L7 – Model Evaluation and Improvement

- Evaluating models and selecting parameters with focus on:
 - Supervised methods: regression and classification
 - The method we have learned:
 - 1) Split our dataset: the train_test_split function
 - 2) Build a model on the training set: the **fit** method
 - 3) Evaluate on the test set: the score method
 - We are interested in measuring how well our model generalizes to new, previously unseen data
- Here we expend on two aspects of this evaluation:
 - cross-validation: a more robust assessment of generalization
 - grid search: an effective method for adjusting paramters

Cross-Validation

- Statistical method of evaluating generalization performance
 - The dataset is split repeatedly and multiple models are trained
 - Commonly used: k-fold cross-validation
 - With *k* a user-specified number, usually 5 or 10
- Steps of *k*-fold cross-validation
 - The data is first partitioned into k parts of (approximately) equal size, called folds
 - Next, a sequence of models is trained
 - In the end, we can collect k accuracy values

- Cross-validation is implemented in scikit-learn using the cross_val_score function from model_selection module
 - Parameters:
 - The model want to evaluate
 - The training data
 - The ground-truth labels

```
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
iris = load_iris() logreg = LogisticRegression()
scores = cross_val_score(logreg, iris.data, iris.target)
print("Cross-validation scores: {}".format(scores))
```

– Change the number of folds by changing the cv parameter scores = cross_val_score(logreg, iris.data, iris.target, cv=10) print("Cross-validation scores: {}".format(scores))

A common way to summarize the cross-validation accuracy: to compute the mean

print("Average cross-validation score: {:.2f}".format(scores.mean()))

- Observe a relatively high variance in the accuracy between folds
- This is caused by the small size of the dataset
- A second function for cross-validation is cross_validate, which returns a dictionary containing:
 - The training and test times
 - The training score (optional) and the test score

from sklearn.model_selection import cross_validate res = cross_validate(logreg_iris_data_iris_target_cv=5_return_

res = cross_validate(logreg, iris.data, iris.target, cv=5, return_train_score=True) display(res)

using pandas, the results can be nicely displayed

import pandas as pd

res_df = pd.DataFrame(res)

display(res_df)

```
print("Mean times and scores:\n", res_df.mean())
```

- Benefit of Cross-Validation
 - Avoid the unrealistic generate by the "lucky" or "unlucky" caused by the random splitting a dataset into training and test sets
 - The data is used more effectively
 - For 5-fold cross-validation, 80% data are used for training
 - For 10-fold, 90% data are used
- Disadvantage
 - Increased computational cost
 - Not a way to build a model that can be applied to new data
 - The purpose of cross-validation is only to evaluate how well a given algorithm will generalize when trained on a specific dataset
- It will be a problem when there is strong order in the dataset, e.g.
 from sklearn.datasets import load_iris

iris = load_iris()

```
print("Iris labels:\n{}".format(iris.target))
```

- To solve this problem, stratified *k*-fold cross-validation
 - Simple k-fold strategy failed on the datasets with strong order
 - Stratified *k*-fold cross-validation results in more reliable estimates of generalization performance
 - See how the cross-validation is generated in the stratified one

• More control of cross-validation can be realized

– Using the KFold splitter class from model_selection module from sklearn.model_selection import KFold kfold = KFold(n_splits=5)

print("Cross-validation scores:\n{}".format(cross_val_score(logreg, iris.data, iris.target, cv=kfold)))

When using three-fold, we can verify it is indeed a very bad idea
 kfold = KFold(n_splits=3)

print("Cross-validation scores:\n{}".format(cross_val_score(logreg, iris.data, iris.target, cv=kfold)))

- Another way to resolve this problem is to shuffle the data instead of stratifying the folds
 - Setting the shuffle parameter of KFold to be True
 - Setting a fixed value of random_state to get a reproducible shuffling

kfold = KFold(n_splits=3, shuffle=True, random_state=0)

print("Cross-validation scores:\n{}".format(cross_val_score(logreg, iris.data, iris.target, cv=kfold)))

