Physics 101 Lecture 9

Linear Momentum and

$$
\begin{aligned}
& \text { Collisions } \\
& \text { Dr. Ali ÖVGÜN }
\end{aligned}
$$

EMU Physics Department
www.aovgun.com

Linear Momentum and Collisions

- Conservation of Energy
- Momentum
- Impulse
\square Conservation of Momentum
- 1-D Collisions
- 2-D Collisions

\square The Center of Mass

Conservation of Energy

$\square \Delta E=\Delta K+\Delta U=0$ if conservative forces are the only forces that do work on the system.
\square The total amount of energy in the system is constant.

$$
\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k x_{f}^{2}=\frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k x_{i}^{2}
$$

$\square \Delta E=\Delta K+\Delta U=-f_{k} d$ if friction forces are doing work on the system.
\square The total amount of energy in the system is still constant, but the change in mechanical energy goes into "internal energy" or heat.

$$
-f_{k} d=\left(\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k x_{f}^{2}\right)-\left(\frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k x_{i}^{2}\right)
$$

Linear Momentum

\square This is a new fundamental quantity, like force, energy. It is a vector quantity (points in same direction as velocity).
\square The linear momentum \mathbf{p} of an object of mass m moving with a velocity \mathbf{v} is defined to be the product of the mass and velocity:

$$
\vec{p}=m \vec{v}
$$

\square The terms momentum and linear momentum will be used interchangeably in the text
\square Momentum depend on an object's mass and velocity

Linear Momentum

- Linear momentum is a vector quantity $\dot{\mathrm{p}}=m \dot{\mathbf{v}}$
- Its direction is the same as the direction of the velocity
\square The dimensions of momentum are ML/T
\square The SI units of momentum are $\mathrm{kg} \mathrm{m} / \mathrm{s}$
\square Momentum can be expressed in component form:

$$
p_{x}=m v_{x} \quad p_{y}=m v_{y} \quad p_{z}=m v_{z}
$$

Newton's Law and Momentum

\square Newton's Second Law can be used to relate the momentum of an object to the resultant force acting on it

$$
\vec{F}_{n e t}=m \vec{a}=m \frac{\Delta \vec{v}}{\Delta t}=\frac{\Delta(m \vec{v})}{\Delta t}
$$

\square The change in an object's momentum divided by the elapsed time equals the constant net force acting on the object

$$
\frac{\Delta \vec{p}}{\Delta t}=\frac{\text { change in momentum }}{\text { time interval }}=\vec{F}_{n e t}
$$

Impulse

\square When a single, constant force acts on the object, there is an impulse delivered to the object

$$
\vec{I}=\vec{F} \Delta t
$$

- \mathbf{I} is defined as the impulse
- The equality is true even if the force is not constant
- Vector quantity, the direction is the same as the direction of the force

$$
\frac{\Delta \vec{p}}{\Delta t}=\frac{\text { change in momentum }}{\text { time interval }}=\vec{F}_{\text {net }}
$$

Impulse-Momentum Theorem

\square The theorem states that the impulse acting on a system is equal to the change in momentum of the system

$$
\begin{gathered}
\Delta \vec{p}=\vec{F}_{n e t} \Delta t=\vec{I} \\
\vec{I}=\Delta \vec{p}=m \vec{v}_{f}-m \vec{v}_{i}
\end{gathered}
$$

> The change in the total momentum of the system
> is equal to the total impulse on the system.

Calculating the Change of Momentum

$$
\begin{aligned}
& \Delta p=p_{\text {after }}-p_{\text {before }} \\
& =m v_{\text {after }}-m v_{\text {before }} \\
& =m\left(v_{\text {after }}-v_{\text {before }}\right)
\end{aligned}
$$

For the teddy bear

$$
\Delta p=m[0-(-v)]=m v
$$

For the bouncing ball

$$
\Delta p=m[v-(-v)]=2 m v
$$

(a)
(b)

Ex1: How Good Are the Bumpers?

\square In a crash test, a car of mass $1.5 \diamond 10^{3} \mathrm{~kg}$ collides with a wall and rebounds as in figure. The initial and final velocities of the car are $v_{i}=-15$ m / s and $\mathrm{v}_{\mathrm{f}}=2.6 \mathrm{~m} / \mathrm{s}$, respectively. If the collision lasts for 0.15 s , find (a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car

How Good Are the Bumpers?

