
Electromagnetic Waves

As the chart shows, the electromagnetic spectrum covers 
an extremely wide range of wavelengths—and 
frequencies.  Though the names indicate that these waves 
have a number of sources, they are all fundamentally the 
same:  an oscillating, propagating combination of electric 
and magnetic fields described by Maxwell’s Equations.



Mechanical waves

Before studying electromagnetic waves, we’ll consider 
mechanical waves that we can see with our eyes, or hear with 
our ears.  We shall see that many of the physical principles at 
work in these waves also apply to electromagnetic waves.



Transverse waves on a string

As the top diagram on the previous slide showed, one form of wave that 
can be sent down a string is a “pulse” of arbitrary shape.  But we are most 
interested in periodic waves, with a waveform that repeats after one 
“wavelength”, λ [m].  And, in many cases we will be studying “sinusoidal”, 
or “harmonic” waves, that have a fixed frequency, f [Hz = cycles/s].

This picture shows one way to produce 
such a wave on a string.  A mass attached 
to a spring is oscillating at its natural 
frequency f.  If we tie a string to this mass, 
the waves traveling away from the mass 
will have the same frequency, f.  That is, if 
we look at any location along the string we 
will see it moving up and down at f Hz.

But what determines the wavelength λ?? If the 
waves are moving away from the source slowly 
(rapidly), they will have a short (long) wavelength.  
So the speed of the wave, v [m/s], determines the 
wavelength.  The relationship is very simple:

fλυ =

[ ]m
s

cycles
s
m

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡



General characteristics of periodic waves

The speed of the wave, v, is characteristic of the medium in 
which the wave propagates, and the parameters of that medium.  
For example, for a string, the speed of the wave depends on the 
tension in the string, T, and its mass per unit length, μ.
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For a sinusoidal wave, the “waveform” will appear if we graph the wave as a 
function of position (left).   The period, T, (the time for one cycle at any chosen 
position), will appear if we graph the wave as a function of time (right):

In these graphs, “A” stands for the “amplitude” of the wave: its maximum excursion 
from zero.  Notice that these graphs are of the form y = -A sin(ax) for the left graph, 
and y = A sin(bt) for the right graph.  But… (1) What are a and b in terms of the 
parameters λ, and f or T ? and (2) How do we incorporate the wave speed v??



We have succeeded in relating the waveform and the temporal oscillations to 
wave parameters, but how do we describe a wave traveling at speed v?  We put 
both factors into the argument of the sine function.

Recapping, for all periodic 
waves, so far we have the 
following relationships:

For the left-hand graph we can rewrite a in terms of wavelength:   
(Check by letting x be an integral number of wavelengths.)

Equations applying to all periodic waves
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For the right-hand graph we can rewrite b in terms of period:  
(Check by letting t be an integral number of periods.)
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How do we find the velocity of this wave? By seeing 
how the “zero-crossings” move with time. For example, 
let’s find the position of the zero for y = sin(0):
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This wave is traveling 
to the left with speed v!



We just established that this equation describes a 
wave traveling to the left with speed            .  As 
you can quickly check, if we had put a minus sign
between the terms, we would be describing a wave 
traveling to the right (in the +x direction).

Equations applying to all periodic waves…

fλυ =
⎟
⎠
⎞

⎜
⎝
⎛ += t

T
xAy π

λ
π 22sin

For convenience, we usually write these equations in terms of “angular quantities”
so that the factors of 2π can be dropped.  For the factor involving time, this should 
look very familiar: 

ωππ
== f

T
22 the angular frequency

For the factor involving the spatial oscillations, or “waveform”: 

k=
λ
π2 the “wave number”

This is a new quantity, but it is just 2π times the number of wavelengths per meter.

With these constants, we can write equations for traveling waves very simply!
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First look at an electromagnetic wave

This is the waveform of an 
electromagnetic wave traveling in the 
+x direction with speed v = c = 
2.99792458 x 108 m/s.  All 
electromagnetic waves travel at this 
speed—the “speed of light”—in a 
vacuum.  