- Another frequently used cross-validation method is *leave-one-out*
 - Consider as k-fold cross-validation where each fold is a single sample
 - Time-consuming; but may provides better estimates on small datasets

from sklearn.model_selection import LeaveOneOut

loo = LeaveOneOut()

scores = cross_val_score(logreg, iris.data, iris.target, cv=loo)

print("Number of cv iterations: ", len(scores))

print("Mean accuracy: {:.2f}".format(scores.mean()))

- Shuffle-split Cross-Validation
 - Each split samples train_size many points from the training set
 - Each split samples test_size many (disjoint) points from the test set
 - This splitting is repeated n_splits times

mglearn.plots.plot_shuffle_split()

Split 1			//////		[]]]]	/////		////	1111	- ZZ Training set
퉐 Split 2 문		\mathbb{Z}	////	$2\overline{777}$	\square	////		////	7777	- 🗾 Test set
Split 3 ₽	Z					////		////		- Not selected
Split 4			$\langle / / \rangle$		////	////			////	-
	1		1 1		1	1		1		
1	2	2	3 4	5	6	7	8	9	10	
					Data asiata					

- This shows a demo of four iterations of splitting a dataset consisting of 10 points, with a training set of 5 points and test tests of 2 points each
- You can use integers for the absolute size or floating-point numbers to specify the fractions of the whole dataset

from sklearn.model_selection import ShuffleSplit shuffle_split = ShuffleSplit(test_size=.5, train_size=.5, n_splits=10) scores = cross_val_score(logreg, iris.data, iris.target, cv=shuffle_split) print("Cross-validation scores:\n{}".format(scores))

- Cross-validation with groups
 - When there are groups in the data that are highly related
 - Collect a dataset of pictures of 100 people, where each person is captured multiple times
 - Random splitting is likely let pictures of the same person in both the training and the test sets
 - Must ensure the training and test sets contain images of different people
 - This example of groups in the data is common in medical applications and also in speech recognition
 - Use GroupKFold, which takes an array of groups as argument

from sklearn.model_selection import GroupKFold

create synthetic dataset

X, y = make_blobs(n_samples=12, random_state=0)

assume the first three samples belong to the same group, then the next four, etc.

groups = [0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3]

scores = cross_val_score(logreg, X, y, groups, cv=GroupKFold(n_splits=3))

print("Cross-validation scores:\n{}".format(scores))

mglearn.plots.plot_group_kfold() # visualize each group is entirely in the training or the test set

Grid Search

- Finding the values of the important parameters of a model is a tricky task, but necessary for almost all models
- The most common method is Grid Search
 - Basically means trying all possible combinations of parameters
 - To improve the model's generalization performance
 - Consider the case of a kernel SVM with an RBF kernel
 - Two parameters:
 - 1) The kernel bandwidth, gamma
 - 2) The regularization parameter, C
 - We can implement a simple grid search by for-loops

```
# naive grid search implementation
```

```
from sklearn.svm import SVC
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)
print("Size of training set: {} size of test set: {}".format(X_train.shape[0], X_test.shape[0]))
```

```
best_score = 0
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
        # for each combination of parameters, train an SVC
        svm = SVC(gamma=gamma, C=C)
        svm.fit(X_train, y_train)
```

```
# evaluate the SVC on the test set
score = svm.score(X_test, y_test)
# if we got a better score, store the score and parameters
if score > best_score:
    best_score = score
    best_parameters = {'C': C, 'gamma': gamma}
```

```
print("Best score: {:.2f}".format(best_score))
print("Best parameters: {}".format(best_parameters))
```

• **Danger** of overfitting the parameters and the validation set

- We used the test data to adjust the parameters
- We can no longer use it to assess how good the model is
- We need an independent dataset to evaluate, one that was not used to create the model
- Solution: to split the data again into three sets
 - 1) The training set to build the model
 - 2) The validation (or development) set to select parameters
- 3) The test set to evaluate the performance of selected parameters mglearn.plots.plot_threefold_split()

- After selecting the best parameters using the validation set, we can rebuild a model by training on both the training data and the validation data
- In this way, we can use as much as possible to build our model ¹³

from sklearn.svm import SVC

split data into train+validation set and test set

X_trainval, X_test, y_trainval, y_test = train_test_split(iris.data, iris.target, random_state=0) # split train+validation set into training and validation sets

