
CSE333, Autumn 2021L01: Intro, C Refresher

Welcome back everyone!

1

❖ Be compassionate and considerate of fellow classmates

▪ Excitement and anxiety about in-person return is normal

▪ We are here to help each other

▪ Be in touch early if we can help!

❖ Everyone must be masked

❖ No food or drink in lecture or sections

▪ Hydration: Taking quick sips of water is OK

CSE333, Autumn 2021L01: Intro, C Refresher

Intro, C Refresher
CSE 333 Autumn 2021

Instructor: Chris Thachuk

Teaching Assistants:

Arpad (John) Depaszthory Cosmo Wang

Ian Hsiao Khang Vinh Phan

Logan Gnanapragasam Maruchi Kim

Mengqi (Frank) Chen

CSE333, Autumn 2021L01: Intro, C Refresher

Introductions: Instructor

❖ Chris (he/him)

▪ From Canada (with lots of moving around)

• Windsor (CA) → Toronto (CA) → Vancouver (CA) →Mexico City (MX)
→ Vancouver (CA) → Oxford (UK) → Pasadena (USA) → Seattle (USA)

▪ I like: research, teaching, cycling, hiking, sci-fi

▪ As a high school student (many years ago) I won a contest and
was gifted a copy of “Visual Studio C++” and have been
programming in C/C++ ever since

▪ I research systems programming of molecules such as DNA!

3

int main(int argc, char** argv) {

make_triangle_from_DNA();

return EXIT_SUCCESS;

}

Chris

CSE333, Autumn 2021L01: Intro, C Refresher

Introductions: Teaching Assistants

▪ Available in section, office hours, and discussion group

▪ An invaluable source of information and help

❖ Get to know us (instructors + TAs)

▪ We are here to help you succeed!

4

Ian

Chris

John Cosmo

Khang Logan Maruchi Frank

CSE333, Autumn 2021L01: Intro, C Refresher

Introductions: Students

❖ ~150 students registered

▪ There are no overload forms or waiting lists for CSE courses

• Majors must add using the UW system as space becomes available

• Non-majors should work with undergraduate advisors (in the Gates
Center) to handle enrollment details

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ Indirect Prereq: CSE 143 – Classes, Inheritance, Basic Data
structures, and general good style practices

▪ CSE 391 or Linux skills needed for CSE 351 assumed

5

CSE333, Autumn 2021L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/21au/syllabus.html

▪ Digest here, but you must read the full details online

❖ Course Introduction

❖ C Reintroduction

6

CSE333, Autumn 2021L01: Intro, C Refresher

Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/14880/discussion/

▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office Hours: spread throughout the week

▪ Can fill out Google Form to schedule individual 1-on-1
appointments

❖ Anonymous feedback:

▪ Comments about anything related to the course where you would
feel better not attaching your name

7

CSE333, Autumn 2021L01: Intro, C Refresher

Course Components

❖ Lectures (28+2)
▪ Introduce the concepts; take notes!!!

❖ Sections (9)
▪ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

❖ Programming Exercises (~15)
▪ One due roughly every 2-4 days

▪ We are checking for: correctness, memory issues, code style/quality

❖ Programming Projects (0+4)
▪ Warm-up, then 4 “homework” that build on each other

❖ Takehome Exams (2)
▪ Midterm: will be around November 5

▪ Final: will be around December 15
8

CSE333, Autumn 2021L01: Intro, C Refresher

Grading

❖ Exercises: 30% total

▪ Submitted via GradeScope (under your UW email)

▪ Graded on correctness and style by autograders and TAs

❖ Projects: 40% total

▪ Submitted via GitLab; must tag commit that you want graded

▪ Binaries provided if you didn’t get previous part working

❖ Exams: Midterm (10%) and Final (15%)

▪ Take-home; not traditional 333 exams

❖ Course-wide Participation: 5%

▪ Many ways to earn credit here, relatively lenient on this

❖ More details on course website

▪ You must read the syllabus there – you are responsible for it
9

CSE333, Autumn 2021L01: Intro, C Refresher

Deadlines and Student Conduct

❖ Late policies

▪ Exercises: no late submissions accepted, due 10 am

▪ Homework: 5 late day “tokens” for quarter, max 2 per homework

▪ Need to get things done on time – difficult to catch up!

❖ Academic Integrity (read the full policy on the web)

▪ I trust you implicitly and will follow up if that trust is violated

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

▪ This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

10

CSE333, Autumn 2021L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/21au/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ C Reintroduction

11

CSE333, Autumn 2021L01: Intro, C Refresher

Course Map: 100,000 foot view

12

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2021L01: Intro, C Refresher

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

13

CSE333, Autumn 2021L01: Intro, C Refresher

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn, but oh-so-important,
especially for systems code

▪ Avoid write-once, read-never code

▪ Treat assignment submissions in this class as production code

• Comments must be updated, no commented-out code, no extra
(debugging) output

14

STYLE
TIP

CSE333, Autumn 2021L01: Intro, C Refresher

Style Grading in 333

❖ A style guide is a “set of standards for the writing,
formatting, and design of documents” – in this case, code

❖ No style guide is perfect

▪ Inherently limiting to coding as a form of expression/art

▪ Rules should be motivated (e.g., consistency, performance, safety,
readability), even if not everyone agrees

❖ In 333, we will use a subset of the Google C++ Style Guide

▪ Want you to experience adhering to a style guide

▪ Hope you view these more as design decisions to be considered
rather than rules to follow to get a grade

▪ We acknowledge that judgments of language implicitly encode
certain values and not others

15

CSE333, Autumn 2021L01: Intro, C Refresher

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/21au/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ C Reintroduction

▪ Workflow, Variables, Functions

16

CSE333, Autumn 2021L01: Intro, C Refresher

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ Most recently updated in 1999 (C99) and 2011 (C11)

• There’s also C17, which is a bug-fix version of C11.

