### **Constraint Satisfaction Problems**

Reading:

Chapter 6 (3<sup>rd</sup> ed.); Chapter 5 (2<sup>nd</sup> ed.)

For next week:

Tuesday: Chapter 7

Thursday: Chapter 8

### **Outline**

- What is a CSP
- Backtracking for CSP
- Local search for CSPs
- Problem structure and decomposition

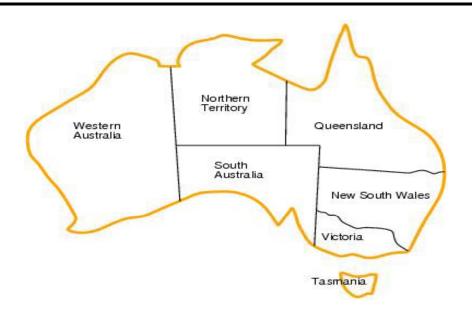
#### **Constraint Satisfaction Problems**

- What is a CSP?
  - Finite set of variables  $X_1$ ,  $X_2$ , ...,  $X_n$
  - Nonempty domain of possible values for each variable  $D_1, D_2, ..., D_n$
  - Finite set of constraints  $C_1$ ,  $C_2$ , ...,  $C_m$ 
    - Each constraint C<sub>i</sub> limits the values that variables can take,
    - e.g.,  $X_1 \neq X_2$
  - Each constraint  $C_i$  is a pair <scope, relation>
    - Scope = Tuple of variables that participate in the constraint.
    - Relation = List of allowed combinations of variable values.
       May be an explicit list of allowed combinations.
       May be an abstract relation allowing membership testing and listing.
- CSP benefits
  - Standard representation pattern
  - Generic goal and successor functions
  - Generic heuristics (no domain specific expertise).

#### **CSPs --- what is a solution?**

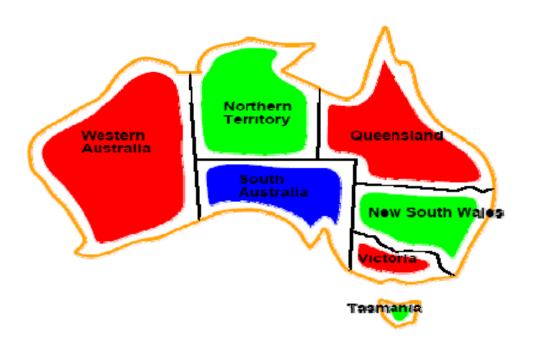
- A state is an assignment of values to some or all variables.
  - An assignment is *complete* when every variable has a value.
  - An assignment is partial when some variables have no values.
- Consistent assignment
  - assignment does not violate the constraints
- A solution to a CSP is a complete and consistent assignment.
- Some CSPs require a solution that maximizes an objective function.
- Examples of Applications:
  - Scheduling the time of observations on the Hubble Space Telescope
  - Airline schedules
  - Cryptography
  - Computer vision -> image interpretation
  - Scheduling your MS or PhD thesis exam ©

### **CSP** example: map coloring



- Variables: WA, NT, Q, NSW, V, SA, T
- Domains:  $D_i = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors.
  - E.g. *WA* ≠ *NT*

### **CSP** example: map coloring



Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

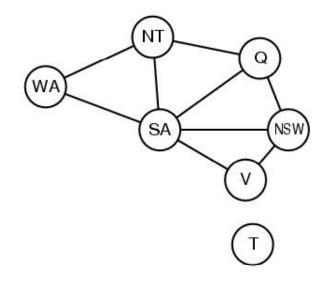
### **Graph coloring**

- More general problem than map coloring
- Planar graph = graph in the 2d-plane with no edge crossings
- Guthrie's conjecture (1852)

  Every planar graph can be colored with 4 colors or less
  - Proved (using a computer) in 1977 (Appel and Haken)

## **Constraint graphs**

- Constraint graph:
  - nodes are variables
  - arcs are binary constraints



Graph can be used to simplify search

 e.g. Tasmania is an independent subproblem

(will return to graph structure later)

#### **Varieties of CSPs**

- Discrete variables
  - Finite domains; size  $d \Rightarrow O(d^n)$  complete assignments.
    - E.g. Boolean CSPs: Boolean satisfiability (NP-complete).
  - Infinite domains (integers, strings, etc.)
    - E.g. job scheduling, variables are start/end days for each job
    - Need a constraint language e.g  $StartJob_1 + 5 \le StartJob_3$ .
    - Infinitely many solutions
    - Linear constraints: solvable
    - Nonlinear: no general algorithm
- Continuous variables
  - e.g. building an airline schedule or class schedule.
  - Linear constraints solvable in polynomial time by LP methods.

#### Varieties of constraints

- Unary constraints involve a single variable.
  - e.g. SA ≠ green
- Binary constraints involve pairs of variables.
  - e.g. SA ≠ WA
- Higher-order constraints involve 3 or more variables.
  - Professors A, B, and C cannot be on a committee together
  - Can always be represented by multiple binary constraints
- Preference (soft constraints)
  - e.g. red is better than green often can be represented by a cost for each variable assignment
  - combination of optimization with CSPs

### **CSP Example: Cryptharithmetic puzzle**

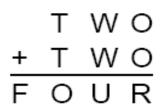
Variables:  $F T U W R O X_1 X_2 X_3$ 

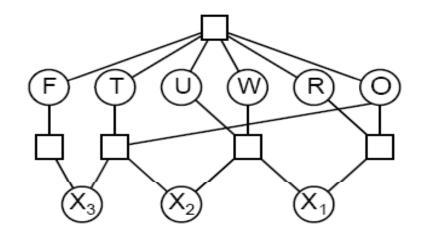
Domains:  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Constraints

alldiff(F, T, U, W, R, O)  $O + O = R + 10 \cdot X_1$ , etc.