X_train, X_valid, y_train, y_valid = train_test_split(X_trainval, y_trainval, random_state=1) print("Size of training set: {} size of validation set: {} size of test set: {}\n".

format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))

best_score = 0

```
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
```

for C in [0.001, 0.01, 0.1, 1, 10, 100]:

for each combination of parameters, train an SVC

```
svm = SVC(gamma=gamma, C=C)
```

svm.fit(X_train, y_train)

evaluate the SVC on the validation set

```
score = svm.score(X_valid, y_valid)
```

if we got a better score, store the score and parameters

```
if score > best_score:
```

```
best_score = score
```

```
best_parameters = {'C': C, 'gamma': gamma}
```

rebuild a model on the combined training and validation set, and evaluate it on the test set

svm = SVC(**best_parameters)
svm.fit(X_trainval, y_trainval)
test_score = svm.score(X_test, y_test)
print("Best score on validation set: {:.2f}".format(best_score))
print("Best parameters: ", best_parameters)
print("Test set score with best parameters: {:.2f}".format(test_score))

- The score on the test set (e.g., 92%) is lower than the best score on the validation set (e.g., 96%)
- Thus, we can only claim the accuracy of 92%
- The distinction between the training set, the validation set and the test set is fundamentally important
- It is important to keep a separate test set only for final evaluation
- To enhance the robustness of splitting method, we can use cross-validation to evaluate the performance of each parameter combination

```
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
  for C in [0.001, 0.01, 0.1, 1, 10, 100]:
    # for each combination of parameters, train an SVC
     svm = SVC(gamma=gamma, C=C)
    # perform cross-validation
     scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)
    # compute mean cross-validation accuracy
    score = np.mean(scores)
    # if we got a better score, store the score and parameters
    if score > best score:
       best score = score
       best_parameters = {'C': C, 'gamma': gamma}
# rebuild a model on the combined training and validation set
```

```
svm = SVC(**best_parameters)
```

svm.fit(X_trainval, y_trainval)

- The main downside of using cross-validation is computing time

 This visualization illustrate how the best parameter is selected mglearn.plots.plot_cross_val_selection()

- Grid search with cross-validation as commonly used
 - scikit-learn provides the GridSearchCV class

– We first define the grid of parameters

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]} print("Parameter grid:\n{}".format(param_grid))

Then instantiate the GridSearchCV class with the SVC model

from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVC

grid_search = GridSearchCV(SVC(), param_grid, cv=5)

- Fitting the GridSearchCV object will
 - Not only search for the best parameters but also automatically fits a new model with the best performance

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)

grid_search.fit(X_train, y_train)

print("Best parameters: {}".format(grid_search.best_params_))

• Convenient interface to access the trained model by predict & score print("Best cross-validation score: {:.2f}".format(grid_search.best_score_)) print("Test set score: {:.2f}".format(grid_search.score(X_test, y_test))) Access to the actual model was found by the best_estimator_ attribute print("Best estimator:\n{}".format(grid_search.best_estimator_))

- Analyzing the result of cross-validation
 - Grid searches are quite computational expensive, often it is a good idea to start with a relatively coarse and small grid
 - The result can be found in the cv_results_ attribute

import pandas as pd

convert to DataFrame

results = pd.DataFrame(grid_search.cv_results_)

show the first 5 rows

display(results.head())

As we were searching a two-dimensional grid, which can be visualized as a heat map

scores = np.array(results.mean_test_score).reshape(6, 6)

plot the mean cross-validation scores

mglearn.tools.heatmap(scores, xlabel='gamma',

xticklabels=param_grid['gamma'], ylabel='C', yticklabels=param_grid['C'], cmap="viridis")