\square In a crash test, a car of mass $1.5 \diamond 10^{3} \mathrm{~kg}$ collides with a wall and rebounds as in figure. The initial and final velocities of the car are $v_{i}=-15$ m / s and $\mathrm{v}_{\mathrm{f}}=2.6 \mathrm{~m} / \mathrm{s}$, respectively. If the collision lasts for 0.15 s , find (a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car

$$
\begin{aligned}
& p_{i}=m v_{i}=\left(1.5 \times 10^{3} \mathrm{~kg}\right)(-15 \mathrm{~m} / \mathrm{s})=-2.25 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& p_{f}=m v_{f}=\left(1.5 \times 10^{3} \mathrm{~kg}\right)(+2.6 \mathrm{~m} / \mathrm{s})=+0.39 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& I=p_{f}-p_{i}=m v_{f}-m v_{i} \\
& =\left(0.39 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)-\left(-2.25 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \\
& =2.64 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
F_{a v}= & \frac{\Delta p}{\Delta t}=\frac{I}{\Delta t}=\frac{2.64 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.15 \mathrm{~s}}=1.76 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

Ex2: Impulse-Momentum Theorem

- A child bounces a 100 g superball on the sidewalk. The velocity of the superball changes from $10 \mathrm{~m} / \mathrm{s}$ downward to $10 \mathrm{~m} / \mathrm{s}$ upward. If the contact time with the sidewalk is 0.1 s , what is the magnitude of the impulse imparted to the superball?
(A) 0
(B) $2 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(C) $20 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$

$$
\vec{I}=\Delta \vec{p}=m \vec{v}_{f}-m \vec{v}_{i}
$$

(D) $200 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(E) $2000 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$

Ex3: Impulse-Momentum Theorem 2

- A child bounces a 100 g superball on the sidewalk. The velocity of the superball changes from $10 \mathrm{~m} / \mathrm{s}$ downward to $10 \mathrm{~m} / \mathrm{s}$ upward. If the contact time with the sidewalk is 0.1 s , what is the magnitude of the force between the sidewalk and the superball?
(A) 0
(B) 2 N
(C) 20 N
(D) 200 N
(E) 2000 N

$$
\vec{F}=\frac{\vec{I}}{\Delta t}=\frac{\Delta \vec{p}}{\Delta t}=\frac{m \vec{v}_{f}-m \vec{v}_{i}}{\Delta t}
$$

Conservation of Momentum

\square In an isolated and closed system, the total momentum of the system remains constant in time.

- Isolated system: no external forces
- Closed system: no mass enters or leaves
- The linear momentum of each colliding body may change
- The total momentum P of the system cannot change.

After

Conservation of Momentum

Before collision

After collision

\square Start from impulse-momentum theorem

$$
\begin{aligned}
& \vec{F}_{21} \Delta t=m_{1} \vec{v}_{1 f}-m_{1} \vec{v}_{1 i} \\
& \vec{F}_{12} \Delta t=m_{2} \vec{v}_{2 f}-m_{2} \vec{v}_{2 i}
\end{aligned}
$$

\square Since

$$
\vec{F}_{21} \Delta t=-\vec{F}_{12} \Delta t
$$

\square Then $m_{1} \vec{v}_{1 f}-m_{1} \vec{v}_{1 i}=-\left(m_{2} \vec{v}_{2 f}-m_{2} \vec{v}_{2 i}\right)$
\square So

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

Conservation of Momentum

\square When no external forces act on a system consisting of two objects that collide with each other, the total momentum of the system remains constant in time

$$
\vec{F}_{n e t} \Delta t=\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}
$$

\square When $\vec{F}_{\text {net }}=0$ then $\Delta \vec{p}=0$
\square For an isolated system

$$
\vec{p}_{f}=\vec{p}_{i}
$$

\square Specifically, the total momentum before the collision will equal the total momentum after the collision

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

Ex4: The Archer

\square An archer stands at rest on frictionless ice and fires a $0.5-\mathrm{kg}$ arrow horizontally at $50.0 \mathrm{~m} / \mathrm{s}$. The combined mass of the archer and bow is 60.0 kg . With what velocity does the archer move across the ice after firing the arrow?

$$
\begin{gathered}
p_{i}=p_{f} \\
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
m_{1}=60.0 \mathrm{~kg}, m_{2}=0.5 \mathrm{~kg}, v_{1 i}=v_{2 i}=0, v_{2 f}=50 \mathrm{~m} / \mathrm{s}, v_{1 f}=? \\
0=m_{1} v_{1 f}+m_{2} v_{2 f} \\
v_{1 f}=-\frac{m_{2}}{m_{1}} v_{2 f}=-\frac{0.5 \mathrm{~kg}}{60.0 \mathrm{~kg}}(50.0 \mathrm{~m} / \mathrm{s})=-0.417 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Ex5: Conservation of Momentum

- A 100 kg man and 50 kg woman on ice skates stand facing each other. If the woman pushes the man backwards so that his final speed is $1 \mathrm{~m} / \mathrm{s}$, at what speed does she recoil?
(A) 0
(B) $0.5 \mathrm{~m} / \mathrm{s}$
(C) $1 \mathrm{~m} / \mathrm{s}$
(D) $1.414 \mathrm{~m} / \mathrm{s}$
(E) $2 \mathrm{~m} / \mathrm{s}$