### **CSP Example: Cryptharithmetic puzzle**





Variables:  $F T U W R O X_1 X_2 X_3$ 

Domains:  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Constraints

 $\mathit{alldiff}(F,T,U,W,R,O)$ 

 $O+O=R+10\cdot X_1$ , etc.

#### CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.
- Incremental formulation
  - Initial State: the empty assignment {}
  - Actions (3<sup>rd</sup> ed.), Successor function (2<sup>nd</sup> ed.): Assign a value to an unassigned variable provided that it does not violate a constraint
  - Goal test: the current assignment is complete (by construction it is consistent)
  - Path cost: constant cost for every step (not really relevant)
- Can also use complete-state formulation
  - Local search techniques (Chapter 4) tend to work well

### CSP as a standard search problem

- Solution is found at depth *n* (if there are *n* variables).
- Consider using BFS
  - Branching factor b at the top level is nd
  - At next level is (n-1)d
  - **—** ....
- end up with  $n!d^n$  leaves even though there are only  $d^n$  complete assignments!

### Commutativity

- CSPs are commutative.
  - The order of any given set of actions has no effect on the outcome.
  - Example: choose colors for Australian territories one at a time
    - [WA=red then NT=green] same as [NT=green then WA=red]
- All CSP search algorithms can generate successors by considering assignments for only a single variable at each node in the search tree
  - $\Rightarrow$  there are  $d^n$  leaves

(will need to figure out later which variable to assign a value to at each node)

## **Backtracking search**

- Similar to Depth-first search, generating children one at a time.
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- Uninformed algorithm
  - No good general performance

### **Backtracking search**

```
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure if assignment is complete then return assignment var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment

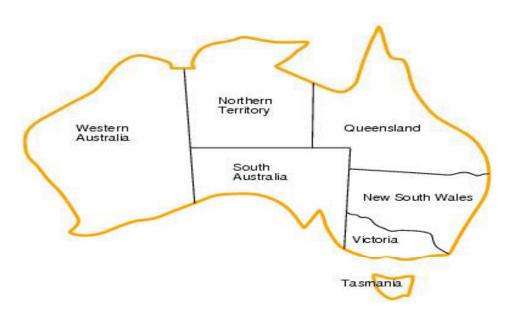
result ← RECURSIVE-BACTRACKING(assignment, csp)

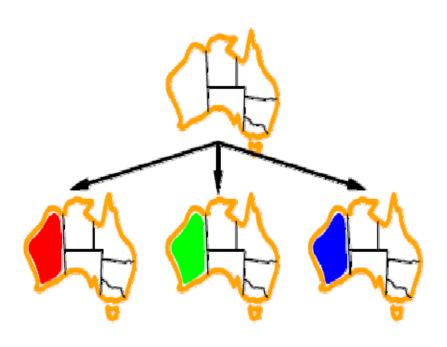
if result ≠ failure then return result

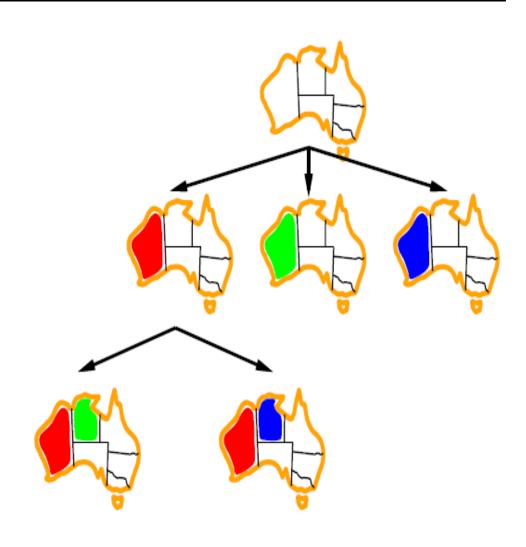
remove {var=value} from assignment

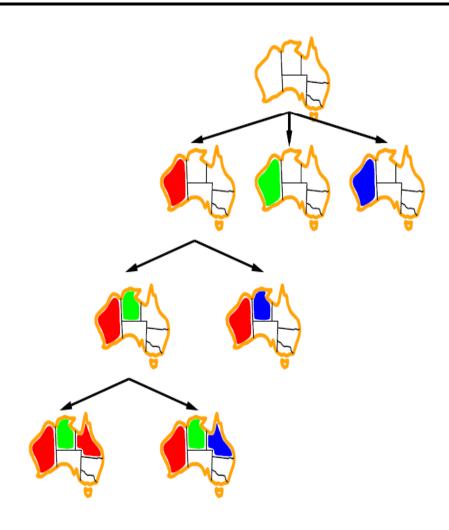
return failure
```

function BACKTRACKING-SEARCH(csp) return a solution or failure









### Comparison of CSP algorithms on different problems

| Problem                              | Backtracking                                        | BT+MRV                                   | Forward Checking                       | FC+MRV                          | Min-Conflicts  |
|--------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------|
| USA n-Queens Zebra Random 1 Random 2 | (> 1,000K)<br>(> 40,000K)<br>3,859K<br>415K<br>942K | (> 1,000K)<br>13,500K<br>1K<br>3K<br>27K | 2K<br>(> 40,000K)<br>35K<br>26K<br>77K | 60<br>817K<br>0.5K<br>2K<br>15K | 64<br>4K<br>2K |

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50

Zebra: see exercise 6.7 (3<sup>rd</sup> ed.); exercise 5.13 (2<sup>nd</sup> ed.)

