L8: Packet Switching

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- **D** The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Review

D Computer networks

- General purpose
- Cost-effective network sharing
- Fair network link allocation
- Robust connectivity
- Direct link networks
 - Smallest network
 - Issues
 - Encoding
 - Framing
 - Error detection and correction
 - **Reliable delivery**
 - Media access control
 - Example
 - Ethernet
 - Limitation
 - Size of networks: size of an Ethernet?

Lecture Outline

Scalable networks

- Switching
 - Datagram switching
 - Virtual Circuit
 - Source routing

Switches

Switches

D Special node that forwards packets/frames

- Multiple-input-multiple-output devices
- Forward packets/frames from input port to output port
- Switches can connect to each others
- Each link runs data link protocol (layer 2 switches)
- Output port selected based on destination address in packet/frame header
- Provide high aggregate throughput

Switched Networks

Q: how does a switch decide on which output port to place a frame?

How does a switch decide on which output port to place a frame?

- □ Think about how telephone networks (circuit-switched networks) work
 - How switching (data forwarding) is performed?
 - A physical circuit is established \rightarrow someone has to help you.
 - Someone = a real person or a computer
 - The circuit is dedicated to one connection
 - Each link can <u>be shared</u> (multiplex) a fixed number of connections (TDM or FDM)

(from http://www.wchm-tx.org) (from http://www.privateline.com) Computer networks are packet switched networks Data are divided into frames/packets Still, one has to decide which port to forward a frame/packet

Packet-switched Networks

- **D** Data are divided and sent using *packets*
 - A packet has a header and trailer which contain control information
- □ Store-and-forward
 - Each packet is passed from node to node along <u>some</u> path through the network
 - At each node, the entire packet is received, stored briefly, and then forwarded to the next node
- Statistical multiplexing
 - No capacity is allocated for packets

A packet

Switching Approaches

D Datagram switching

- Connectionless model
- Virtual circuit switching
 - Connection-oriented model
- □ Source routing
- Common properties
 - Switches have identifiable ports
 - Hosts/nodes are identifiable

Datagram Packet Switching

- Network nodes process each packet independently
- **D** Two consecutively-sent packets can take different routes.
- □ Implications:
 - A sequence of packets can be received in a different order than they were sent
 - Each packet header must contain full address of the destination
- **D** Example of networks using packet switching
 - Extended Ethernet LAN
 - The Internet Protocol

Datagram Switching

- Each switch maintains a forwarding table
- □ Frame header contains the identifier of destination node
- □ Forward packets/frames based on the table
 - Example: if frame header indicates its destination is <u>node B</u>, forward to <u>port 0</u>
 → done by looking up the table

Exercise L8-1

 Construct the forwarding tables for other switches (switches 1 & 3)

Datagram Switching: Discussion

- **D** Each node maintains a forwarding table
- No connection setup
- Hosts/switches sends/forwards packets independently
- Hosts/switches do not know if the network can deliver a packet to its destination
- □ A switch/link failure might not be catastrophic
 - Find an alternate route and update forwarding table

Virtual Circuit Switching

- Connection-oriented model
 - Connection setup \rightarrow establish "virtual circuit (VC)"
 - Data transfer \rightarrow subsequent packets follow same circuit
 - Tear down VC
- **D** Each switch maintains a VC table
 - An entry (row) in VC table must have
 - VCI: identify connection at this switch <u>within</u> a link → a different VCI will be used for outgoing packets
 - □ Incoming interface, e.g., a port for receiving packets
 - Outgoing interface, e.g., a port for forwarding packets
- Frame header contains VC number (VCI value) of <u>next link</u> along a VC

Virtual Circuit Switching: Example

\square Example: host A \rightarrow host B

- Switches needed?
 - switches 1, 2, and 3
- Network do not explicitly maintain global information about virtual circuits

Two planned virtual circuits in red dashed line and blue dotted line

Virtual Circuit Switching: Example: VC Table

- Setup phase (could be performed manually for a network administrator) → permanent VC→ Establish VC table for each switch
- **D** Example: Switch 1
 - When host A sends out a frame, it places the VCI (i.e. 5) of next lir into the frame header
 - Switch 1 looks up an entry based on both incoming interface (i.e., 2) and the VCI (i.e., 5) in the frame header to determine outgoing port (i.e., 1) and VCI (i.e., 11)
 - The scope of VCI values is links
 - Unused VCI value on the link (Host A to Switch 1)
 - VCI can be duplicated on different link

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	5	1	11

Virtual Circuit Switching: Example: VC Table

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	5	1	11

Virtual circuit table entry for switch 1

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI	
3	11	2	7	
VO 11 1 1 2				

VC table entry at switch 2

Virtual Circuit Switching: Example

Host A sends a frame to host B

Exercise L8-2

- Construct Virtual Circuit (VC) table entry for all the switches on the Virtual Circuit for both red and blue Virtual Circuits
- □ List VC tables for switches 1, 2, 3, and 4. You may make necessary assumptions.

Virtual Circuit Switching: Connection Setup

Connection setup

- Permanent virtual circuit (PVC): manual configured → unmanageable for great number of nodes
- Switched virtual circuit (SVC): automatically configured via signaling
 - A process similar to datagram model

Virtual Circuit: Discussion

- □ Connection setup takes 1 RTT minimally
- VCI number typically needs less memory space. Perpacket overhead is less than that of the datagram model
- □ Need VC re-setup in case of a connection failure
- Possible to allocate network resources during VC setup

Comparison of Datagram and Virtual Circuit

- Virtual Circuit
 - Need connection setup
 - Typically wait full RTT for connection setup before sending first data packet.
 - While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
 - In datagram switching: forwarding table contains entries for every host → large table → more memory, slow lookup
 - Delivery assurance or failure
 - If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
 - Connection setup provides an opportunity to reserve resources → Quality of Service (QoS)

Datagram

- No connection setup
 - There is no RTT delay waiting for connection setup; a host can send data as soon as it is ready.
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.
 - In virtual circuit switching: VC table contains only "circuits" to be used → smaller table → less memory, fast lookup
- Delivery assurance or failure
 - Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- Since packets are treated independently, it is possible to route around link and node failures → difficult to satisfy QoS

Source Routing

- Source host knows network topology to deliver a packet/frame
- Source host places output ports of each switch along the route into the frame header
 - Example: Host A sends a frame to host B

Exercise L8-3

 Assume source routing presented in previous slide is used, show headers of a frame leaves from Host H and arrives at Host D at each switches along the path

Summary

- \square Switches \rightarrow scalable networks
- Datagram switching
- Virtual circuit switching
- □ Source routing
- **D***Q*: Example in practice?
 - Ethernet