Types of Collisions

\square Momentum is conserved in any collision
\square Inelastic collisions: rubber ball and hard ball

- Kinetic energy is not conserved
- Perfectly inelastic collisions occur when the objects stick together
\square Elastic collisions: billiard ball
- both momentum and kinetic energy are conserved

Collisions Summary

\square In an elastic collision, both momentum and kinetic energy are conserved
\square In a non-perfect inelastic collision, momentum is conserved but kinetic energy is not. Moreover, the objects do not stick together

- In a perfectly inelastic collision, momentum is conserved, kinetic energy is not, and the two objects stick together after the collision, so their final velocities are the same
\square Elastic and perfectly inelastic collisions are limiting cases, most actual collisions fall in between these two types
\square Momentum is conserved in all collisions

More about Perfectly Inelastic Collisions

\square When two objects stick together after the collision, they have undergone a perfectly inelastic collision
\square Conservation of momentum

$$
\begin{gathered}
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \\
v_{f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}
\end{gathered}
$$

\square Kinetic energy is NOT conserved

After collision

(b)

Ex6: An SUV Versus a Compact

- An SUV with mass $1.80 \diamond 10^{3} \mathrm{~kg}$ is travelling eastbound at $+15.0 \mathrm{~m} / \mathrm{s}$, while a compact car with mass $9.00 \diamond 10^{2}$ kg is travelling westbound at $-15.0 \mathrm{~m} / \mathrm{s}$. The cars collide head-on, becoming entangled.
(a) Find the speed of the entangled cars after the collision.
(b) Find the change in the velocity of each car.
(c) Find the change in the kinetic energy of the system consisting of both cars.

(a)

(b)

An SUV Versus a Compact

(a) Find the speed of the entangled cars after the collision.

$$
\begin{aligned}
& m_{1}=1.80 \times 10^{3} \mathrm{~kg}, v_{1 i}=+15 \mathrm{~m} / \mathrm{s} \\
& m_{2}=9.00 \times 10^{2} \mathrm{~kg}, v_{2 i}=-15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{gathered}
p_{i}=p_{f} \\
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \\
v_{f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}} \\
v_{f}=+5.00 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(a)

(b)

An SUV Versus a Compact

(b) Find the change in the velocity of each car.

$$
\begin{aligned}
& m_{1}=1.80 \times 10^{3} \mathrm{~kg}, v_{1 i}=+15 \mathrm{~m} / \mathrm{s} \\
& m_{2}=9.00 \times 10^{2} \mathrm{~kg}, v_{2 i}=-15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v_{f}=+5.00 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \Delta v_{1}=v_{f}-v_{1 i}=-10.0 \mathrm{~m} / \mathrm{s} \\
& \Delta v_{2}=v_{f}-v_{2 i}=+20.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& m_{1} \Delta v_{1}=m_{1}\left(v_{f}-v_{1 i}\right)=-1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& m_{2} \Delta v_{2}=m_{2}\left(v_{f}-v_{2 i}\right)=+1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{equation*}
m_{1} \Delta v_{1}+m_{2} \Delta v_{2}=0 \tag{b}
\end{equation*}
$$

An SUV Versus a Compact

(c) Find the change in the kinetic energy of the system consisting $m_{1}=1.80 \times 10^{3} \mathrm{~kg}, v_{1 i}=+15 \mathrm{~m} / \mathrm{s}$ of both cars.

$$
m_{2}=9.00 \times 10^{2} \mathrm{~kg}, v_{2 i}=-15 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{gather*}
v_{f}=+5.00 \mathrm{~m} / \mathrm{s} \\
K E_{i}=\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=3.04 \times 10^{5} \mathrm{~J} \\
K E_{f}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}=3.38 \times 10^{4} \mathrm{~J} \\
\Delta K E=K E_{f}-K E_{i}=-2.70 \times 10^{5} \mathrm{~J} \tag{b}
\end{gather*}
$$

(a)

More About Elastic Collisions

\square Both momentum and kinetic energy are conserved

$$
\begin{align*}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \tag{a}
\end{align*}
$$

Before collision

\square Typically have two unknowns

- Momentum is a vector quantity
- Direction is important
- Be sure to have the correct signs
\square Solve the equations simultaneously

After collision

Elastic Collisions

\square A simpler equation can be used in place of the KE equation

$$
\begin{gathered}
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
m_{1}\left(v_{1 i}^{2}-v_{1 f}^{2}\right)=m_{2}\left(v_{2 f}^{2}-v_{2 i}^{2}\right) \\
m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)\left(v_{2 f}+v_{2 i}\right) \\
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \quad m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right) \\
v_{1 i}+v_{1 f}=v_{2 f}+v_{2 i} \\
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
\end{gathered}
$$