### Improving CSP efficiency

- Previous improvements on uninformed search
  - → introduce heuristics
- For CSPS, general-purpose methods can give large gains in speed, e.g.,
  - Which variable should be assigned next?
  - In what order should its values be tried?
  - Can we detect inevitable failure early?
  - Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the heuristics are more general compared to methods in Chapter 4

### **Backtracking search**

```
function BACKTRACKING-SEARCH(csp) return a solution or failure return RECURSIVE-BACKTRACKING({}}, csp)
```

**function** RECURSIVE-BACKTRACKING(assignment, csp) **return** a solution or failure **if** assignment is complete **then return** assignment

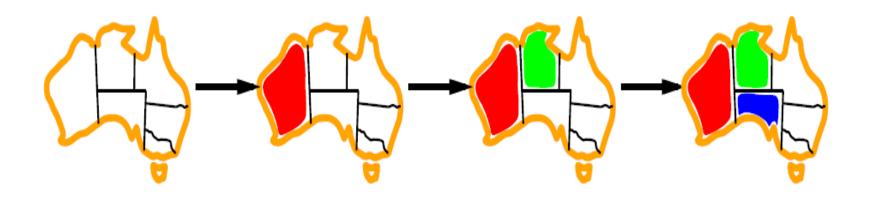
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]
then

add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment

return failure

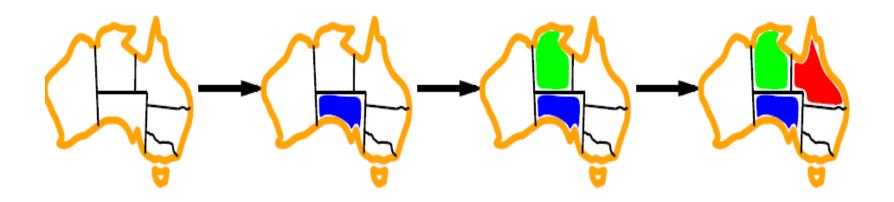
### Minimum remaining values (MRV)



var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

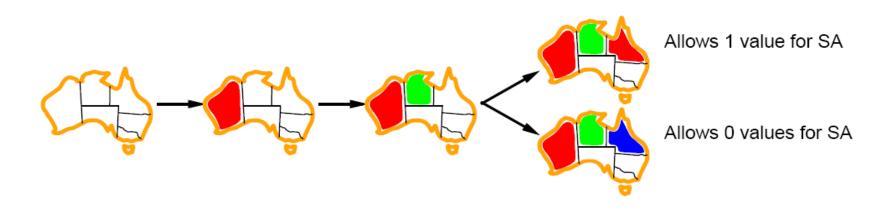
- A.k.a. most constrained variable heuristic
- Heuristic Rule: choose variable with the fewest legal moves
  - e.g., will immediately detect failure if X has no legal values

### Degree heuristic for the initial variable

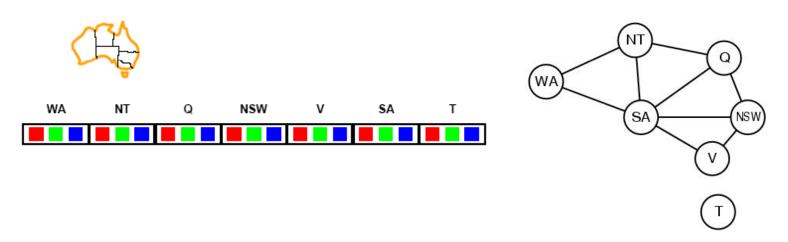


- Heuristic Rule: select variable that is involved in the largest number of constraints on other unassigned variables.
- Degree heuristic can be useful as a tie breaker.
- In what order should a variable's values be tried?

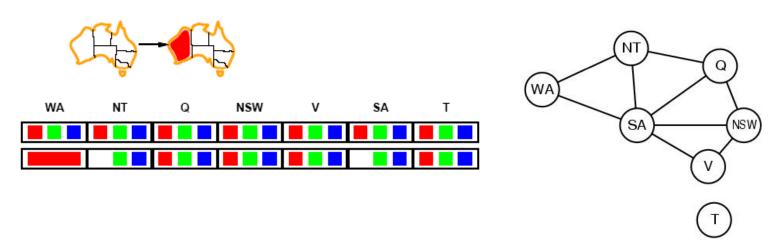
### Least constraining value for value-ordering



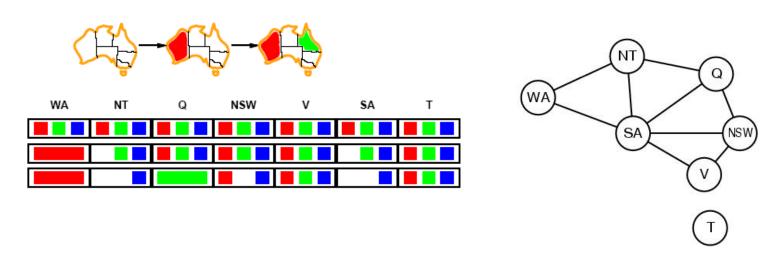
- Least constraining value heuristic
- Heuristic Rule: given a variable choose the least constraining value
  - leaves the maximum flexibility for subsequent variable assignments



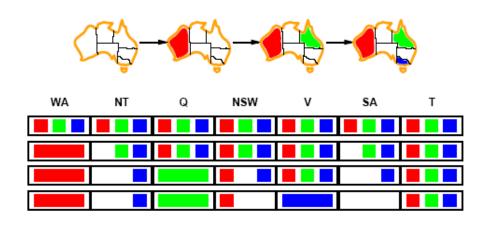
- Can we detect inevitable failure early?
  - And avoid it later?
- Forward checking idea: keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

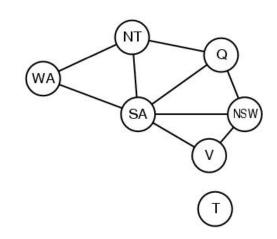


- Assign {WA=red}
- Effects on other variables connected by constraints to WA
  - NT can no longer be red
  - SA can no longer be red