Electromagnetic waves consist of an oscillating electric 
field, E, coupled to an oscillating magnetic field, B, with 
the same wavelength and frequency.  These changing 
fields create and reinforce each other through the physical 
effects summarized in Faraday’s Law of Induction and the 
Ampere-Maxwell Law.  There are no charges or currents 
present—only free, propagating fields. 

We can describe this 
particular wave using 
the general equations 
from previous slides:
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First look at an electromagnetic wave…

The light wave shown here is “linearly polarized in the y direction”.  This means 
that its electric field oscillates in the y direction only.  Because E and B both 
oscillate perpendicular to the direction of motion, this is a transverse wave. But, in 
contrast to a wave on a string, there is no transverse displacement in y or z. This 
picture represents the electric and magnetic fields that would be measured along 
the x axis as the wave moves.

Derivation of the wave equation is long, and hard to remember. So we’ll “cartoon” it.
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What is a “wave equation” ?

A “wave equation” is a differential equation connecting the spatial shape of the 
wave to the time development of the wave, at a given location x and time t.    
As we’ll see, its solutions are the sinusoidal waves we’ve been discussing.
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For waves on a string:

For E or B components of 
electromagnetic waves:

Let’s illustrate this for Ey of the electromagnetic wave we’ve been studying:
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If we put these into the 
wave equation for Ei and 
cancel –Emaxcos(kx – ωt) 
we get:
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Yes, this satisfies the wave 
equation, and produces the 
correct velocity relationship. 
Similarly, so does Bi .



Relative magnitudes of  E and B in electromagnetic waves
In many situations, electric and magnetics fields have different 
sources, and their magnitudes are not related in any fundamental
way.  But for electromagnetic waves in vacuum or in materials, 
Faraday’s Law and the Ampere-Maxwell Law force them to be in a 
certain ratio.  The result in vacuum is, very simply:

cBE = (32.4 in text)



Electromagnetic waves in materials

Electromagnetic waves travel more slowly in materials than they do in vacuum.   
For visible light, we are most interested in transparent materials such as glasses, 
plastics, liquids (especially water), and gases.  The ratio of the speed of light in 
vacuum to the speed in the given material, is called the “index of refraction”, n:
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The table at right lists the index of refraction 
for a number of common (and uncommon) 
materials.  You can see the trend that the 
index of refraction rises with density.  If we 
want to calculate the speed of light in these 
materials, we solve for v above:
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General wave properties again:  Wave sources 
radiate power, as the waves carry away energy. 

1D

3D

2D

For perfect 1D systems, the 
energy put in by the source does 

not diminish with distance.

For 2D systems, such 
as ripples on a pond, 
the intensity (energy 

density along the wave 
front) drops off as 1/r 

from the source.

For 3D systems, such as 
point sources of light, the 
intensity (energy density 
per unit area in the wave 
front) drops off as 1/r2.



The power carried by a wave is proportional to A2

The upper graph is the sinusoidal wave picture 
we’ve seen before.  The lower graph is the 
square of the upper one, multiplied by some 
additional factors, to give the power delivered by 
the wave as a function of time.

For a string, the equations for these graphs are:
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For an electromagnetic wave (recall u):
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Notice that the intensity oscillates with time.  But in 
most situations with electromagnetic waves, we don’t 
observe these rapid oscillations.  (See next slide.)

Power or intensity depend on the square of the 
amplitude of the wave!



Quantities such as the power or 
intensity on the previous slide are called 
“instantaneous”, because at any given 
location they will fluctuate with time, 
proportional to the square of the sine 
function.  But since the fluctuations are 
rapid, we are often more interested in  
“averaged” power or intensity.

For a quantity that depends on the square of a 
sine or cosine the result is quite simple.  The 
average of these functions over an integral 
number of cycles is half the maximum value.  For 
the case of power, this is shown by the dashed 
line at Pav . This makes sense because the 
function is symmetric about the line:  P spends 
the same time at a given value above the line as 
at a corresponding point at equal distance below 
the line.