Summary of Types of

Collisions

\square In an elastic collision, both momentum and kinetic energy are conserved

$$
v_{1 i}+v_{1 f}=v_{2 f}+v_{2 i}
$$

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

- In an inelastic collision, momentum is conserved but kinetic energy is not

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

\square In a perfectly inelastic collision, momentum is conserved, kinetic energy is not, and the two objects stick together after the collision, so their final velocities are the same

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}
$$

Ex7: Conservation of Momentum

- An object of mass m moves to the right with a speed v. It collides head-on with an object of mass $3 m$ moving with speed $v / 3$ in the opposite direction. If the two objects stick together, what is the speed of the combined object, of mass $4 m$, after the collision?
(A) 0
(B) $\mathrm{v} / 2$
(C) V
(D) $2 v$
(E) $4 v$

(b)

Problem Solving for 1D Collisions, 1

\square Coordinates: Set up a coordinate axis and define the velocities with respect to this axis

- It is convenient to make your axis coincide with one of the initial velocities
\square Diagram: In your sketch, draw all the velocity vectors and label the velocities and the masses

(a)

After collision

(b)

Problem Solving for 1D Collisions, 2

\square Conservation of Momentum: Write a general expression for the total momentum of the system before and after the collision

- Equate the two total momentum expressions
- Fill in the known values

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

(a)

After collision

(b)

Problem Solving for 1D Collisions, 3

\square Conservation of Energy: If the collision is elastic, write a second equation for conservation of KE, or the alternative equation

- This only applies to perfectly elastic collisions

$$
v_{1 i}+v_{1 f}=v_{2 f}+v_{2 i}
$$

\square Solve: the resulting equations simultaneously

(b)

One-Dimension vs TwoDimension

Before collision

After collision

Two-Dimensional Collisions

\square For a general collision of two objects in twodimensional space, the conservation of momentum principle implies that the total momentum of the system in each direction is conserved

$$
\begin{aligned}
& m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
& m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

(a) Before the collision

(b) After the collision

Two-Dimensional Collisions

\square The momentum is conserved in all directions
\square Use subscripts for

$$
m_{1} v_{1 i \underline{i x}},+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x}
$$

- Identifying the object

$$
m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2} \text { 应 }
$$

- Indicating initial or final values
- The velocity components
\square If the collision is elastic, use conservation of kinetic energy as a second equation
- Remember, the simpler equation can only be used

Glancing Collisions

(a) Before the collision
© 2006 Brooks COle - Thomson
\square The "after" velocities have x and y components
\square Momentum is conserved in the x direction and in the y direction
\square Apply conservation of momentum separately to each direction

$$
\begin{aligned}
& m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
& m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

2-D Collision, example

\square Particle 1 is moving at velocity $\mathbf{v}_{1 i}$ and particle 2 is at rest
\square In the x-direction, the
 initial momentum is $m_{1} v_{1 i}$
\square In the y-direction, the initial momentum is 0
(a) Before the collision

2-D Collision, example cont

\square After the collision, the momentum in the x-direction is $m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \phi$
\square After the collision, the momentum in the y-direction is $m_{1} v_{1 f} \sin \theta+m_{2} v_{2 f} \sin \phi$
$m_{1} v_{1 i}+0=m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \phi$
$0+0=m_{1} v_{1 f} \sin \theta-m_{2} v_{2 f} \sin \phi$

(b) After the collision
\square If the collision is elastic, apply the kinetic energy equation

$$
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

Ex8: Collision at an Intersection

\square A car with mass $1.5 \times 10^{3} \mathrm{~kg}$ traveling east at a speed of $25 \mathrm{~m} / \mathrm{s}$ collides at an intersection with a $2.5 \times 10^{3} \mathrm{~kg}$ van traveling north at a speed of $20 \mathrm{~m} / \mathrm{s}$. Find the magnitude and direction of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision and assuming that friction between the vehicles and the road can be neglected.

$$
\begin{aligned}
& m_{c}=1.5 \times 10^{3} \mathrm{~kg}, m_{v}=2.5 \times 10^{3} \mathrm{~kg} \\
& v_{c i x}=25 \mathrm{~m} / \mathrm{s}, v_{v i y}=20 \mathrm{~m} / \mathrm{s}, v_{f}=? \theta=?
\end{aligned}
$$

Collision at an Intersection

$$
\begin{aligned}
& m_{c}=1.5 \times 10^{3} \mathrm{~kg}, m_{v}=2.5 \times 10^{3} \mathrm{~kg} \\
& v_{c i x}=25 \mathrm{~m} / \mathrm{s}, v_{v i y}=20 \mathrm{~m} / \mathrm{s}, v_{f}=? \theta=?
\end{aligned}
$$