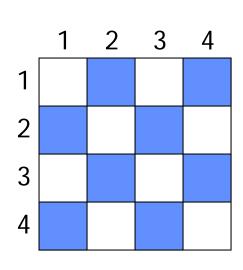


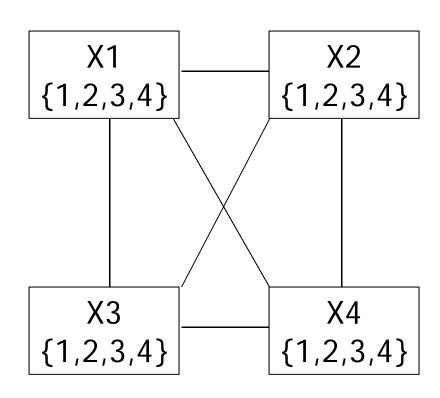
- Assign {Q=green}
- Effects on other variables connected by constraints with WA
  - NT can no longer be green
  - NSW can no longer be green
  - SA can no longer be green
- MRV heuristic would automatically select NT or SA next

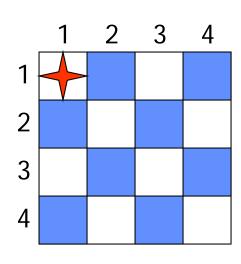


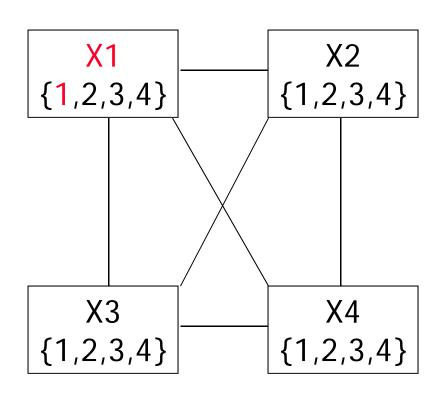


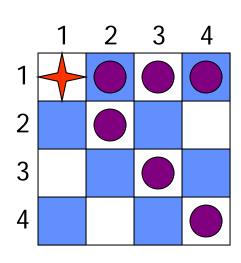
- If V is assigned blue
- Effects on other variables connected by constraints with WA
  - NSW can no longer be blue
  - SA is empty
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.

