
•The Lennard-Jones potential is a model describing the bond energy curves for VDW bonding.

•The L-J potential is more commonly (conveniently) of the form:

where ε ands are constants that depend on two bonding atoms.  

•These new constants are defined in a more physically significant way.  ε is the minimum value 

of the function or the depth of energy well, thus ε can be taken as a measure of the bond strength. 

•s is the value of r at which Vo=0, thus s can be taken as the size of the repulsive core or the 

effective diameter of the hard sphere atom (interaction diameter).

•ε and s parameters can be fitted to reproduce experimental data (Figure below for inert gases) or 

deduced from results of accurate quantum chemistry/mechanical calculationsGood agreement!

    612
4

rro )r(V ss 

L-J Potential Energy Model (continued)

•Energy is sum of long range attractive contribution 

(-) and a short range repulsion (+).

•Since dipole interaction is the origin of the attractive 

VDW force, bond strength increases with the atomic 

number, atomic mass (and molecular weight). Why?
Atoms with larger atomic number have more 

electrons, separated by a greater distance from the 

center of the positive charge.  

This allows for larger dipole moments (more charge 

is separated over a greater distance) and thus greater 

interaction energies (stronger VDW bond).

This accounts for the first trend in cohesive energy.
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L-J Potential Energy Model (continued)

•Second trend, is shape of molecule: molecules of the same molecular weight have greater bond 

strengths if they have larger aspect ratios (or less compact) shapes.

•The origin of this trend is that the bonding force is weak and very short range, so that electrons 

on adjacent molecules must get very close before the dipolar attractive force provides substantial 

cohesion.

•Whereas if molecule has a small aspect ratio (or more compact) shape, the electrons on atoms 

near the center can not contribute to the cohesive/bond force.

•In the overall scheme, cohesive dipolar interactions are present in all solids.

•However, they are usually so weak in comparison to primary bonds, such that they exhibit no 

more than a few % of the total cohesive energy.  

•Thus, we consider VDW interactions to be significant only for crystals we discussed last time: 1) 

uncharged atoms or molecules without polar bonds, e.g. Ar and F2, respectively, 2) uncharged 

molecules with polar bonds, but where the bonded ligands have roughly symmetric arrangement 

so molecule has no net dipole moment, e.g. CCl4, alkanes, polyethylene, and 3) layered 

compounds such as graphite, WS2, V2O5, TiS2, where VDW plays important role in cohesion.

•This anisotropy (properties vary with direction) in bonding plays a large role in how structure 

determines properties, e.g. graphite has strong covalent bonding in-plane (C6 basal planes), but 

weak VDW out-of-plane.  This accounts for graphite’s lubricity where interplanar shear occurs. 2



L-J Potential Energy Model (continued)

•To calculate the equilibrium separation (ro) between two atoms, or in calculating lattice constant, 

we differentiate eq. (1) to find the minimum of Vo(r):

•Solving for r allows ro to be determined: thus it’s the size parameter, s, 

that determines ro.

•Equivalent to saying the force function, F(r), is the negative of the derivative w.r.t. r of Eq. (1).

ss 12.12 6/1 or

•Figure on left for inert gases shows this relationship.

•The first derivative of the interatomic potential energy, with 

respect to distance, gives the force-displacement curve. The 

positive forces are attractive and the negative forces are 

repulsive, and the zero force point is the equilibrium 

separation (ro).

•Good agreement (1-2%) between calculated & measured ro’s.

•The L-J potential is a relatively good approximation and due 

to its simplicity often used to describe the properties of gases, 

and to model dispersion and overlap interactions in molecular 

models. It is particularly accurate for noble gas atoms and is a 

good approximation at long and short distances for neutral 

atoms and molecules, layered solids (graphite) and polymers.

(2)
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L-J Potential Energy Model (continued)

•To calculate the cohesive energy per atom, U´, in eV/atom, we sum the potential energy (V) 

between each atom and all the other atoms in a crystal.  The interaction energy, Uj, of the j-th

atom with all the other N-1 atoms in the crystal is: where ri is distance to the i-th

atom.

•There is a similar term for every atom in the crystal, so the complete sum, U, is:

Factor of ½ is included to avoid counting each interaction twice.

•Assuming every atom is indistinguishable, we can rewrite the complete sum:

•Then the cohesive energy/atom, U´ is total energy in eq. (6), divided by N:

•How do we actually compute Uj, in eq. (4) or eq. (7)?