$\sum p_{x i}=m_{c} v_{c i x}+m_{v} v_{v i x}=m_{c} v_{c i x}=3.75 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
$\sum p_{x f}=m_{c} v_{c f x}+m_{v} v_{v f x}=\left(m_{c}+m_{v}\right) v_{f} \cos \theta$
$3.75 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=\left(4.00 \times 10^{3} \mathrm{~kg}\right) v_{f} \cos \theta$
$\sum p_{y i}=m_{c} v_{c i y}+m_{v} v_{v i y}=m_{v} v_{v i y}=5.00 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
$\sum p_{y f}=m_{c} v_{c f y}+m_{v} v_{v y}=\left(m_{c}+m_{v}\right) v_{f} \sin \theta$
$5.00 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=\left(4.00 \times 10^{3} \mathrm{~kg}\right) v_{f} \sin \theta$

© 2007 Thomson Higher Education

Collision at an Intersection

$$
\begin{aligned}
& m_{c}=1.5 \times 10^{3} \mathrm{~kg}, m_{v}=2.5 \times 10^{3} \mathrm{~kg} \\
& v_{c i x}=25 \mathrm{~m} / \mathrm{s}, v_{v i y}=20 \mathrm{~m} / \mathrm{s}, v_{f}=? \theta=?
\end{aligned}
$$

$5.00 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=\left(4.00 \times 10^{3} \mathrm{~kg}\right) v_{f} \sin \theta$
$3.75 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=\left(4.00 \times 10^{3} \mathrm{~kg}\right) v_{f} \cos \theta$

$$
\tan \theta=\frac{5.00 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{3.75 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}=1.33
$$

$$
\theta=\tan ^{-1}(1.33)=53.1^{\circ}
$$

$$
v_{f}=\frac{5.00 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{\left(4.00 \times 10^{3} \mathrm{~kg}\right) \sin 53.1^{\circ}}=15.6 \mathrm{~m} / \mathrm{s}
$$

© 2007 Thomson Higher Education

A puck with mass $m_{2}=0.3 \mathrm{~kg}$, initially at rest on a horizontal, frictionless surface, is struck by a puck of mass $m_{1}=0.2 \mathrm{~kg}$ moving initially along the x axis with a speed of $v_{1_{i}}=2.0 \mathrm{~m} / \mathrm{s} \hat{\mathrm{i}}$. After the collision, the puck with mass $m_{1}=0.2 \mathrm{~kg}$ has a speed of $v_{1_{f}}=1.0 \mathrm{~m} / \mathrm{s}$ at an angle of $\theta=53.0^{\circ}$ to the positive x axis (see figure below). (7P)

A 28 g bullet travelling at $230 \mathrm{~m} / \mathrm{s}$ hits a 3.6 kg block of wood and remains in it. The block+bullet swings up to a maximum height $h_{\max }$ as shown in the figure below. Find $h_{\text {max. }}$ (5P)

$D 3 \square$

On a frictionless horizontal air table, puck A with mass $m_{A}=0.250 \mathrm{~kg}$ is moving toward puck B with mass $m_{B}=0.350 \mathrm{~kg}$, which is initially at rest. Just after collision, puck A has a velocity of $v_{A_{f}}=0.120 \mathrm{~m} / \mathrm{s}$ to the left, and puck B has a velocity of $v_{B_{f}}=0.650 \mathrm{~m} / \mathrm{s}$ to the right.
(a) What is the speed of the puck A just before the collision?
(b) Calculate the change in the total kinetic energy of the system that occurs during the collision.

P4:

a) A $0.140-\mathrm{kg}$ baseball is dropped and reaches a speed of $1.20 \mathrm{~m} / \mathrm{s}$ just before it hits the ground. It rebounds with a speed of $1.00 \mathrm{~m} / \mathrm{s}$. What is the change of the ball's momentum? (2 points)
b) A 1.0 kg object travelling east at $1.0 \mathrm{~m} / \mathrm{s}$ collides head on with a 2.0 kg object travelling west at $2.0 \mathrm{~m} / \mathrm{s}$. Find the velocity of two objects just after collision if the collision is perfectly inelastic. (2 points)
c) A $900-\mathrm{kg}$ car traveling east at $15.0 \mathrm{~m} / \mathrm{s}$ collides with a $750-\mathrm{kg}$ car traveling north at $20.0 \mathrm{~m} / \mathrm{s}$. The cars stick together. (i) What is the speed of the wreckage just after the collision? (ii) In what direction does the wreckage move just after the collision? (5 points)

D5に

2. Three carts of masses $m_{1}=6 \mathrm{~kg}, m_{2}=9 \mathrm{~kg}$ and $m_{3}=5 \mathrm{~kg}$ move on a frictionless, horizontal track with speeds $v_{1}=3 \mathrm{~m} / \mathrm{s}$ to the right, $v_{2}=2 \mathrm{~m} / \mathrm{s}$ to the right and $v_{3}=5 \mathrm{~m} / \mathrm{s}$ to the left as shown in the figure. The carts stick together after colliding. Find the final velocity of the carts. (4 points)

P6.