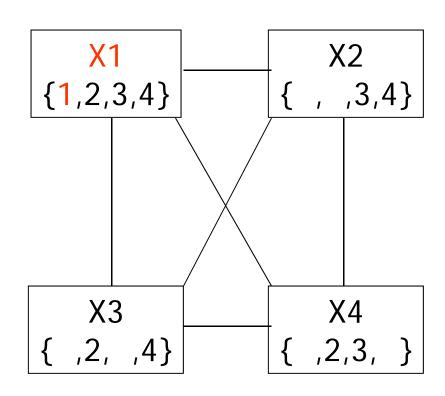


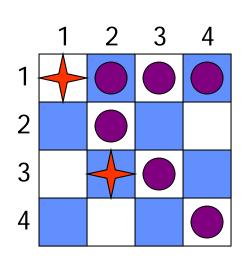


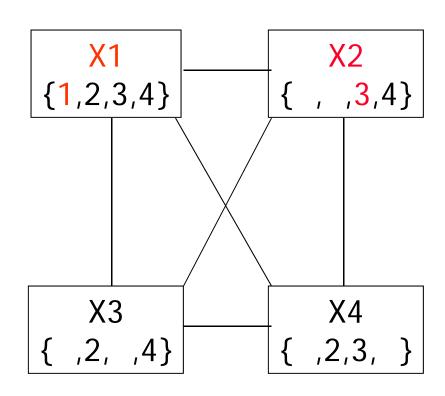


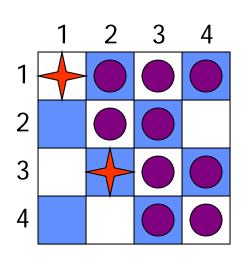


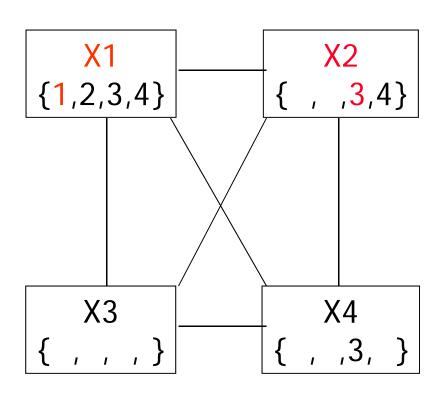


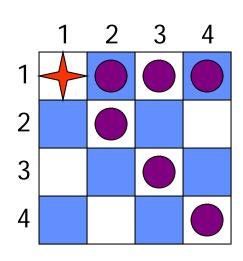


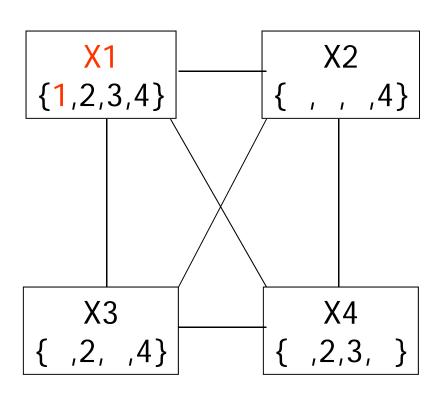


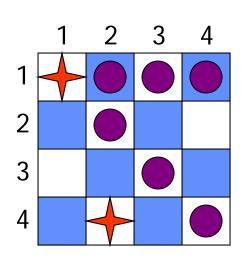


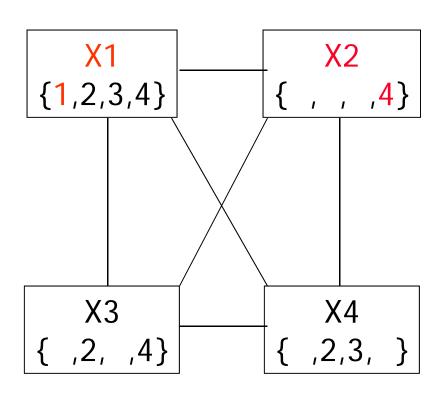


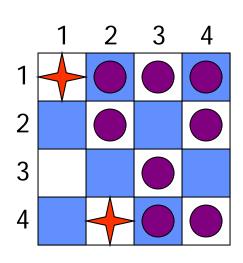


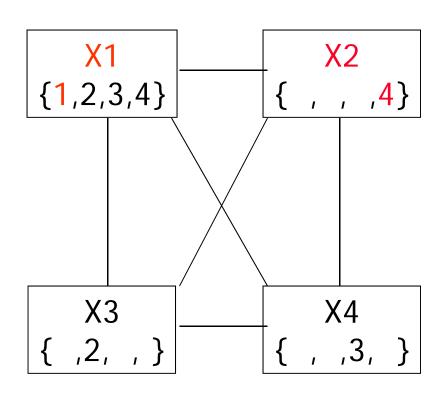


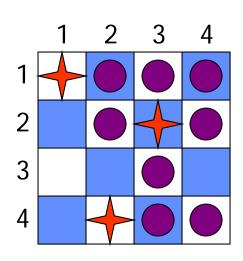


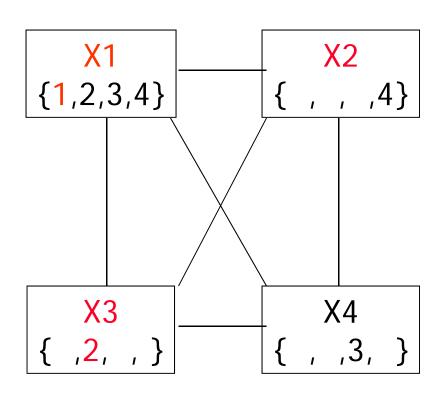




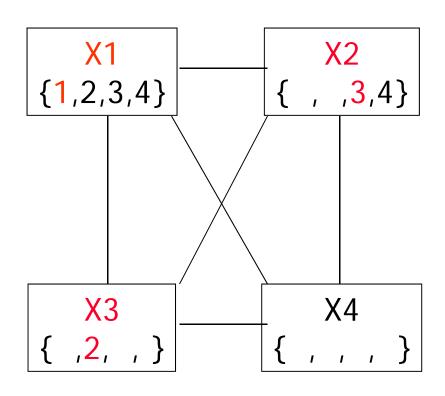












### Comparison of CSP algorithms on different problems

| Problem                              | Backtracking                                        | BT+MRV                                   | Forward Checking                       | FC+MRV                          | Min-Conflicts  |
|--------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------|
| USA n-Queens Zebra Random 1 Random 2 | (> 1,000K)<br>(> 40,000K)<br>3,859K<br>415K<br>942K | (> 1,000K)<br>13,500K<br>1K<br>3K<br>27K | 2K<br>(> 40,000K)<br>35K<br>26K<br>77K | 60<br>817K<br>0.5K<br>2K<br>15K | 64<br>4K<br>2K |

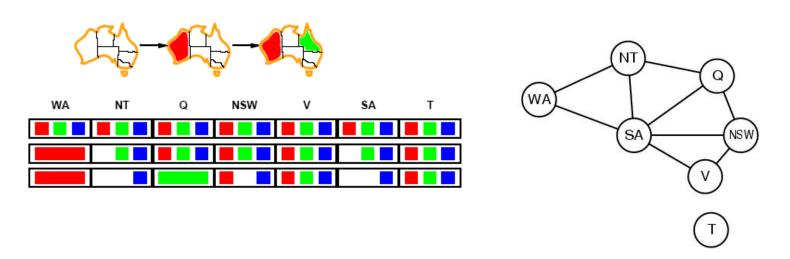
Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50 Zebra: see exercise 5.13

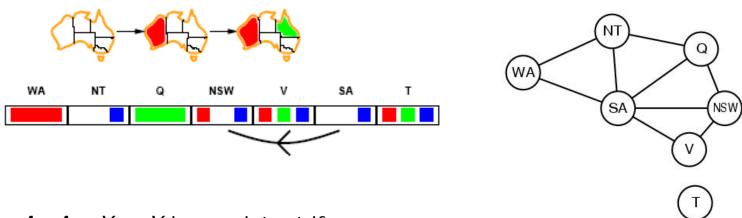
#### **Constraint propagation**



- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone
- FC checking does not detect all failures.
  - E.g., NT and SA cannot be blue

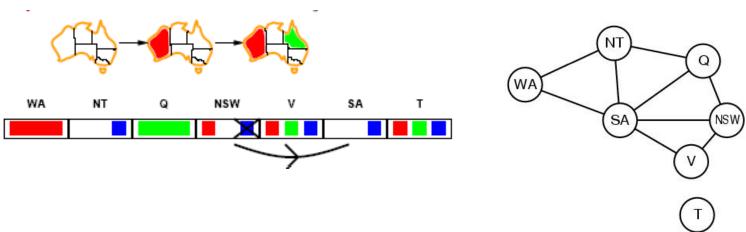
### **Constraint propagation**

- Techniques like CP and FC are in effect eliminating parts of the search space
  - Somewhat complementary to search
- Constraint propagation goes further than FC by repeatedly enforcing constraints locally
  - Needs to be faster than actually searching to be effective
- Arc-consistency (AC) is a systematic procedure for constraing propagation