- Range of search is very important

- See some less meaningful ones below

fig, axes = plt.subplots(1, 3, figsize=(13, 5))

param_grid_linear = {'C': np.linspace(1, 2, 6), 'gamma': np.linspace(1, 2, 6)}

```
param_grid_one_log = {'C': np.linspace(1, 2, 6), 'gamma': np.logspace(-3, 2, 6)}
```

```
param_grid_range = {'C': np.logspace(-3, 2, 6), 'gamma': np.logspace(-7, -2, 6)}
```

for param_grid, ax in zip([param_grid_linear, param_grid_one_log, param_grid_range], axes):

```
grid_search = GridSearchCV(SVC(), param_grid, cv=5)
```

grid_search.fit(X_train, y_train)

scores = grid_search.cv_results_['mean_test_score'].reshape(6, 6)

plot the mean cross-validation scores

```
scores_image = mglearn.tools.heatmap(
```

```
scores, xlabel='gamma', ylabel='C', xticklabels=param_grid['gamma'],
```

```
yticklabels=param_grid['C'], cmap="viridis", ax=ax)
```

plt.colorbar(scores_image, ax=axes.tolist())

- First panel shows no change at all
- Second panel shows a vertical strip pattern
- Third panel shows changes in both C and gamma but nothing happens

• Search over spaces that are not grids

— GridSearchCV allows the para_grid to be a list of dictionaries param_grid = [{'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}, {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}] print("List of grids:\n{}".format(param_grid))

```
grid_search = GridSearchCV(SVC(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("Best parameters: {}".format(grid_search.best_params_))
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))
```

- Parallelizing cross-validation and grid search
 - By setting the n_{jobs} parameter to the number of CPU cores
 - The n_jobs parameter is available for both GridSearchCV and cross_val_score
 - You can set $n_{jobs} = -1$ to use all available cores

Evaluating Metrics and Scoring

- We have learned to evaluate
 - Classification performance using accuracy (the fraction of correctly classified samples)
 - Regression performance using R^2
 - These are only two of the many possible ways to summarize how well a supervised model performs on a given dataset
- Keep the End Goal in Mind
 - Need to think about the high-level goal of the application, often called the *business metric*
 - Application-based preference needs to be considered

- Metrics for Binary Classification
 - Let's look at the ways in which accuracy might be misleading
 - For binary classification, we often speak of a *positive* class and a *negative* class
 - Classifiers will make mistakes; we need to ask <u>what the</u> <u>consequences of these mistakes might be</u> in the real world
 - A healthy patient will be classified as positive, leading to additional testing (some costs and an inconvenience for the patient) – an incorrect positive prediction is called a *false positive* (also known as type I error)
 - A sick patient will be classified as negative, the undiagnosed cancer might lead to serious health issues – such an incorrect negative prediction is called a *false negative* (also known as type II error)
 - The consequence of false positives and false negatives are rarely the same

- Imbalanced datasets
 - Datasets in which one class is much more frequent than the other; these datasets are often called *imbalanced datasets* or *datasets with imbalanced classes*
 - In reality, imbalanced data is quite normal
 - Influence of imbalanced dataset, an example:
 - For a dataset with 99 positive and 1 negative samples, let's say you build a classifier that is 99% accurate on the positive sample.
 - 99% accuracy sounds very impressive but this doesn't take the class imbalance into account
 - You can achieve 99% accuracy without building a machine learning model – i.e., by always 'predicting' positive
 - In summary, accuracy doesn't allow us distinguish the constant "positive" model from a potentially good model
 - New evaluation method is needed!!!

• Let's create a 9:1 imbalance dataset from the digits dataset by classifying the digital 9 against the nine other classes

from sklearn.datasets import load_digits

digits = load_digits()

y = digits.target == 9

X_train, X_test, y_train, y_test = train_test_split(digits.data, y, random_state=0)

First, we can use the DymmyClassifier to always predict the majority class (here "not nine")

from sklearn.dummy import DummyClassifier

dummy_majority = DummyClassifier(strategy='most_frequent').fit(X_train, y_train)

pred_most_frequent = dummy_majority.predict(X_test)

print("Unique predicted labels: {}".format(np.unique(pred_most_frequent)))

print("Test score: {:.2f}".format(dummy_majority.score(X_test, y_test)))

- Compare this against using an actual classifier

from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=2).fit(X_train, y_train)
pred_tree = tree.predict(X_test)
print("Test score: {:.2f}".format(tree.score(X_test, y_test)))

Result of *DecisionTree* is only slightly better, possible reason:1) Sth wrong when using DecisionTree2) Accuracy is in fact not a good measurement here