P-4: Two blocks $m_{1}=4 \mathrm{~kg}$ and $m_{2}=8 \mathrm{~kg}$ are free to slide along the frictionless, wooden track shown in the figure. The block of mass $m_{1}=4 \mathrm{~kg}$ is released from the position shown, at height $h=5 m$ above the flat part of the track. After some time the blocks collide elastically at point B. Find the speeds of the blocks after the collision. (9 points)

P3: Three masses $m_{1}=5 \mathrm{~kg}, m_{2}=10 \mathrm{~kg}$, and $m_{3}=3 \mathrm{~kg}$ move on a frictionless, horizontal track with speeds of $\mathrm{v}_{1}=4 \mathrm{~m} / \mathrm{s}$ to the right, $\mathrm{v}_{2}=3 \mathrm{~m} / \mathrm{s}$ to the right, and $\mathrm{v}_{3}=5 \mathrm{~m} / \mathrm{s}$ to the left, as shown below. The stick and move together after colliding.

a) Find the velocity of the three masses just after collision. (4pts)
b) Find how much kinetic energy is lost during this inelastic collision. (4pts)

1. Review. A bullet of mass $m=8.00 \mathrm{~g}$ is fired into a block
\square of mass $M=250 \mathrm{~g}$ that is initially at rest at the edge of a table of height $h=1.00 \mathrm{~m}$ (Fig. P9.81). The bullet remains in the block, and after the impact the block lands $d=2.00 \mathrm{~m}$ from the bottom of the table. Determine the initial speed of the bullet.

P9:

A truck of mass $m_{1}=6000 \mathrm{~kg}$ is travelling at a velocity of $\vec{v}_{1_{0}}=25 \hat{i} \mathrm{~m} / \mathrm{s}$ collides with a car of mass $m_{2}=1200 \mathrm{~kg}$ travelling at a velocity $\vec{v}_{2_{0}}=20 \hat{i} \mathrm{~m} / \mathrm{s}$. The velocity of the truck immediately after the collision is $\vec{v}_{1}=22 \hat{i} \mathrm{~m} / \mathrm{s}$.
(a) Calculate the velocity of the car, immediately after the collision.
(b) If the collision lasted for 0.4 s , what is the average force exerted by the car on the truck?

(c) Calculate the lost kinetic Energy.

P10:

A 1.0 kg object travelling at $1.0 \mathrm{~m} / \mathrm{s}$ collides head on with a 2.0 kg object initially at rest. Find the velocity of each object after impact if the collision is perfectly elastic.

P1 A 1.2 kg ball drops vertically onto a floor, hitting with a speed of $25 \mathrm{~m} / \mathrm{s}$. It rebounds with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. (a) What impulse acts on the ball during the contact? (b) If the ball is in contact with the floor for 0.020 s , what is the magnitude of the average force on the floor from the ball?

```
ANS:
a)}\vec{J}=42\hat{\jmath}\textrm{kgm}/\textrm{s
b) }\mp@subsup{\vec{F}}{\mathrm{ avg }}{}=2100\hat{\jmath}
```

P2 In the overhead view of Fig. $9-54$, a 300 g ball with a speed v of $6.0 \mathrm{~m} / \mathrm{s}$ strikes a wall at an angle θ of 30° and then rebounds with the same speed and angle. It is in contact with the wall for 10 ms . In unit-

Figure 9-54 Problem 38. vector notation, what are (a) the impulse on the ball from the wall and (b) the average force on the wall from the ball?

ANS:

a) $\vec{J}=1.8 \hat{\jmath} \mathrm{kgm} / \mathrm{s}$
b) $\vec{F}_{\text {avg }}=-180 \hat{\jmath} N$

The ballistic pendulum is an apparatus used to measure the speed of a fast-moving projectile, such as a bullet. A bullet of mass $m_{1}=$ 20 g with $v_{1 A}=200 \mathrm{~m} / \mathrm{s}$ is fired into a large block of wood of mass $m_{2}=480 \mathrm{~g}$ suspended from some light wires. The bullet embeds in the block, and the entire system swings through a height h. Find the max height, $h=$?

$$
\text { ANS: } \quad \begin{aligned}
& \\
& v=8 \mathrm{~m} / \mathrm{s} \\
& h=3.3 \mathrm{~m}
\end{aligned}
$$