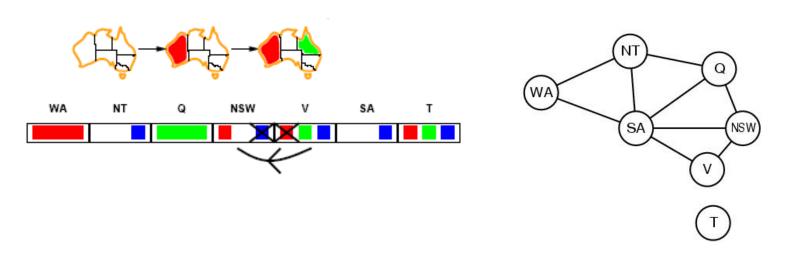


- An Arc X → Y is consistent if
   for every value x of X there is some value y consistent with x
   (note that this is a directed property)
- Consider state of search after WA and Q are assigned:

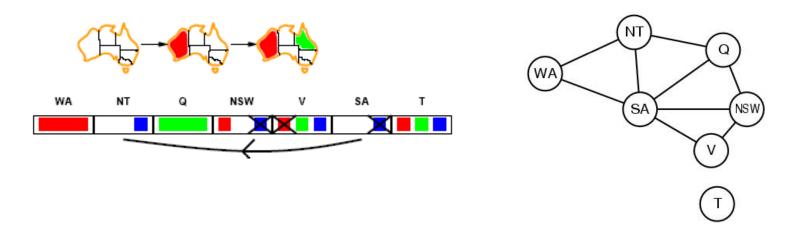
$$SA \rightarrow NSW$$
 is consistent if  $SA=blue$  and  $NSW=red$ 



- X → Y is consistent if
   for *every* value x of X there is some value y consistent with x
- NSW → SA is consistent if NSW=red and SA=blue NSW=blue and SA=???



- Can enforce arc-consistency:
   Arc can be made consistent by removing blue from NSW
- Continue to propagate constraints....
  - Check  $V \rightarrow NSW$
  - Not consistent for V = red
  - Remove red from V



- Continue to propagate constraints....
- $SA \rightarrow NT$  is not consistent
  - and cannot be made consistent
- Arc consistency detects failure earlier than FC

#### Arc consistency checking

- Can be run as a preprocessor or after each assignment
  - Or as preprocessing before search starts
- AC must be run repeatedly until no inconsistency remains
- Trade-off
  - Requires some overhead to do, but generally more effective than direct search
  - In effect it can eliminate large (inconsistent) parts of the state space more effectively than search can
- Need a systematic method for arc-checking
  - If X loses a value, neighbors of X need to be rechecked:
    - i.e. incoming arcs can become inconsistent again (outgoing arcs will stay consistent).

#### Arc consistency algorithm (AC-3)

```
function AC-3(csp) return the CSP, possibly with reduced domains
    inputs: csp, a binary csp with variables \{X_1, X_2, ..., X_n\}
    local variables: queue, a queue of arcs initially the arcs in csp
    while queue is not empty do
            (X_i, X_i) \leftarrow REMOVE-FIRST(queue)
            if REMOVE-INCONSISTENT-VALUES (X_i, X_i) then
                       for each X_k in NEIGHBORS[X_i] do
                        add (X_i, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_i) return true iff we remove a value
    removed \leftarrow false
    for each x in DOMAIN[X_i] do
            if no value y in DOMAIN[X_i] allows (x,y) to satisfy the constraints between X_i and X_i
           then delete x from DOMAIN[X_i]; removed \leftarrow true
    return removed
(from Mackworth, 1977)
```

### **Complexity of AC-3**

- A binary CSP has at most n<sup>2</sup> arcs
- Each arc can be inserted in the queue d times (worst case)
  - (X, Y): only d values of X to delete
- Consistency of an arc can be checked in O(d²) time
- Complexity is O(n<sup>2</sup> d<sup>3</sup>)
- Although substantially more expensive than Forward Checking, Arc Consistency is usually worthwhile.

#### **K-consistency**

- Arc consistency does not detect all inconsistencies:
  - Partial assignment {WA=red, NSW=red} is inconsistent.
- Stronger forms of propagation can be defined using the notion of kconsistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
  - E.g. 1-consistency = node-consistency
  - E.g. 2-consistency = arc-consistency
  - E.g. 3-consistency = path-consistency
- Strongly k-consistent:
  - k-consistent for all values {k, k-1, ...2, 1}

#### **Trade-offs**

- Running stronger consistency checks...
  - Takes more time
  - But will reduce branching factor and detect more inconsistent partial assignments
  - No "free lunch"
    - In worst case n-consistency takes exponential time
- Generally helpful to enforce 2-Consistency (Arc Consistency)
- Sometimes helpful to enforce 3-Consistency
- Higher levels may take more time to enforce than they save.

#### **Further improvements**

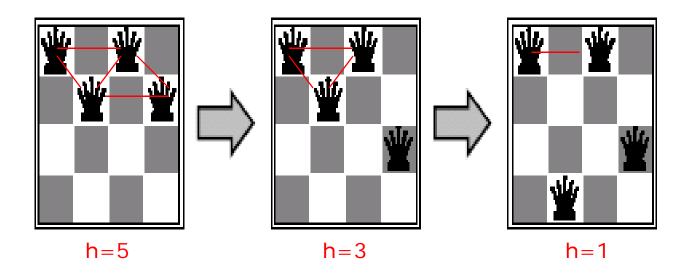
- Checking special constraints
  - Checking Alldif(...) constraint
    - *E.g.* {*WA=red, NSW=red*}
  - Checking Atmost(...) constraint
    - Bounds propagation for larger value domains
- Intelligent backtracking
  - Standard form is chronological backtracking i.e. try different value for preceding variable.
  - More intelligent, backtrack to conflict set.
    - Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
    - Backjumping moves back to most recent element of the conflict set.
    - Forward checking can be used to determine conflict set.