- Let's try two more classifiers on the same dataset

dummy = DummyClassifier().fit(X_train, y_train)

pred_dummy = dummy.predict(X_test)

print("dummy score: {:.2f}".format(dummy.score(X_test, y_test)))

from sklearn.linear_model import LogisticRegression

```
logreg = LogisticRegression(C=0.1).fit(X_train, y_train)
```

pred_logreg = logreg.predict(X_test)

print("logreg score: {:.2f}".format(logreg.score(X_test, y_test)))

- LogisticRegression produces very good results
- However, random classifier yields over 80% accuracy

•The problem here is that accuracy is an inadequate measure for quantifying predictive performance in this imbalanced setting

- Other measurements / metrics are needed
- One of the most comprehensive way: confusion matrices

from sklearn.metrics import confusion_matrix
confusion = confusion_matrix(y_test, pred_logreg)
print("Confusion matrix:\n{}".format(confusion))

- The output of confusion_matrix is a two-by-two array:
 - the rows correspond to the true classes
 - · the columns correspond to the predicted classes

mglearn.plots.plot_confusion_matrix_illustration()

- According to four different terms
 - True Negative (TN) :: False Positive (FP)
 - False Negative (FN) :: True Positive (TP)

mglearn.plots.plot_binary_confusion_matrix()

- Now we can compare the performance of different classifiers

print("Most frequent class:") print("\nDummy model:") print("\nDecision tree:") print("\nLogistic Regression") print(confusion_matrix(y_test, pred_most_frequent))
print(confusion_matrix(y_test, pred_dummy))
print(confusion_matrix(y_test, pred_tree))
print(confusion_matrix(y_test, pred_logreg))

– Idea result: more TN & TP and less FN & FP

• Therefore, Logistic Regression performs the best in these tests

- Several ways to summarize the info. in confusion matrix
 - Relationship to accuracy: Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
 - Precision: Precision = $\frac{TP}{TP+FP}$
 - Measure how many of the samples predicted as positive are true positive
 - Used as a performance metric when the goal is to limit the number of false positive
 - Recall: Recall = $\frac{TP}{TP+FN}$
 - Measure how many of the positive samples are captured by the positive prediction
 - Used as performance metric when need to identify all positive samples; i.e., when it is important to avoid false negative (e.g., cancer diagnosis)
 - f-score (or f-measure): $\mathbf{F} = 2 \cdot \frac{\text{precision-recall}}{\text{precision+recall}}$
 - As a trade-off between optimizing the recall and the precision
 - With the harmonic mean of precision and recall
 - Is also known as the f_1 -score the higher the better
 - A disadvantage: is harder to interpret and explain

from sklearn.metrics import f1_score

print("f1 score most frequent: {:.2f}".format(f1_score(y_test, pred_most_frequent)))

print("f1 score dummy: {:.2f}".format(f1_score(y_test, pred_dummy)))

print("f1 score tree: {:.2f}".format(f1_score(y_test, pred_tree)))

print("f1 score logistic regression: {:.2f}".format(f1_score(y_test, pred_logreg)))

Comprehensive summary can be generated by classification_report

Majority

from sklearn.metrics import classification_report

print(classification_report(y_test, pred_most_frequent, target_names=["not nine", "nine"]))

• Dummy model

print(classification_report(y_test, pred_dummy, target_names=["not nine", "nine"]))

Logistic regression

print(classification_report(y_test, pred_logreg, target_names=["not nine", "nine"]))

- Both classes need to be checked:
 - When looking at the "not nice" class, the difference between the dummy models and a very good model are not very clear
 - However, the difference is clear when looking at the "nine" class

- Taking value of decision-function into account
 - Most classifiers provide a decision_function or a predict_prob method to assess degrees of certainty about prediction
 - Using different decision thresholds leads to different performance

from mglearn.datasets import make_blobs

X, y = make_blobs(n_samples=(400, 50), centers=2, cluster_std=[7.0, 2], random_state=22)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

svc = SVC(gamma=.05).fit(X_train, y_train)

mglearn.plots.plot_decision_threshold()

We can use the classification_report function to evaluate precision and recall for both classes

print(classification_report(y_test, svc.predict(X_test)))

 Let's assume in our application it is important to have a high recall for class 1 (e.g., the cancer screening) – i.e., more points to be classified as class 1, so we decrease the threshold

y_pred_lower_threshold = svc.decision_function(X_test) > -.8
print(classification_report(y_test, y_pred_lower_threshold))