A block of mass $m_{1}=1.6 \mathrm{~kg}$ initially moving to the rightwith a speed of $4 \mathrm{~m} / \mathrm{s}$ on a frictionless horizontal track collides with a spring attached to a second block of mass $m_{2}=2.1 \mathrm{~kg}$ initially moving to the left with a speed of $2.5 \mathrm{~m} / \mathrm{s}$, as shown in Figure. The spring constant is $600 \mathrm{~N} / \mathrm{m}$. (Suppose that the collision is elastic.)
a) Find the velocities of the two blocks after the collision.
b) Prove that during the collision the kinetic energy is conserved.
c) The maximum compression would occur when the two blocks are moving with the same velocity. What is the maximum compression of the spring during the collision?

$$
\begin{aligned}
& \text { ANS: } \\
& \begin{array}{l}
\text { a) } \vec{v}_{1 f}=-3.38 \mathrm{im} / \mathrm{s} \& \vec{v}_{2 f}=3.12 \mathrm{im} / \mathrm{s} \\
\text { b) } \Delta K=0 \\
\text { c) } v_{c o m}=0.311 \mathrm{~m} / \mathrm{s} ; x_{\max }=0.25 \mathrm{~m}
\end{array}
\end{aligned}
$$

60. A small block of mass $m_{1}=0.500 \mathrm{~kg}$ is released from rest at the top of a curve-shaped frictionless wedge of mass $m_{2}=3.00 \mathrm{~kg}$, which sits on a frictionless horizontal surface as in Figure P9.60a. When the block leaves the wedge, its velocity is measured to be $4.00 \mathrm{~m} / \mathrm{s}$ to the right, as in Figure P9.60b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?

Figure P9.60

P7
60 In Fig. 9-59, a 10 g bullet moving directly upward at $1000 \mathrm{~m} / \mathrm{s}$ strikes and passes through the center of mass of a 5.0 kg block initially at rest. The bullet emerges from the block moving directly upward at 400 m / s. To what maximum height does the block then rise above its initial position?

$$
\begin{array}{ll}
\text { ANS: } \\
& h_{\max }=7.35 \mathrm{~cm}
\end{array}
$$

Figure 9-59 Problem 52.

1) In a particular crash test, a car of mass 1500 kg collides with a wall, as shown in the figure. The initial and final velocities of the car are $\vec{v}_{i}=-15 \hat{\imath} \mathrm{~m} / \mathrm{s}$ and $\vec{v}_{f}=2.6 \hat{\imath} \mathrm{~m} / \mathrm{s}$, respectively. If the collusion lasts for $0.15 s$, find the impulse caused by the collusion and the average force exerted on the car.

2) A 3 kg steel ball strikes a wall with a speed of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with the surface. It bounces off with the same speed and angle. If the ball is in contact with the wall for $0.2 s$, what is the average force exerted by the wall on the ball?
3) An 1800 kg truck stopped at a traffic light is struck from the rear by a 900 kg car, and that two become entangled, moving along the same path as that of the originally moving car. If the car were moving at $20 \mathrm{~m} / \mathrm{s}$ before the collision, what is the
 velocity of the entangled car-truck system after the collision?
4) A 1500 kg car travelling east with a speed of $25 \mathrm{~m} / \mathrm{s}$ collides at an intersection with a 2500 kg van travelling north at a speed of $20 \mathrm{~m} / \mathrm{s}$, as shown in the Figure. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming that they stick together.

5) In the overhead view of the Figure, a 300 g ball with a speed of v of $6^{\mathrm{m} / \mathrm{s}}$ strikes a wall at an angle θ of 30° and then rebounds with the
 same speed and angle. It is in contact with the wall for 10 ms .
a) What is the impulse on the ball from the wall in unit vector notation?
b) What is the average force on the wall from the ball in unit vector notation?
6) A bullet of mass $m=8 g$ is fired into a block of mass $M=250 \mathrm{~g}$ that is initially at rest at the edge of a table of height $h=1 \mathrm{~m}$. The bullet remains in the block, and after the impact the block lands $d=2 m$ from the bottom of the table. Determine the
 initial speed of the bullet.
7) A 5 g bullet moving with an initial speed of $v_{i}=400 \mathrm{~m} / \mathrm{s}$ is fired into and passes through a 1 kg blockas shown in the Figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant $900 \mathrm{~N} / \mathrm{m}$. The block moves $d=5 \mathrm{~cm}$ to the right after impact being brought to rest by
 the spring.
a) Find the speed at which the bullet emerges from the block and
b) Find the amount of initial kinetic energy of the bullet is converted into internal energy in the block bullet system during the collusion.
8) Two blocks of masses $m_{1}=2 \mathrm{~kg}$ and $m_{2}=4 \mathrm{~kg}$ are released from rest at a height of $h=5 \mathrm{~m}$ on a frictionless track as shown in the Figure. When they meet on the level portion of the track, they undergo a head-on, elastic
 collusion. Determine the maximum heights to which m_{1} and m_{2} rise on the curved portion of the track after the collusion.
9) A small block of mass $m_{1}=0.5 \mathrm{~kg}$ is released from rest at the top of a frictionless, curve-shaped wedge of mass $m_{2}=3 \mathrm{~kg}$, which sits on a frictionless, horizontal surface as shown in the Figure. When the block leaves the wedge, its velocity is measured to be $4 \mathrm{~m} / \mathrm{s}$ to the right.

