Introduction to Distance Sampling

Overview of wildlife population assessment methods
Plot sampling
Distance sampling
Basic idea
Types of distance sampling

Wildlife Population Assessment

How many are there?
What are their trends?
Why?
Vital rates (survival, fecundity, etc)
What might happen if...?
Scenario planning
Risk assessment
Decision support

Rapid assessment methods and indices

Perhaps emphasis is just on trends
Questionnaire surveys
e.g. UK adder survey

Presence/absence
e.g. UK otter surveys

Index methods
e.g., Point counts for birds (US Breeding Bird Survey)

Warning!
For estimating trends, must assume no trend in proportion detected

Methods of estimating abundance

-Complete census
-Plot sampling
-Distance sampling

- Mark-recapture
-Removal method

Complete census

Let

$N=$ population size (abundance)
$A=$ size of study region $=5000$
$D=$ animal density $=N / A$
Method: count everything!
$N=412$
$D=412 / 5000=0.0824$
Rarely possible in practice!

Plot sampling (or strip transect)

- Let
$k=$ number of strips $=5$
$L=$ total line length $=50 \times 5=250$
$w=$ the strip half-width $=1$
$a=$ area of region covered

$$
=2 w L=2 \times 1 \times 250=500
$$

$n=$ number of animals counted $=36$

Intuitive estimator of abundance

I saw 36 animals
| covered 500/5000 $=1 / 10^{\text {th }}$ of the study region
So, I estimate there are $36 /(1 / 10)=36 \times 10=360$ animals

$$
\hat{N}=\frac{n}{a / A}=\frac{n A}{a}=\frac{36 \times 5000}{500}=360
$$

(Hat "^" means an estimate.)

Concept - Plot sampling

Step 1: How many in covered region, N_{a} ?

$$
\text { Plot sampling: } \quad N_{a}=n
$$

Step 2: Given N_{a}, how many in study region, N If transects placed at random: $\hat{N}=\frac{N_{a}}{a / A}$
Overall: $\quad \hat{N}=\frac{n}{a / A}=\frac{n A}{a}=\frac{n A}{2 w L}$ for strip transects

Distance (line transect) sampling

- An extension of plot sampling where not all animals in the covered region are detected
- Here
$w=2$ (strip can be wider, as don't have
to see everything)
$a=1000$
$n=68$ (more animals seen)
- Let
$P_{a}=$ proportion of animals detected within covered region

- Imagine we know (or can
$A=5000$ estimate) $\quad \hat{P}_{a}=0.7$

CREEM

Intuitive estimator of abundance

I saw 68 animals
The estimated proportion seen was 0.7
So, I estimate the true number of animals in the strips was 68/0.7 $=97.1$
| covered $1000 / 5000=1 / 5^{\text {th }}$ of the study region
So, 1 estimate there are $97.1 /(1 / 5)=485.7$ animals

$$
\hat{N}=\frac{n / \hat{P}_{a}}{a / A}=\frac{n A}{a \hat{P}_{a}}=\frac{68 \times 5000}{1000 \times 0.7}=485.7
$$

Concept - Distance sampling

Step 1: How many in covered region, N_{a} ?
Distance sampling: $\quad \hat{N}_{a}=n / \hat{P}_{a}$
Step 2: Given N_{a}, how many in study region, N
If transects placed at random: $\hat{N}=\frac{\hat{N}_{a}}{a / A}$
Overall: $\quad \hat{N}=\frac{n / \hat{P}_{a}}{a / A}=\frac{n A}{a \hat{P}_{a}}=\frac{n A}{2 w L \hat{P}_{a}}$

- So how do we estimate P_{a} ?

Record perpendicular distance, x, from transect line to each observed object

Estimating P_{o}

University of
St Andrews

Estimating P_{o}

$$
\hat{P}_{a}=\frac{\text { area under curve }}{\text { area under rectangle }}
$$

Area of rectangle $=12 \times 2=24$
Area under curve $=0.25 \times(12+11.5+11+10.5+9+7+4+3)=17$
So

$$
\hat{P}_{a}=\frac{17}{24}=0.7
$$

University of St Andrews