- Picking a threshold for models that implement the predict_proba method can be easier, as it is on a fixed 0 to 1 scale
 - By default, the threshold of 0.5 means that if more than 50% "sure" a point will be classified as positive
 - Increasing the threshold mean that the model needs to be more confident to make a positive decision (and less confident to make negative decision)
- Precision-Recall curves and ROC curves
 - Changing the threshold of decision-function is a way to adjust the trade-off of precision and recall for a given classifier
 - Setting a requirement on a classifier like 90% recall is often called setting the operating point
 - Fixing an operating point is often helpful in business settings to make performance guarantees to customers
 - Be more instructive to check all possible trade-offs of precision & recall at once
 - Using a tool called the *precision-recall curve*

from sklearn.metrics import precision_recall_curve

precision, recall, thresholds = precision_recall_curve(y_test, svc.decision_function(X_test))

 The precision_recall_curve function returns a list of precision and recall values for all possible threshold in sorted order

- We can plot a curve

Use more data points for a smoother curve

X, y = make_blobs(n_samples=(4000, 500), centers=2, cluster_std=[7.0, 2], random_state=22)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

svc = SVC(gamma=.05).fit(X_train, y_train)

precision, recall, thresholds = precision_recall_curve(y_test, svc.decision_function(X_test))

find threshold closest to zero

- The closer a curve stays to the upper-right corner (i.e., both precision and recall are high), the better the classifier is
 - Raising the threshold moves the operation point toward higher precision • but also lower recall
 - The model above is able to get a precision of up to 0.5 with very high recall
- Different classifiers can work well in different parts of the curve
 - Let's compare SVM with a random forest
 - RandomForestClassifier doesn't have a decision_function but only predict_proba
 - The precision_recall_curve function expects its 2nd argument a certain measure for the positive class (class 1) – so we pass the probability of a sample being class 1 as rf.predict_proba(X_test)[:,1]
- Default threshold for predict_proba as 0.5 is marked as point on curve from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=100, random_state=0, max_features=2)

rf.fit(X_train, y_train)

RandomForestClassifier has predict_proba, but not decision_function

precision_rf, recall_rf, thresholds_rf = precision_recall_curve(y_test, rf.predict_proba(X_test)[:, 1])

plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,

label="threshold zero svc", fillstyle="none", c='k', mew=2)

plt.plot(precision_rf, recall_rf, label="rf")

```
close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))
```

plt.plot(precision_rf[close_default_rf], recall_rf[close_default_rf], '^', c='k',

markersize=10, label="threshold 0.5 rf", fillstyle="none", mew=2)

plt.xlabel("Precision") plt.ylabel("Recall") plt.legend(loc="best")

- The random forest performs better at the extremes
- Around the middle, the SVM performs better
- Check the f_1 -score again, which only captures one point on the precision-recall curve (the one with default threshold)

from sklearn.metrics import f1_score

print("f1_score of random forest: {:.3f}".format(f1_score(y_test, rf.predict(X_test))))

- print("f1_score of svc: {:.3f}".format(f1_score(y_test, svc.predict(X_test))))
 - Differently, comparing two precision-recall curves provides a lot of detailed insight

 One particular way to summarize the precision-recall curve is by computing the integral or area under the curve of the precisionrecall curve, also known as the *average precision*

from sklearn.metrics import average_precision_score
ap_rf = average_precision_score(y_test, rf.predict_proba(X_test)[:, 1])
ap_svc = average_precision_score(y_test, svc.decision_function(X_test))
print("Average precision of random forest: {:.3f}".format(ap_rf))
print("Average precision of svc: {:.3f}".format(ap_svc))

- The random forest and SVC perform similarly well
- The random forest even slightly ahead
- This is quite different from the result we got from f1_score earlier
- Receiver Operating Characteristics (ROC)
 - Another tool to analyze the behavior of classifier at different thresholds as a curve (named as ROC curve)
 - It shows the *false positive rate* (FPR) against the *true positive rate* (TPR); TPR is also named as recall

FPR = FP / (FP + TN)