a) What is the velocity of the wedge after the block reaches the horizontal surface?
b) What is the height h of the wedge?
10) A 0.4 kg blue bead slides on a frictionless, curved wire, starting at point A in the Figure, where $h=1.5 m$. At point B , the blue bead collides elastically with a 0.6 kg green bead at rest. Find the maximum height the green bead rises as it moves up the wire.

11) A 1.25 kg wooden block rests on a table over a large hole as in the Figure. A $5 g$ bullet with an initial velocity v_{i} is fired upward into the bottom of the block and remains in the block after the collusions. The block and bullet rise to a maximum height of 22 cm .
a) Describe how you would find the initial velocity of the bullet.

b) Calculate the initial velocity of the bullet from the information provided.
12) A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initiallt unstretched snd with force constant $k=2 \times 10^{4} \mathrm{~N} / \mathrm{m}$, as shown in the Figure. The cannon fires a 200 kg projectile at a
 velocity of $125 \mathrm{~m} / \mathrm{s}$ directed 45° above the horizontal.
a) Assuming that the mass of the cannon and its carriage is 5 kg , find the recoil speed of the cannon.
b) Determine the maximum extension of the spring.
c) Find the maximum force the spring exerts on the carriage.
d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the fireing? Why or why not?
13) In the "before" part of the Figure, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slides with locked wheels until the frictional force from the slick road (with a low μ_{k} of 0.13) stops them, at distances $d_{A}=8.2 \mathrm{~m}$ and $d_{B}=6.1 \mathrm{~m}$.
a) What is the speed of car A just after the collusion?
b) What is the speed of car B just after the collusion?

c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision.
14) Two asteroids of equal mass in the asteroid belt between Mars and Jupiter collide with a glancing blow. Asteroid A, which was initially travelling at $40^{\mathrm{m}} / \mathrm{s}$, is deflected 30° from its original
 direction, while asteroid B, which was initially at rest, travels at 45° to the original direction of A.
a) Find the speed of each asteroid after the collision.
b) What fraction of the original kinetic energy of asteroid A dissipates during this collision?
15) Block A has a mass of 1 kg , and block B has mass 3 kg . The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless
 surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of $1.2 \mathrm{~m} / \mathrm{s}$.
a) What is the final speed of block A ?
b) How much potential energy was stored in the compressed spring?
16) A 15 kg block is attached to a very light horizontal spring of force constant $500 \mathrm{~N} / \mathrm{m}$ and is resting on a frictionless
 horizontal table. Suddenly it is stuck by a 3 kg stone travelling horizontally at $8 \mathrm{~m} / \mathrm{s}$ to the right, whereupon the stone rebounds at $2 \mathrm{~m} / \mathrm{s}$ horizontally to the left. Find the maximum distance that the block will compress the spring after the collision.
17) At an intersection, a yellow subcompact car with mass 950 kg travelling east collides with a red pickup truck of mass 1900 kg that is travelling due north and has run a red light. The two vehicles stick together as a result of the collision, and the wreckage slides at $16 \mathrm{~m} / \mathrm{s}$ in the direction 24° east of north. Calculate the speed of each vehicle before the collision. The collision occurs during a heavy rainstorm; you
 can ignore friction forces between the vehicles and the wet road.
18) Spheres A (mass 0.02 kg), B (mass 0.03 kg), and C (mass 0.05 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are given in the Figure. All three spheres arrive to the origin at the same time and stick together.
a) What must the x - and y-components of the initial velocity of C be
 if all three objects are to end up moving at $0.5 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction after the collision?
b) If C has the velocity found in part (a), what is the change in the kinetic energy of the system of three spheres as a result of the collision?
19) A 5 kg chunk of ice is sliding at $12 \mathrm{~m} / \mathrm{s}$ on the floor of an ice covered valley when it collides with and sticks to another 5 kg chunk of ice that is initially at rest. Since the valley is icy, there is no friction. After the collision, how high above the valley floor will the combined chunks go?
