Constraint Satisfaction Problems

Reading:
Chapter 6 (3 ed.); Chapter 5 (2" ed.)

For next week:
Tuesday: Chapter 7
Thursday: Chapter 8



Outline

e What is a CSP
e Backtracking for CSP
e | ocal search for CSPs

e Problem structure and decomposition



Constraint Satisfaction Problems

e What is a CSP?

— Finite set of variables X;, X,, ..., X,

— Nonempty domain of possible values for each variable
D,, D,, ..., D,

— Finite set of constraints C,, C,, ..., C,,
= Each constraint C; limits the values that variables can take,
e e.g., X;* X,
— Each constraint C,; is a pair <scope, relation>
e Scope = Tuple of variables that participate in the constraint.
= Relation = List of allowed combinations of variable values.
May be an explicit list of allowed combinations.
May be an abstract relation allowing membership testing and listing.

e CSP benefits
— Standard representation pattern
— Generic goal and successor functions
— Generic heuristics (no domain specific expertise).



CSPs --- what is a solution?

e A state is an assignment of values to some or all variables.
— An assignment is complete when every variable has a value.
— An assignment is partial when some variables have no values.

e Consistent assignment

assignment does not violate the constraints

e A solution to a CSP is a complete and consistent assignment.

e Some CSPs require a solution that maximizes an objective function.

e Examples of Applications:

Scheduling the time of observations on the Hubble Space Telescope
Airline schedules

Cryptography

Computer vision -> image interpretation

Scheduling your MS or PhD thesis exam ©



CSP example: map coloring
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e Variables: WA, NT, Q, NSW, V, SA, T

e Domains: D,={red,green,blue}

e (Constraints:adjacent regions must have different colors.
- E.g. WA =NT



CSP example: map coloring
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e Solutions are assignments satisfying all constraints, e.g.
{WA=red, NT=green,Q=red, NSW=green,V=red,SA=blue, T=green}



Graph coloring

e More general problem than map coloring

e Planar graph = graph in the 2d-plane with no edge crossings

e Guthrie’s conjecture (1852)
Every planar graph can be colored with 4 colors or less

— Proved (using a computer) in 1977 (Appel and Haken)



Constraint graphs

e Constraint graph:

e nodes are variables

e arcs are binary constraints

« Graph can be used to simplify search
e.g. Tasmania is an independent subproblem

(will return to graph structure later)



Varieties of CSPs

e Discrete variables

— Finite domains; size d =0(d") complete assignments.
e E.g. Boolean CSPs: Boolean satisfiability (NP-complete).

— Infinite domains (integers, strings, etc.)
e E.g. job scheduling, variables are start/end days for each job
e Need a constraint language e.g StartJob, +5 < StartJob;.
Infinitely many solutions
Linear constraints: solvable
Nonlinear: no general algorithm

e Continuous variables
— e.g. building an airline schedule or class schedule.
— Linear constraints solvable in polynomial time by LP methods.



VVarieties of constraints

e Unary constraints involve a single variable.
— e.g. SA =green

e Binary constraints involve pairs of variables.
— e.g. SA = WA

Higher-order constraints involve 3 or more variables.
— Professors A, B,and C cannot be on a committee together
— Can always be represented by multiple binary constraints

= Preference (soft constraints)

— e.g. red is better than green often can be represented by a cost for
each variable assignment

— combination of optimization with CSPs



CSP Example: Cryptharithmetic puzzle
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Variables: F T U W R O X; X5 X5
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F, T, U, W, R, O)
O+0=R+10- X4, etc.



CSP Example: Cryptharithmetic puzzle
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CSP as a standard search problem

e A CSP can easily be expressed as a standard search problem.

e |ncremental formulation

— Initial State: the empty assignment {}

— Actions (3™ ed.), Successor function (2"? ed.): Assign a value to an
unassigned variable provided that it does not violate a constraint

— Goal test: the current assignment is complete
(by construction it is consistent)

— Path cost: constant cost for every step (not really relevant)

e (Can also use complete-state formulation
— Local search techniques (Chapter 4) tend to work well



CSP as a standard search problem

e Solution is found at depth n (if there are n variables).

e Consider using BFS
— Branching factor b at the top level is nd
— At next level is (n-1)d

e end up with n/d" leaves even though there are only d” complete
assignments!



Commutativity

e (CSPs are commutative.

— The order of any given set of actions has no effect on the outcome.