So from the instantaneous 
intensity on the previous 
slide, we can write down 
the average intensity in an 
electromagnetic wave:

or,
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Superposition of waves
Using the example of pulses on a string, we can see that wave disturbances 
add (superpose).  “Perfect” wave systems are linear. For electromagnetic 
waves, this is not surprising since we knew already that E and B obey the 
superposition principle, and electromagnetic waves are made from these fields. 

Sketch the case of two gaussian pulses (one inverted) passing through 
each other.  After the string “goes flat”, how do they re-emerge?



Constructive and destructive interference in 1D

Imagine that we have two sources creating two waves of the same 
frequency, traveling in the same direction, in the same region of space.  

The superposition principle say that we simply add them.  What do we get?

In 
phase

Out of 
phase

Constructive interference Destructive interference

Note:  “Interference” means that they are “adding”.  But it does not mean that 
they are “interacting” (changing each other’s wave properties)!

v

What happens if they are traveling in opposite directions instead of the same 
direction?



EM waves interfering in 1D: some possibilities

If we have two 1D waves interfering in some region, how do we write down 
the solution?  Easy!  Superposition tells us to just add the solutions.  For 

the example of electromagnetic waves, we’ll look at the general solution for 
the total electric field.  (The magnetic field solutions would look similar.)

For the two cases plotted on the previous slide, we would choose the minus sign 
for travel to the right, and make the wave numbers and frequencies equal:

Constructive interference,φ=0:

If they are equal magnitude, traveling in opposite directions, what do we get ?
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These waves are adding to create a “standing wave”, vibrating with amplitude E and 
frequency ω. with zeroes (nodes) in fixed positions along the x-axis. More later!



Two-path interferometer. (Michelson inteferometer.)

This is one way to create two light beams of the same frequency 
traveling in the same direction, with adjustable relative phase.

The length of path 2 may 
be changed by moving 
mirror M2.  The path length 
difference between routes 
1 and 2 is Δd=2(L2 – L1), 
since each of the lengths is 
traveled twice in each path.  
When Δd is an integral 
number of wavelengths, 
nλ, the light waves are in 
phase at the eye and bright 
spot is seen.  For half-
integral wavelengths, no 
light is seen along the line 
of the beam. 



Constructive and destructive interference in 2D

Single source 
(half view)

Three sources

Two sources

These are waves on the surface of water in a 
“ripple tank”.  The drivers have small points 
touching the water surface, and all are operating 
at the same frequency.  For one source we see a 
2d wave traveling outward.  For multiple sources, 
we see a complex pattern of constructive and 
destructive interference in 2D.

Imagine the patterns you would see in 3D!



Huygens’ principle

Christiaan Huygens, 1629–1695

Christiaan Huygens was a mathematician, 
astronomer and physicist. The Huygens–
Fresnel principle (named for Dutch physicist
Christiaan Huygens, and French physicist 
Augustin-Jean Fresnel) is a method of analysis 
applied to problems of wave propagation. It 
recognizes that each point of an advancing 
wave front is in fact the center of a fresh 
disturbance and the source of a new train of 
waves; and that the advancing wave as a whole 
may be regarded as the sum of all the 
secondary waves arising from points in the 
medium already traversed. This view of wave 
propagation helps better understand a variety of 
wave phenomena, such as diffraction. 



Huygens’ principle applied to a spherical wave in 3D

Wave front at time tA

Wave front at later time tB

Point source on 
the wave front at 

time tA

“Wavelet” from 
that point, at later 

time tB.        
(Small black arc.)

This is an example of a “convex”
wave front.  Use Huygens’ principle to 
determine how a “concave” wave 
front would develop with time.

Each point on an advancing wave front is 
a point source, or “wavelet”, which 
interferes constructively with other 

wavelets on the front to sustain the wave.  



Far from a point source: “plane waves”

This is another general property of waves.  The further you get from the source, 
the more gradual the curvature of the wave front.  In the “far field”, the wave fronts 
can be treated as planar.

2D ripple tank

3D Electromagnetic wave


