L8: Packet Switching

Hui Chen, Ph.D.
Dept. of Engineering \& Computer Science Virginia State University
Petersburg, VA 23806

Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- The instructor used the following references
- Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
- Andrew S. Tanenbaum, Computer Networks, 5th Edition, PrenticeHall, 2010
- James F. Kurose and Keith W. Ross, Computer Networking: A TopDown Approach, 5th Ed., Addison Wesley, 2009
- Larry L. Peterson’s (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Review

- Computer networks
- General purpose
- Cost-effective network sharing
- Fair network link allocation
- Robust connectivity
- Direct link networks
- Smallest network
- Issues
- Encoding
- Framing
- Error detection and correction
- Reliable delivery
- Media access control
- Example
- Ethernet
- Limitation
- Size of networks: size of an Ethernet?

Lecture Outline

- Scalable networks
- Switching
- Datagram switching
- Virtual Circuit
\square Source routing

Switches

Switches

- Special node that forwards packets/frames
- Multiple-input-multiple-output devices
- Forward packets/frames from input port to output port
- Switches can connect to each others
- Each link runs data link protocol (layer 2 switches)
- Output port selected based on destination address in packet/frame header
- Provide high aggregate throughput

Switched Networks

Q: how does a switch decide on which output port to place a frame?

How does a switch decide on which output port to place a frame?

- Think about how telephone networks (circuit-switched networks) work
- How switching (data forwarding) is performed?
- A physical circuit is established \rightarrow someone has to help you.
- Someone = a real person or a computer
- The circuit is dedicated to one connection
- Each link can be shared (multiplex) a fixed number of connections (TDM or FDM)

(from http://www.wchm-tx.org)

Central office distribution frame
(from http://www.privateline.com)

Computer networks are packet switched networks
Data are divided into frames/packets
Still, one has to decide which port to forward a frame/packet

Packet-switched Networks

- Data are divided and sent using packets
- A packet has a header and trailer which contain control information
- Store-and-forward
- Each packet is passed from node to node along some path through the network
- At each node, the entire packet is received, stored briefly, and then forwarded to the next node
- Statistical multiplexing
- No capacity is allocated for packets

header	Pay load (data)	trailer

A packet

Switching Approaches

- Datagram switching
- Connectionless model
- Virtual circuit switching
- Connection-oriented model
- Source routing
- Common properties
- Switches have identifiable ports
- Hosts/nodes are identifiable

Datagram Packet Switching

- Network nodes process each packet independently
- Two consecutively-sent packets can take different routes.
- Implications:
- A sequence of packets can be received in a different order than they were sent
- Each packet header must contain full address of the destination
- Example of networks using packet switching
- Extended Ethernet LAN
- The Internet Protocol

Example

Datagram Switching

- Each switch maintains a forwarding table
- Frame header contains the identifier of destination node
- Forward packets/frames based on the table
- Example: if frame header indicates its destination is node B, forward to port 0 \rightarrow done by looking up the table

Forwarding/Routing Table for Switch 2

Destination	Port
A	3
B	0
C	3
D	3
E	2
F	1
G	0
H	0

Exercise L8-1

Forwarding/Routing Table for Switch 2

- Construct the forwarding tables for other switches (switches 1 \& 3)

Datagram Switching: Discussion

- Each node maintains a forwarding table
- No connection setup
- Hosts/switches sends/forwards packets independently
- Hosts/switches do not know if the network can deliver a packet to its destination
- A switch/link failure might not be catastrophic
- Find an alternate route and update forwarding table

Virtual Circuit Switching

- Connection-oriented model
- Connection setup \rightarrow establish "virtual circuit (VC)"
- Data transfer \rightarrow subsequent packets follow same circuit
- Tear down VC
- Each switch maintains a VC table
- An entry (row) in VC table must have
\square VCI: identify connection at this switch within a link \rightarrow a different VCl will be used for outgoing packets
- Incoming interface, e.g., a port for receiving packets
- Outgoing interface, e.g., a port for forwarding packets

ㅁ Frame header contains VC number (VCI value) of next link along a VC

Virtual Circuit Switching: Example

- Example: host A \rightarrow host B
- Switches needed?
- switches 1,2 , and 3
- Network do not explicitly maintain global information about virtual circuits

Two planned virtual circuits in red dashed line and blue dotted line

Virtual Circuit Switching: Example: VC Table

- Setup phase (could be performed manually for a network administrator) \rightarrow permanent VC \rightarrow Establish VC table for each switch
- Example: Switch 1
- When host A sends out a frame, it places the VCI (i.e. 5) of next lir into the frame header
- Switch 1 looks up an entry based on both incoming interface (i.e., 2) and the VCl (i.e., 5) in the frame header to determine outgoing port (i.e., 1) and VCl (i.e., 11)
- The scope of VCl values is links
- Unused VCI value on the link (Host A to Switch 1)
- VCI can be duplicated on different link

Virtual circuit table entry for switch 1

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	5	1	11

Virtual Circuit Switching: Example: VC Table

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	5	1	11

Virtual circuit table entry for switch 1

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
3	11	2	7
VC			

VC table entry at switch 2

Virtual Circuit Switching: Example

- Host A sends a frame to host B

Exercise L8-2

- Construct Virtual Circuit (VC) table entry for all the switches on the Virtual Circuit for both red and blue Virtual Circuits
- List VC tables for switches 1, 2, 3, and 4. You may make necessary assumptions.

Virtual Circuit Switching: Connection Setup

- Connection setup
- Permanent virtual circuit (PVC): manual configured \rightarrow unmanageable for great number of nodes
- Switched virtual circuit (SVC): automatically configured via signaling
\square A process similar to datagram model

Virtual Circuit: Discussion

- Connection setup takes 1 RTT minimally
- VCI number typically needs less memory space. Perpacket overhead is less than that of the datagram model
- Need VC re-setup in case of a connection failure
- Possible to allocate network resources during VC setup

Comparison of Datagram and Virtual Circuit

- Virtual Circuit
- Need connection setup
- Typically wait full RTT for connection setup before sending first data packet.
- While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
- In datagram switching: forwarding table contains entries for every host \rightarrow large table \rightarrow more memory, slow lookup
- Delivery assurance or failure
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources \rightarrow Quality of Service (QoS)
- Datagram
- No connection setup
- There is no RTT delay waiting for connection setup; a host can send data as soon as it is ready.
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.
- In virtual circuit switching: VC table contains only "circuits" to be used \rightarrow smaller table \rightarrow less memory, fast lookup
- Delivery assurance or failure
- Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- Since packets are treated independently, it is possible to route around link and node failures \rightarrow difficult to satisfy QoS

Source Routing

- Source host knows network topology to deliver a packet/frame
- Source host places output ports of each switch along the route into the frame header
- Example: Host A sends a frame to host B

Ordered list of outputs of switches in header

Exercise L8-3

- Assume source routing presented in previous slide is used, show headers of a frame leaves from Host H and arrives at Host D at each switches along the path

Summary

- Switches \rightarrow scalable networks
\square Datagram switching
- Virtual circuit switching
\square Source routing
- Q: Example in practice?

Ethernet