- For the ROC curve, the ideal curve is close to the top left: you want a classifier that produces a high recall while keeping a low false positive rate.
 - We can achieve a significantly higher recall (around 0.9) while only increasing the FPR slightly a good way to optimize the threshold
 - The point closest to the top left might be a better operating point than the one chosen by default
 - Let's conduct a comparison of the random forest and the SVM using ROC curves

```
fpr_rf, tpr_rf, thresholds_rf = roc_curve(y_test, rf.predict_proba(X_test)[:, 1])
plt.plot(fpr, tpr, label="ROC Curve SVC")
plt.plot(fpr_rf, tpr_rf, label="ROC Curve RF")
plt.xlabel("FPR")
                                                                              TPR (recall)
plt.ylabel("TPR (recall)")
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,
             label="threshold zero SVC", fillstyle="none", c='k', mew=2)
close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))
plt.plot(fpr rf[close default rf], tpr[close default rf], '^', markersize=10,
             label="threshold 0.5 RF", fillstyle="none", c='k', mew=2)
```


plt.legend(loc=4)

- As for the precision-recall curve, we often want to summarize the ROC curve using a single number, *Area Under the Curve* (AUC) from sklearn.metrics import roc_auc_score rf_auc = roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1]) svc_auc = roc_auc_score(y_test, svc.decision_function(X_test)) print("AUC for Random Forest: {:.3f}".format(rf_auc)) print("AUC for SVC: {:.3f}".format(svc_auc))

- AUC is a much better metric for imbalanced classification problems than accuracy
 - A perfect AUC of 1 means that all positive points have a higher score than all negative points
 - For classification problems with imbalanced classes, using AUC for model selection is often much more meaningful
- Let's go back to the problem we studied earlier of classifying all nines in the digits dataset versus all other digits
 - Using SVM with three different settings of the kernel bandwidth, gamma

```
from sklearn.datasets import load_digits digits = load_digits()

y = digits.target == 9

X_train, X_test, y_train, y_test = train_test_split(digits.data, y, random_state=0)

plt.figure()

for gamma in [1, 0.1, 0.01]:

    svc = SVC(gamma=gamma).fit(X_train, y_train)

    accuracy = svc.score(X_test, y_test)

    auc = roc_auc_score(y_test, svc.decision_function(X_test))

    fpr, tpr, _ = roc_curve(y_test , svc.decision_function(X_test))

    print("gamma = {:.2f} accuracy = {:.2f} AUC = {:.2f}".format(gamma, accuracy, auc))

    plt.plot(fpr, tpr, label="gamma={:.3f}".format(gamma))

plt.xlabel("FPR") plt.ylabel("TPR") plt.xlim(-0.01, 1) plt.ylim(0, 1.02) plt.legend(loc="best")
```

- The accuracy of all three settings of gamma is the same, 90%
 - This might be the same as chance performance, or it might not
 - With gamma=0.1, performance drastically improves to an AUC of 0.96
- Finally, with gamma=0.01, we get a perfect AUC of 1.0
 - That means that all positive points are ranked higher than all negative points according to the decision function.
 - In other words, with the right threshold, this model can classify the data perfectly!
- We highly recommend using AUC when evaluating models on imbalanced data
- Adjusting the decision threshold might be necessary to obtain useful classification results from a model with a high AUC

- Metrics for Multiclass Classification
 - All are derived from binary classification metrics (e.g., average)
 - When classes are imbalanced, accuracy is not a good measure
 - Common tools: the confusion matrix and the classification report
 - See the handwriting digits example below

X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=0)

Ir = LogisticRegression().fit(X_train, y_train)

pred = lr.predict(X_test)

print("Accuracy: {:.3f}".format(accuracy_score(y_test, pred)))
print("Confusion matrix:\n{}".format(confusion_matrix(y_test, pred)))

- You can find a visually more appealing plot

scores_image = mglearn.tools.heatmap(

confusion_matrix(y_test, pred), xlabel='Predicted label',

ylabel='True label', xticklabels=digits.target_names,

yticklabels=digits.target_names, cmap=plt.cm.gray_r, fmt="%d")

plt.title("Confusion matrix")

plt.gca().invert_yaxis()