•We use simplest approximation, i.e., since VDW forces are very weak, the nearest neighbor 

shells will significantly contribute to cohesive energy.  Thus, we only need to compute the sum 

over the nearest neighbors.  For our previous example, all inert gases have face-centered cubic 

(FCC) lattice, so cohesive energy/atom is:

•For all 12 neighbors (N), V(ri)=V(ro)=-. Substitute into eq.(8), cohesive energy/atom:
•We can also calculate this U’……

•This approximation slightly underestimates the measured cohesive energy, since we have ignored all 

additional interactions (long range) with atoms outside of the nearest neighbor shell.
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Recall FCC lattice

# nearest neighbors (N) or 

coordination number (CN) is 12:
FCC structure :

•This is a cubic face (F) center Bravais lattice.  

•Lattice + basis vectors = crystal structure.

•12-fold coordination of each lattice point (same atom) is identical.

The extended

cubic F 

lattice

(2 unit cells 

stacked 

along y-axis)

Close-packed directions: 

length = 4R = 2 a

ro

a2

a

R

5

Pair energy (each atom’s contribution),

each atom is partitioned

1 2

2R = ro

a = √2ro



L-J Potential Energy Model (continued)

•To correct errors from our neglect of long range interactions, we start by expressing all of the 

interatomic distances, ri, as multiples of the shortest one, ro.  

•Thus eq. (8) becomes: therefore determining 

cohesive energy/atom:

amounts to evaluating the sums:

•Minimizing eq. (11) to find equilibrium separation (ro) results in:

•Note eq. (13) is similar to eq. (3) except the A12 and A6 terms, since we are now including long-

range interactions.

•For FCC crystal structure, A12=12.13 and A6=14.45, thus ro=1.09s, which differs from the 

nearest neighbor estimate we calculated in eq. (3), ro=1.12s, by only 3%.

•When the corrected value for U′ is computed using new value for ro & eq.(11):
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 is a dimensionless 

parameter dependent on crystal structure (values are tabulated much like 

the Madelung constants)
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Note: these sums are the same 

for isostructural crystals



L-J Potential Energy Model (continued)

•The differences between the values computed using the N.N. and L.R. interaction models are 

summarized:

•What this means for FCC structures in terms of U´ is 12 N.N. only contribute 70% of the total 

cohesive energy, and final 30% is supplied by the rest of crystal (next N.N. and so on…..).

•Relatively good agreement between measured and calculated parameters for inert gases.

•The L-J pair potential model has been successfully used to describe bonding in other systems.

•For example, the interaction between different segments on polymers: one LJ particle may 

represent a single atom on the chain (explicit atom model), a CH2 segment (united atom model), 

or segment consisting of several CH2 units (coarse-grained model).  The united atom model has 

been shown to successfully reproduce explicit atom results for polymer melts.  

parameter nearest 

neighbor (N.N.) 

long range 

(L.R.)

difference

ro 1.12s 1.09s 3%

U´ -6 -8.6 30%
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An example of the significance of L-J 

Potential Model
•While the L-J pair potential, eq. (1), is intended as a physical model for VDW bonds, it is often 

extended empirically to model other types of crystals by adjusting the constants s and .

•Assuming that regardless of physical mechanism governing interactions among atoms, the total 

energy of the system can be treated as sum of attractive and repulsive pair-wise contributions.

•Constants s and  are chosen such that pair-wise potentials reproduce known properties with 

accuracy.  

•Empirical models constructed in this way can then be used to compute physical properties 

that are difficult, tedious or impossible to measure by experiment.  While quantitative 

accuracy can not be expected, the relative energies computed from such models are often 

qualitatively meaningful and instructive.

•For example, a L-J model for Cu (FCC metal) was used to compute the surface energy/unit area 

(g) as a function of surface normal.  The surface energy 

can be defined as the work required for the creation of 

a unit area of surface.  Creating new surfaces requires 

bond breaking. For a surface with a unit cell that contains

N atoms in an area A, the g is:

where U´ is bulk potential

energy/atom, Vo is the L-J 

potential defined in eq. (1) and rij is distance between ith

and jth atom.  Creating a surface breaks symmetry of the 

lattice so positions do not have same environment, thus need to compute sum over atom pairs.
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•Anisotropic g is proportional to # bonds broken/area:

(111)<(001)<(110)
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