#### Local search for CSPs

- Use complete-state representation
  - Initial state = all variables assigned values
  - Successor states = change 1 (or more) values
- For CSPs
  - allow states with unsatisfied constraints (unlike backtracking)
  - operators reassign variable values
  - hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic
  - Select new value that results in a minimum number of conflicts with the other variables

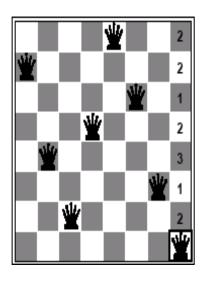
#### Local search for CSP

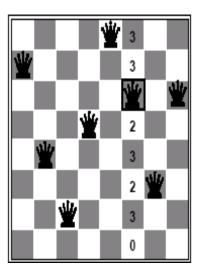
# Min-conflicts example 1

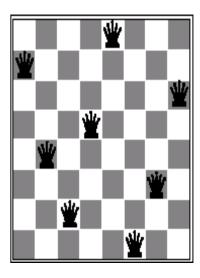


Use of min-conflicts heuristic in hill-climbing.

#### Min-conflicts example 2







- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

### Comparison of CSP algorithms on different problems

| Problem                              | Backtracking                                        | BT+MRV                                   | Forward Checking                       | FC+MRV                          | Min-Conflicts  |
|--------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------|
| USA n-Queens Zebra Random 1 Random 2 | (> 1,000K)<br>(> 40,000K)<br>3,859K<br>415K<br>942K | (> 1,000K)<br>13,500K<br>1K<br>3K<br>27K | 2K<br>(> 40,000K)<br>35K<br>26K<br>77K | 60<br>817K<br>0.5K<br>2K<br>15K | 64<br>4K<br>2K |

Median number of consistency checks over 5 runs to solve problem

Parentheses -> no solution found

USA: 4 coloring

n-queens: n = 2 to 50

Zebra: see exercise 6.7 (3<sup>rd</sup> ed.); exercise 5.13 (2<sup>nd</sup> ed.)

#### Advantages of local search

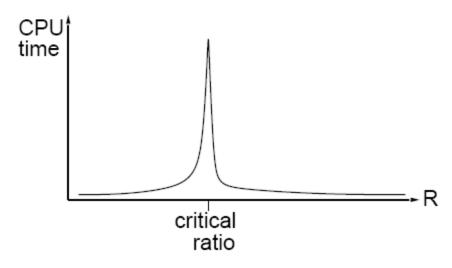
- Local search can be particularly useful in an online setting
  - Airline schedule example
    - E.g., mechanical problems require than 1 plane is taken out of service
    - Can locally search for another "close" solution in state-space
    - Much better (and faster) in practice than finding an entirely new schedule
- The runtime of min-conflicts is roughly independent of problem size.
  - Can solve the millions-queen problem in roughly 50 steps.
  - Why?
    - n-queens is easy for local search because of the relatively high density of solutions in state-space

#### Performance of min-conflicts

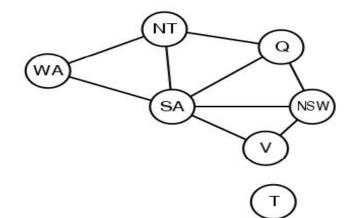
Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

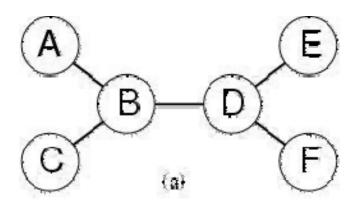


#### Graph structure and problem complexity



- Solving disconnected subproblems
  - Suppose each subproblem has *c* variables out of a total of *n*.
  - Worst case solution cost is  $O(n/c d^c)$ , i.e. linear in n
    - Instead of  $O(d^n)$ , exponential in n
- E.g. n = 80, c = 20, d = 2
  - 2<sup>80</sup> = 4 billion years at 1 million nodes/sec.
  - 4 \* 2<sup>20</sup>= .4 second at 1 million nodes/sec

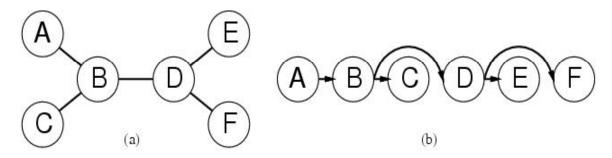
#### **Tree-structured CSPs**



- Theorem:
  - if a constraint graph has no loops then the CSP can be solved in  $O(nd^2)$  time
  - linear in the number of variables!
- Compare difference with general CSP, where worst case is O(d n)

### **Algorithm for Solving Tree-structured CSPs**

- Choose some variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering.
  - Label variables from  $X_1$  to  $X_n$ )
  - · Every variable now has 1 parent

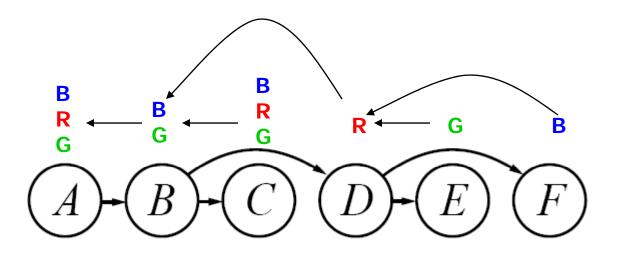


- Backward Pass
  - For j from n down to 2, apply arc consistency to arc [Parent( $X_j$ ),  $X_j$ ) ]
  - Remove values from Parent(X<sub>i</sub>) if needed
- Forward Pass
  - For j from 1 to n assign  $X_j$  consistently with Parent $(X_j)$