		Confusion matrix										
	0	37	ó	ò	ó	ò	ò	ò	ó	ò	<u></u> -	
	1	- 0	39	0	0	0	0	2	0	2	0 -	
	2	- 0	0	41	3	0	0	0	0	0	0 -	
	3	- 0	0	1	43	0	0	0	0	0	1 -	
	4	- 0	0	0	0	38	0	0	0	0	0 -	
	5	- 0	1	0	0	0	47	0	0	0	0 -	
	6	- 0	0	0	0	0	0	52	0	0	0 -	
	7	- 0	1	0	1	1	0	0	45	0	0 -	
	8	- 0	3	1	0	0	0	0	0	43	1 -	
	9	- 0	0	0	1	0	1	0	0	1	44	
		0	1	2	3 Dra	4 dict	5 ad Ja	6 bal	7	8	9	
	Fieuleteu label											

from sklearn.metrics import classification_report
print(classification_report(y_test, pred))

- The most commonly used metric for imbalanced datasets is the multiclass version of the *f*-score
- Idea behind: to compute one binary *f*-score per class, with that class being the positive class and the other classes making up the negative classes
- Then, these per-class f-scores are averaged using one of the following strategies
 - "macro" averaging computes the unweighted per-class f-scores. This gives equal weight to all classes, no matter what their size is.
 - "weighted" averaging computes the mean of the per-class f-scores, weighted by their support as what is reported in the classification report.
 - "micro" averaging computes the total number of false positives, false negatives, and true positives over all classes, and then computes precision, recall, and *f*-score using these counts.

- If you care about each sample equally much, it is recommended to use the "micro" average f1-score
- if you care about each class equally much, it is recommended to use the "macro" average f1-score

from sklearn.metrics import f1_score

print("Micro average f1 score: {:.3f}".format(f1_score(y_test, pred, average="micro")))

print("Macro average f1 score: {:.3f}".format(f1_score(y_test, pred, average="macro")))

Using Evaluation Metrics in Model Selection

- We often want to use metrics like AUC in model selection using GridSearchCV or cross_val_score
 - Can be realized easily by changing the score from the default (accuracy) to roc_auc

from sklearn.model_selection import cross_val_score from sklearn.svm import SVC

default scoring for classification is accuracy

print("Default scoring: {}".format(cross_val_score(SVC(), digits.data, digits.target == 9)))
providing scoring="accuracy" doesn't change the results
explicit_accuracy = cross_val_score(SVC(), digits.data, digits.target == 9, scoring="accuracy")
print("Explicit accuracy scoring: {}".format(explicit_accuracy))
roc_auc = cross_val_score(SVC(), digits.data, digits.target == 9, scoring="roc_auc")
print("AUC scoring: {}".format(roc_auc))

 Similarly, we can change the metric used to pick the best parameters in GridSearchCV

from sklearn.model_selection import GridSearchCV from sklearn.metrics import roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target == 9, random_state=0) # we provide a somewhat bad grid to illustrate the point: param_grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]} # using the default scoring of accuracy: grid = GridSearchCV(SVC(), param_grid=param_grid) grid.fit(X_train, y_train) print("Grid-Search with accuracy") print("Best parameters:", grid.best_params_) print("Best cross-validation score (accuracy)): {:.3f}".format(grid.best_score_)) print("Test set AUC: {:.3f}".format(roc_auc_score(y_test, grid.decision_function(X_test)))) print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))

- Then, we change to select by AUC

using AUC scoring instead:

grid = GridSearchCV(SVC(), param_grid=param_grid, scoring="roc_auc") # "roc_auc"=>"average_precision"
grid.fit(X_train, y_train)
print("\nGrid-Search with AUC")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (AUC): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))

- In summary, when using accuracy and AUC, different values of the parameter gamma are selected
- Using AUC found a better parameter setting in terms of AUC and even in terms of accuracy

- Summary
 - We discussed cross-validation, grid search & evaluation metrics
 - Two important particular points:
 - The cross-validation is often overlooked by new practitioners
 - The importance of the evaluation metric or scoring function used for model selection and model evaluation
 - Imbalanced Dataset
 - Always keep in mind the influence
 - Better evaluation metrics can improve
 - But in practice, we still need preprocessing as what we learned before