— Example: choose colors for Australian territories one at a time
e [WA=red then NT=green] same as [NT=green then WA=red]

e All CSP search algorithms can generate successors by
considering assignments for only a single variable at each node
In the search tree

= there are d" leaves

(will need to figure out later which variable to assign a value to at
each node)



Backtracking search

« Similar to Depth-first search, generating children one at a time.

e Chooses values for one variable at a time and backtracks when a
variable has no legal values left to assign.

e Uninformed algorithm
— No good general performance



Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , ¢csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
iIf assignment is complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp]
then

add {var=value} to assignment
result < RECURSIVE-BACTRACKING(assignment, csp)
if result = failure then return result

remove {var=value} from assignment
return failure



Backtracking example
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Backtracking example
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Backtracking example
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Comparison of CSP algorithms on different problems

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts
USA (> 1,000K) (> 1,000K) 2K 60 64
n-Queens (> 40,000K) 13,500K (>40,000K) 817K 4K
Zebra 3.859K IK 35K 0.5K 2K
Random | 415K 3K 20K 2K
Random 2 942K 27K TIK 15K

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3" ed.); exercise 5.13 (2" ed.)




Improving CSP efficiency

e Previous improvements on uninformed search
— introduce heuristics

e For CSPS, general-purpose methods can give large gains in
speed, e.g.,
— Which variable should be assigned next?
— In what order should its values be tried?
— Can we detect inevitable failure early?
— Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the
heuristics are more general compared to methods in Chapter 4



Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , ¢csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
iIf assignment is complete then return assignment
var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp]

then

add {var=value} to assignment
result <+ RRECURSIVE-BACTRACKING(assignment, csp)
if result = failure then return result

remove {var=value} from assignment
return failure



Minimum remaining values (MRV)
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var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

e A_k.a. most constrained variable heuristic

e Heuristic Rule: choose variable with the fewest legal moves
— e.g., will immediately detect failure if X has no legal values



Degree heuristic for the initial variable
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e Heuristic Rule: select variable that is involved in the largest number of
constraints on other unassigned variables.

e Degree heuristic can be useful as a tie breaker.

e In what order should a variable’s values be tried?



Least constraining value for value-ordering

“ I‘ Allows 1 value for SA
oo ¢H;<
‘ Allows 0 values for SA

e Least constraining value heuristic

e Heuristic Rule: given a variable choose the least constraining value
— leaves the maximum flexibility for subsequent variable assignments



Forward checking
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e Can we detect inevitable failure early?
— And avoid it later?

e Forward checking idea: keep track of remaining legal values for
unassigned variables.

e Terminate search when any variable has no legal values.



Forward checking
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e Assign {WA=red}

= Effects on other variables connected by constraints to WA
— NT can no longer be red
— SA can no longer be red
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Effects on other variables connected by constraints with WA

— NT can no longer be green
— NSW can no longer be green
— SA can no longer be green

MRV heuristic would automatically select NT or SA next



Forward checking

SR ST S-EA BN G

e e @

I IO I I ey I I @ @
ErjmsEE 0 O
O,

e If Vis assigned blue

e Effects on other variables connected by constraints with WA
— NSW can no longer be blue
— SA is empty

e FC has detected that partial assignment is inconsistent with the constraints and
backtracking can occur.



Example: 4-Queens Problem
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Example: 4-Queens Problem
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Example: 4-Queens Problem
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Example: 4-Queens Problem
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Example: 4-Queens Problem
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Comparison of CSP algorithms on different problems

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts
USA (> 1,000K) (> 1,000K) 2K 60 64
n-Queens (> 40,000K) 13,500K (>40,000K) 817K 4K
Zebra 3.859K IK 35K 0.5K 2K
Random | 415K 3K 20K 2K
Random 2 942K 27K TIK 15K

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50
Zebra: see exercise 5.13




Constraint propagation
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e Solving CSPs with combination of heuristics plus forward checking is
more efficient than either approach alone

e FC checking does not detect all failures.
— E.g., NT and SA cannot be blue



Constraint propagation

e Techniques like CP and FC are in effect eliminating parts of the
search space

— Somewhat complementary to search

e (Constraint propagation goes further than FC by repeatedly
enforcing constraints locally

— Needs to be faster than actually searching to be effective

e Arc-consistency (AC) is a systematic procedure for constraing
propagation



Arc consistency
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An Arc X — Y is consistent if @
for every value x of X there is some value y consistent with x
(note that this is a directed property)

e Consider state of search after WA and Q are assigned:

SA — NSW is consistent if
SA=blue and NSW=red



Arc consistency
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e X —> Yis consistent if
for every value x of X there is some value y consistent with x

e« NSW — SA is consistent if
NSW=red and SA=blue
NSW=blue and SA=7???