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ “Weakly-typed” or “type-unsafe”

▪ Small, basic library compared to Java, C++, most others….

17

CSE333, Autumn 2021L01: Intro, C Refresher

C Workflow

Editor (emacs, vi) or IDE (VS Code)

18

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Autumn 2021L01: Intro, C Refresher

C to Machine Code

19

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

int* dest) {

*dest = x + y;

}

sumstore:

addl %edi, %esi

movl %esi, (%rdx)

ret

Machine code
(sumstore.o)

400575: 01 fe

89 32

c3

C compiler
(gcc –c)

CSE333, Autumn 2021L01: Intro, C Refresher

Generic C Program Layout

20

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

/* the innards */

}

/* define other functions */

STYLE
TIP

CSE333, Autumn 2021L01: Intro, C Refresher

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $ foo hello 87

▪ argc = 3

▪ argv[0]="foo", argv[1]="hello", argv[2]="87"

21

int main(int argc, char* argv[])

$ foo hello 87

CSE333, Autumn 2021L01: Intro, C Refresher

When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

• Return value from main is a status code

▪ Because of this, error handling is ugly and inelegant

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

22

STYLE
TIP

CSE333, Autumn 2021L01: Intro, C Refresher

Java vs. C (351 refresher)
❖ Are Java and C mostly similar (S) or significantly different

(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

23

Language Feature S/D Differences in C

Control structures S if-else if-else, switch, while, for

are all the same.

Primitive datatypes S/D S: same/similar names
D: char (ASCII, 1 byte), machine-dependent sizes, no
built-in boolean type, not initialized. Modifiers.

Operators S Almost all match. One notable difference is no >>> for
logical shift.

Casting D Java has type-safe casting, while C does not.

Arrays D Not objects; don’t know own length.

Memory management D Explicit memory management (malloc/free). No
automatic garbage collection.

CSE333, Autumn 2021L01: Intro, C Refresher

Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

24

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Autumn 2021L01: Intro, C Refresher

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

25

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {

int8_t a; // exactly 8 bits, signed

int16_t b; // exactly 16 bits, signed

int32_t c; // exactly 32 bits, signed

int64_t d; // exactly 64 bits, signed

uint8_t w; // exactly 8 bits, unsigned

...

}

STYLE
TIP

CSE333, Autumn 2021L01: Intro, C Refresher

Basic Data Structures

❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utilities

❖ Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

26

x h e l l o \n \0char* x = "hello\n";

CSE333, Autumn 2021L01: Intro, C Refresher

Function Definitions

❖ Generic format:

27

// sum of integers from 1 to max

int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

returnType fname(type param1, …, type paramN) {

// statements

}

CSE333, Autumn 2021L01: Intro, C Refresher

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

28

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return EXIT_SUCCESS;

}

// sum of integers from 1 to max

int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

CSE333, Autumn 2021L01: Intro, C Refresher

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

29

// sum of integers from 1 to max

int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return EXIT_SUCCESS;

}

sum_betterorder.c

CSE333, Autumn 2021L01: Intro, C Refresher

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types;
function definitions can then be in a logical order

▪ Function comment usually by the prototype

30

sum_declared.c // sum of integers from 1 to max

int32_t sumTo(int32_t); // func prototype

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return EXIT_SUCCESS;

}

int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

STYLE
TIP

CSE333, Autumn 2021L01: Intro, C Refresher

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself

▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing

▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use that thing

• Should appear before first use
31

CSE333, Autumn 2021L01: Intro, C Refresher

Multi-file C Programs

32

void sumstore(int x, int y, int* dest) {

*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {

int z, x = 351, y = 333;

sumstore(x, y, &z);

printf("%d + %d = %d\n", x, y, z);

return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:

$ gcc -o sumnum sumnum.c sumstore.c

Note: not good
style. More on
multiple files in
later lecture

<- used

CSE333, Autumn 2021L01: Intro, C Refresher

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

33

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Autumn 2021L01: Intro, C Refresher

Polling Question

❖ Which of the following statements is FALSE?

▪ Vote at http://PollEv.com/cse333

A. With the standard main() syntax, It is always safe
to use argv[0].

B. We can’t use uint64_t on a 32-bit machine
because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all linking is
done by the Linker.

E. We’re lost…
34

Discuss on Ed!

CSE333, Autumn 2021L01: Intro, C Refresher

To-do List

❖ Make sure you’re registered on Canvas, Ed Discussion,
Gradescope, and Poll Everywhere
▪ All user IDs should be your uw.edu email address

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE lab, attu, or CSE Linux VM

❖ Exercise 1 is due 10 am on Friday
▪ Find exercise spec on website, submit via Gradescope

• Course “CSE 333” under “Autumn 2021”, Assignment “Exercise 1”, then drag-
n-drop file(s)!

▪ Sample solution will be posted Friday afternoon

▪ Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

❖ Homework 0 is out later today

35

http://cs.uw.edu/333
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cinttypes/