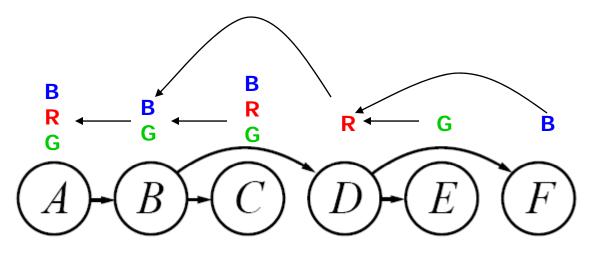
# **Tree CSP Example**

Backward Pass (constraint propagation)



# **Tree CSP Example**

Backward Pass (constraint propagation)



G

В

Forward Pass (assignment)



### **Tree CSP complexity**

- Backward pass
  - n arc checks
  - Each has complexity d<sup>2</sup> at worst
- Forward pass
  - n variable assignments, O(nd)
  - $\Rightarrow$  Overall complexity is  $O(nd^2)$

Algorithm works because if the backward pass succeeds, then every variable by definition has a legal assignment in the forward pass

#### What about non-tree CSPs?

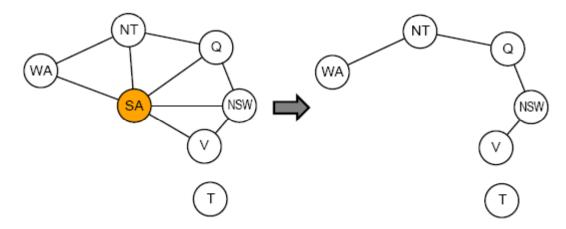
- General idea is to convert the graph to a tree
- 2 general approaches
- 1. Assign values to specific variables (Cycle Cutset method)
- 2. Construct a tree-decomposition of the graph
  - Connected subproblems (subgraphs) form a tree structure

#### **Cycle-cutset conditioning**

- Choose a subset S of variables from the graph so that graph without S is a tree
  - S = "cycle cutset"
- For each possible consistent assignment for S
  - Remove any inconsistent values from remaining variables that are inconsistent with S
  - Use tree-structured CSP to solve the remaining tree-structure
    - If it has a solution, return it along with S
    - If not, continue to try other assignments for S

### Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains



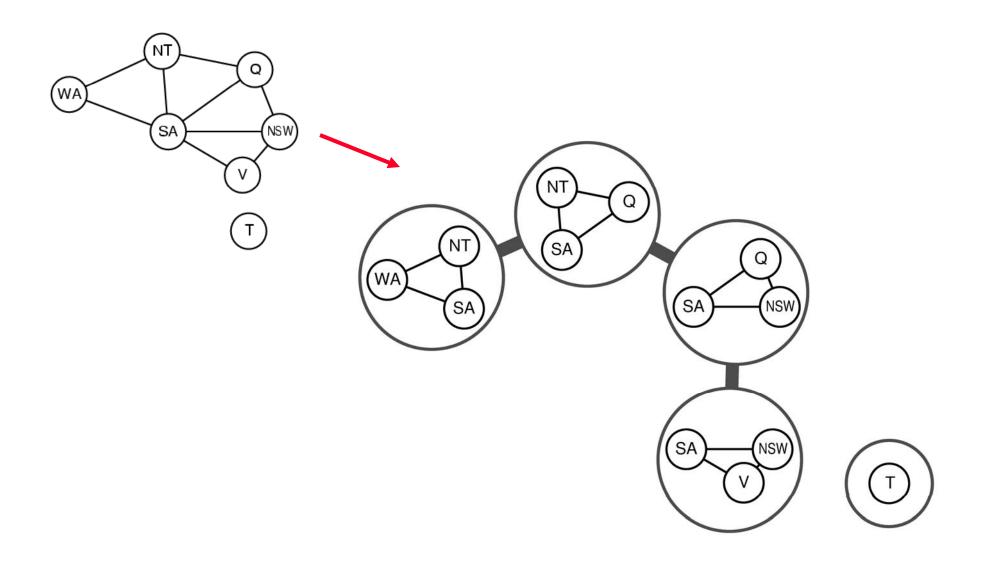
Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size  $c \;\Rightarrow\;$  runtime  $O(d^c \cdot (n-c)d^2)$ , very fast for small c

### Finding the optimal cutset

- If c is small, this technique works very well
- However, finding smallest cycle cutset is NP-hard
  - But there are good approximation algorithms

# **Tree Decompositions**



#### **Rules for a Tree Decomposition**

- Every variable appears in at least one of the subproblems
- If two variables are connected in the original problem, they must appear together (with the constraint) in at least one subproblem
- If a variable appears in two subproblems, it must appear in each node on the path.

#### **Tree Decomposition Algorithm**

- View each subproblem as a "super-variable"
  - Domain = set of solutions for the subproblem
  - Obtained by running a CSP on each subproblem
  - E.g., 6 solutions for 3 fully connected variables in map problem
- Now use the tree CSP algorithm to solve the constraints connecting the subproblems
  - Declare a subproblem a root node, create tree
  - Backward and forward passes
- Example of "divide and conquer" strategy

#### **Complexity of Tree Decomposition**

- Many possible tree decompositions for a graph
- Tree-width of a tree decomposition = 1 less than the size of the largest subproblem
- Tree-width of a graph = minimum tree width
- If a graph has tree width w, then solving the CSP can be done in O(n d<sup>w+1</sup>) time (why?)
  - CSPs of bounded tree-width are solvable in polynomial time

 Finding the optimal tree-width of a graph is NP-hard, but good heuristics exist.

#### **Summary**

- CSPs
  - special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Heuristics
  - Variable ordering and value selection heuristics help significantly
- Constraint propagation does additional work to constrain values and detect inconsistencies
  - Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
  - e.g., tree structured CSPs can be solved in linear time.