Arc consistency
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e Can enforce arc-consistency:
Arc can be made consistent by removing blue from NSW

e Continue to propagate constraints....
— Check V - NSW
— Not consistent for V = red
— Remove red from V



Arc consistency
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e Continue to propagate constraints....

e« SA — NT is not consistent
— and cannot be made consistent

e Arc consistency detects failure earlier than FC



Arc consistency checking

e (Can be run as a preprocessor or after each assignment
— Or as preprocessing before search starts

e AC must be run repeatedly until no inconsistency remains

e Trade-off

— Requires some overhead to do, but generally more effective than
direct search

— In effect it can eliminate large (inconsistent) parts of the state
space more effectively than search can

Need a systematic method for arc-checking

— If X loses a value, neighbors of X need to be rechecked:
I.e. iIncoming arcs can become inconsistent again
(outgoing arcs will stay consistent).



Arc consistency algorithm (AC-3)

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: ¢sp, a binary csp with variables {X;, X, ..., X,}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
iIf REMOVE-INCONSISTENT-VALUES(X], Xj) then
for each X, in NEIGHBORSI[X; ] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X], X)) return true iff we remove a value
removed « false
for each x in DOMAIN[X;] do
if no value y in DOMAINLX;] allows (X,y) to satisfy the constraints between X; and X;
then delete x from DOMAIN[X]]; removed « true
return removed

(from Mackworth, 1977)



Complexity of AC-3

e A binary CSP has at most n? arcs

e Each arc can be inserted in the queue d times (worst case)
— (X, Y): only d values of X to delete

e Consistency of an arc can be checked in O(d?) time
e Complexity is O(n? d3)

e Although substantially more expensive than Forward Checking,
Arc Consistency is usually worthwhile.



K-consistency

e Arc consistency does not detect all inconsistencies:
— Partial assignment { WA=red, NSW=red} is inconsistent.

e Stronger forms of propagation can be defined using the notion of k-
consistency.

e A CSP is k-consistent if for any set of k-1 variables and for any
consistent assignment to those variables, a consistent value can
always be assigned to any kth variable.

— E.g. 1-consistency = node-consistency
— E.g. 2-consistency = arc-consistency
— E.g. 3-consistency = path-consistency

e Strongly k-consistent:
— k-consistent for all values {k, k-1, ...2, 1}



Trade-offs

e Running stronger consistency checks...
— Takes more time

— But will reduce branching factor and detect more inconsistent
partial assignments

— No “free lunch”
e In worst case n-consistency takes exponential time

e Generally helpful to enforce 2-Consistency (Arc Consistency)

e Sometimes helpful to enforce 3-Consistency

e Higher levels may take more time to enforce than they save.



Further improvements

e Checking special constraints
— Checking Alldif(...) constraint
e E.g. {WA=red, NSW=red}
— Checking Atmost(...) constraint
e Bounds propagation for larger value domains

e Intelligent backtracking

— Standard form is chronological backtracking i.e. try different value for
preceding variable.

— More intelligent, backtrack to conflict set.

e Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

e Backjumping moves back to most recent element of the conflict set.
» Forward checking can be used to determine conflict set.



Local search for CSPs

e Use complete-state representation
— Initial state = all variables assigned values
— Successor states = change 1 (or more) values

For CSPs
— allow states with unsatisfied constraints (unlike backtracking)
— operators reassign variable values
— hill-climbing with n-queens is an example

Variable selection: randomly select any conflicted variable

e Value selection: min-conflicts heuristic

— Select new value that results in a minimum number of conflicts with the
other variables



Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
Inputs: ¢sp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current <« an initial complete assignment for csp

for /i = 1 to max_steps do
If current is a solution for csp then return current
var <« a randomly chosen, conflicted variable from VARIABLES[csp]
value <« the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current

return failure



Min-conflicts example 1
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Min-conflicts example 2

LT
¥ 5N R
BN
N EyN B
¥ 5 0B
N EE ¥
N¥E B B
BB B¥D

0 NN 2
¥ B B N
BE ¥R
N E¥N N
¥ 08NS
i EN

- g N
IWII& Nyl B B
EEON

e A two-step solution for an 8-queens problem using min-conflicts heuristic

e At each stage a queen is chosen for reassignment in its column

e The algorithm moves the queen to the min-conflict square breaking ties
randomly.



Comparison of CSP algorithms on different problems

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts
USA (> 1,000K) (> 1,000K) 2K 60 64
n-Queens (> 40,000K) 13,500K (>40,000K) 817K 4K
Zebra 3.859K IK 35K 0.5K 2K
Random | 415K 3K 20K 2K
Random 2 942K 27K TIK 15K

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50
Zebra: see exercise 6.7 (3" ed.); exercise 5.13 (2" ed.)




