than one quadrant.

EXAMPLE If you write checks for more money than you
have in your account, the account will have a
negative balance. The graph at right shows the
balance in a checking account at the end of
each day over a five-day period. Describe the
balance each day.

� Solution The point (1, 150) shows that on the first day,
the balance was $150.

The point (2, �50) shows that on the second
day, the balance was �$50.

The points (3, 350) and (4, 350) indicate
that on the third and fourth days, the
balance was $350.

The point (5, �200) means that on the fifth day, the balance was �$200.
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Estimating

L E S S O N

1.7

CONDENSED

In this lesson you will

● practice your estimation skills

● create a scatter plot

● draw conclusions about a data set based on graphs

● use your calculator to create a scatter plot

In this lesson you see how to use a scatter plot to compare estimated values to
actual values.

Investigation: Guesstimating

Steps 1–3 To test your estimation skills, you can estimate the distances from a
starting point to several objects and then measure to find the actual distances. This
table shows some sample data. You may want to collect and use your own data, or
just add a few of your own values to this table.

Steps 4–5 You can make a scatter plot to compare the estimated distances with the
actual distances. First, set up the axes. Put the actual distances on the x-axis and the
estimated distances on the y-axis. Use the same scale on both axes.

Plot a point for each pair of values in the
table, using the actual distance for the
x-value and the estimated distance for
the y-value. For example, plot (4.32, 3.80)
to represent the data for the chalkboard.
Here is the completed graph.

Think about what the graph would look
like if all of the estimates had been the
same as the actual measurements. That
is, imagine that the graph included
(1.86, 1.86), (1.56, 1.56), (4.32, 4.32), and
so on. In this case, the points would fall on
a straight line.

Actual distance Estimated distance
Description (m), x (m), y

Ted’s desk 1.86 1.75

Zoe’s desk 1.50 1.50

Chalkboard 4.32 3.80

Teacher’s desk 1.85 2.00

Blue floor tile 0.57 0.50

Corner of classroom 4.87 4.50

Garbage can 2.35 2.75

Jing’s pencil 0.29 0.25

Bookshelf 3.87 4.25

(continued)
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Lesson 1.7 • Estimating (continued)

Steps 6–9 Use your graphing calculator to make a scatter plot of the data. Here’s
what the plot will look like if you use the same scale used in the preceding graph:

The line y � x represents all the points for which the y-value equals the x-value. In
this case, it represents all the points for which the estimated distance equals the
actual distance. Graph the line y � x in the same window as your scatter plot. (See
Calculator Note 1H to graph a scatter plot and an equation simultaneously.)

Points that are closer to the line represent better estimates than points that are
farther from the line. Use the trace function to look at the coordinates of the points.
Notice that points for which the estimate is too low fall below the line and that
points for which the estimate is too high fall above the line.
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Using Matrices to Organize
and Combine Data

L E S S O N

1.8

CONDENSED

In this lesson you will

● use matrices to organize and combine data

● use your calculator to perform matrix calculations

The table on page 80 of your book shows the average number of hours that
people in various countries worked each week in the years 1900 and 1998. Like a
table, a matrix organizes data into rows and columns. The matrix shows the
working-hours data.

This matrix has dimensions 6 � 2 because it has six rows and two columns.

Work through Example A in your book. In part c, the working-hours matrix is
multiplied by 50. Multiplying a matrix by a number means multiplying each entry
by that number. So, to find 50 � [A], multiply each entry of matrix [A] by 50. Your
calculator can do all the multiplications in one step.

To add or subtract two matrices, add or subtract the corresponding entries.
Example B shows how to add two matrices. Read through the example carefully and
make sure you understand it. In order to add or subtract two matrices, they must
have the same dimensions. If the dimensions are different, you won’t be able to
match up corresponding entries to do the operations.

Now you know how to multiply a matrix by a number and to add or subtract
two matrices. As you will see in the investigation, multiplying two matrices is
more complicated.

Investigation: Row-by-Column Matrix Multiplication

Steps 1–3 The table and matrix show the costs for large items at two restaurants.

The first column of the matrix gives the prices for Pizza Palace. You can find the total
cost for 4 large pizzas, 5 large salads, and 10 large drinks by multiplying the number
of each item by the cost for each item.

Pizza

N
um
be
r

C
os
t

N
um
be
r

C
os
t

N
um
be
r

C
os
t

C
os
t

Salad Drink Total

4 � 11.40 � 5 � 3.35 � 10 � 2.15 � 83.85

Large-Item Prices

Tony’s
Pizza Palace Pizzeria

Large pizza $11.40 $11.35

Large salad $ 3.35 $ 3.90

Large drink $ 2.15 $ 2.10 

[A] � � �
51.6 29.9
51.7 31.7
51.7 38.3
52.0 30.8
52.0 37.9
52.4 35.6

[D] � � �
11.40 11.35
3.35 3.90
2.15 2.10

(continued)
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Lesson 1.8 • Using Matrices to Organize and Combine Data (continued)

Steps 4–13 The row matrix [A] and the column matrix [B] contain all the
information you need to calculate the total food cost at Pizza Palace. Matrix [A]
shows the item quantities, and matrix [B] shows the costs.

[A] � [4 5 10] [B] � � �
Enter [A] and [B] into your calculator and find their product, [A] � [B], or 

[4 5 10] � � �
(See Calculator Note 1P to learn how to multiply two matrices.) You should get the
1 � 1 matrix [83.85]. The matrix entry, 83.85, is the total price calculated above. The
calculator multiplies each entry in the row matrix by the corresponding entry in the
column matrix and adds the results. This is the same calculation.

[4 5 10] � � � � [4 � 11.40 � 5 � 3.35 � 10 � 2.15] � [83.85]

You can find the total cost of the food items at Tony’s Pizzeria by multiplying the
matrices below. Multiply the matrices on your calculator. You should get [85.90].

[4 5 10] � � �
You can do one matrix calculation to find the total cost for both restaurants.

[4 5 10] � � �
Do this calculation on your calculator. You should get the 2 � 1 matrix 
[83.85 85.90]. To get the first entry in the product, the calculator multiplies the
row matrix by the first column. To get the second entry, the calculator multiplies the
row matrix by the second column. If you try to multiply the matrices in the reverse
order, you will get an error message.

To multiply two matrices, the number of columns in the first matrix must be the
same as the number of columns in the second because each column entry in the first
matrix is multiplied by the corresponding row entry in the second matrix.

Work through Example C in your book to get more practice multiplying matrices.

11.40 11.35
3.35 3.90
2.15 2.10

11.35
3.90
2.10

11.40
3.35
2.15

11.40
3.35
2.15

11.40
3.35
2.15
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