Advantages of local search

e Local search can be particularly useful in an online setting
— Airline schedule example
e E.g., mechanical problems require than 1 plane is taken out of service
e Can locally search for another “close” solution in state-space

= Much better (and faster) in practice than finding an entirely new
schedule

e The runtime of min-conflicts is roughly independent of problem size.
— Can solve the millions-queen problem in roughly 50 steps.

— Why?
e n-queens is easy for local search because of the relatively high
density of solutions in state-space



Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R:

number of variables

CPU|
time

]
crltlc_al
ratio

Bections 3.7 and 4.4, Chapter 5 of AIMAZe 44



Graph structure and problem complexity

o T %

e Solving disconnected subproblems @

— Suppose each subproblem has c variables out of a total of n.

— Worst case solution cost is O(n/c d©), i.e. linear in n
e Instead of O(d "), exponential in n

e E.g.n= 80, c= 20, d=2
— 280 = 4 pillion years at 1 million nodes/sec.
— 4 * 220= 4 second at 1 million nodes/sec



Tree-structured CSPs

e Theorem:

— if a constraint graph has no loops then the CSP can be solved
in O(nd 2) time
— linear in the number of variables!

e Compare difference with general CSP, where worst case is O(d ")



Algorithm for Solving Tree-structured CSPs

— Choose some variable as root, order variables from root to leaves such that
every node’s parent precedes it in the ordering.
e Label variables from X, to X))
= Every variable now has 1 parent

(A B
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(a) (b)

— Backward Pass
= For j from n down to 2, apply arc consistency to arc [Parent(X)), X)) ]
= Remove values from Parent(X)) if needed

— Forward Pass
= For jfrom 1 to n assign X; consistently with Parent(X;)



Tree CSP Example
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Tree CSP Example
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Tree CSP Example
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Tree CSP complexity

e Backward pass
— n arc checks
— Each has complexity d? at worst

e Forward pass
— n variable assignments, O(nd)

— Overall complexity is O(nd 2)

Algorithm works because if the backward pass succeeds, then
every variable by definition has a legal assignment in the
forward pass



What about non-tree CSPs?

e General idea is to convert the graph to a tree

2 general approaches

1. Assign values to specific variables (Cycle Cutset method)

2. Construct a tree-decomposition of the graph
- Connected subproblems (subgraphs) form a tree structure



Cycle-cutset conditioning

e Choose a subset S of variables from the graph so that graph
without S is a tree

— S = “cycle cutset”

e For each possible consistent assignment for S

— Remove any inconsistent values from remaining variables that are
inconsistent with S

— Use tree-structured CSP to solve the remaining tree-structure
e If it has a solution, return it along with S
e If not, continue to try other assignments for S



Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
D—c O—@
P NG
O O
©, O,

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d® - (n — c)d?), very fast for small ¢

Sections 5.7 and 4.4, Chaptler 5 of AIMAZe

kL]



Finding the optimal cutset

e If c is small, this technique works very well

e However, finding smallest cycle cutset is NP-hard
— But there are good approximation algorithms



Tree Decompositions




Rules for a Tree Decomposition

e Every variable appears in at least one of the subproblems

e If two variables are connected in the original problem, they
must appear together (with the constraint) in at least one
subproblem

e If a variable appears in two subproblems, it must appear in
each node on the path.



Tree Decomposition Algorithm

e View each subproblem as a “super-variable”
— Domain = set of solutions for the subproblem
— Obtained by running a CSP on each subproblem

— E.g., 6 solutions for 3 fully connected variables in map problem

e Now use the tree CSP algorithm to solve the constraints
connecting the subproblems

— Declare a subproblem a root node, create tree
— Backward and forward passes

e Example of “divide and conquer” strategy



Complexity of Tree Decomposition

e Many possible tree decompositions for a graph

e Tree-width of a tree decomposition = 1 less than the size of
the largest subproblem

e Tree-width of a graph = minimum tree width
e |If a graph has tree width w, then solving the CSP can be

done in O(n d¥*1) time (why?)
— CSPs of bounded tree-width are solvable in polynomial time

e Finding the optimal tree-width of a graph is NP-hard, but good
heuristics exist.



Summary

CSPs

— special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

e Backtracking=depth-first search with one variable assigned per node

e Heuristics
— Variable ordering and value selection heuristics help significantly

e Constraint propagation does additional work to constrain values and
detect inconsistencies

— Works effectively when combined with heuristics
e [|terative min-conflicts is often effective in practice.

e Graph structure of CSPs determines problem complexity
— e.g., tree structured CSPs can be solved in linear time.



