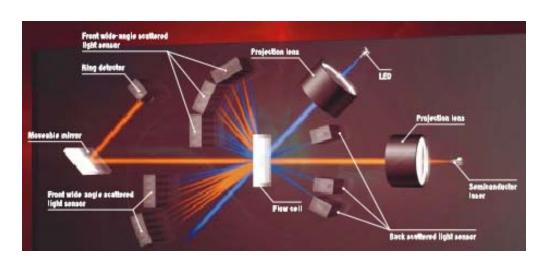
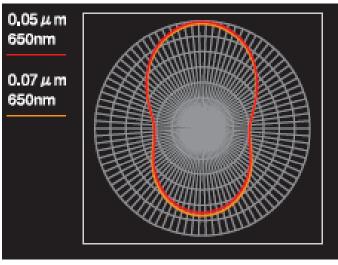
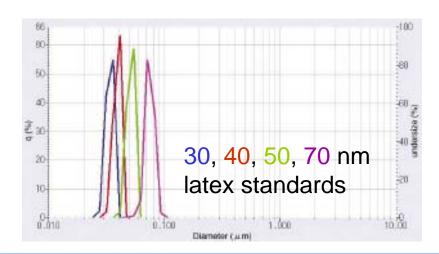


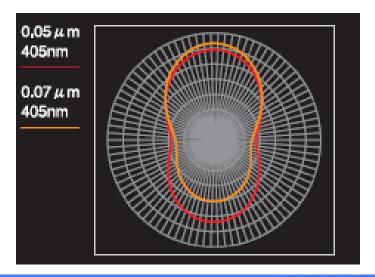
© 2011 HORIBA, Ltd. All rights reserved.

LA-950 Laser Diffraction Analyzer

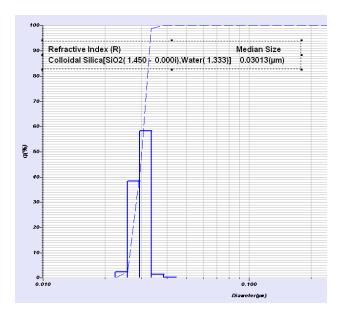

Laser Diffraction


Particle size 0.01 – 3000 µm



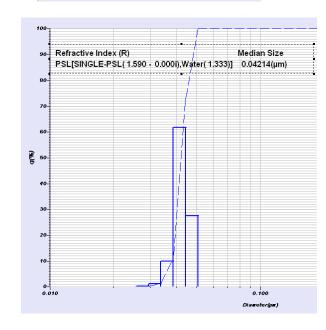


Low End Sensitivity


Explore the future

Low End Sensitivity

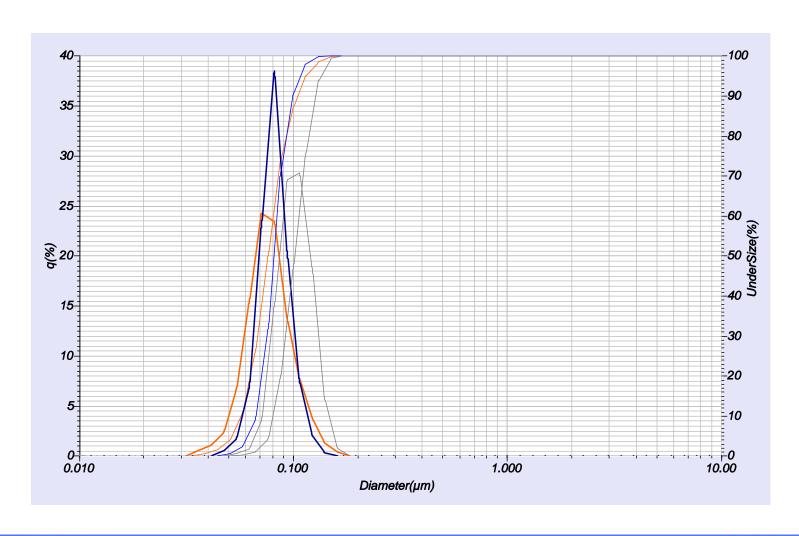
Sensitivity: small particle detection


30 nm silica

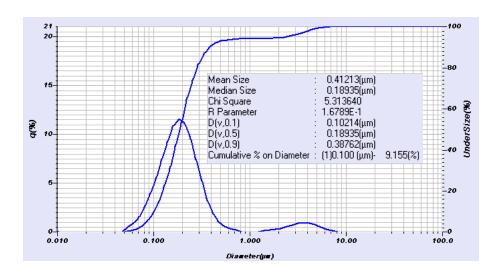
S.P.Area : 2.0183E+6(cm²/cm²) Mean Size : 0.02990(μm) Variance : 5.0313E-6(μm²) Median Size : 0.03013(μm) Mode Size : 0.0302(μm) Skewness : -0.2901

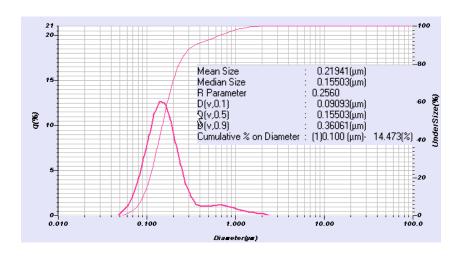
40 nm latex

S.P.Area : 1.4253E+6(cm²/cm²) Mean Size : 0.04241(μm) Variance : 1.2759E-5(μm²) Median Size : 0.04214(μm) Mode Size : 0.0422(μm) Skewness : -0.1514



30 nm Colloidal Silica: DLS Data


	Mean determined z-average size (nm)	COV (%)
Dynamic Light Scattering with SZ-100, laboratory 1	34.4	0.7
Dynamic Light Scattering with SZ-100, laboratory 2	34.6	0.3



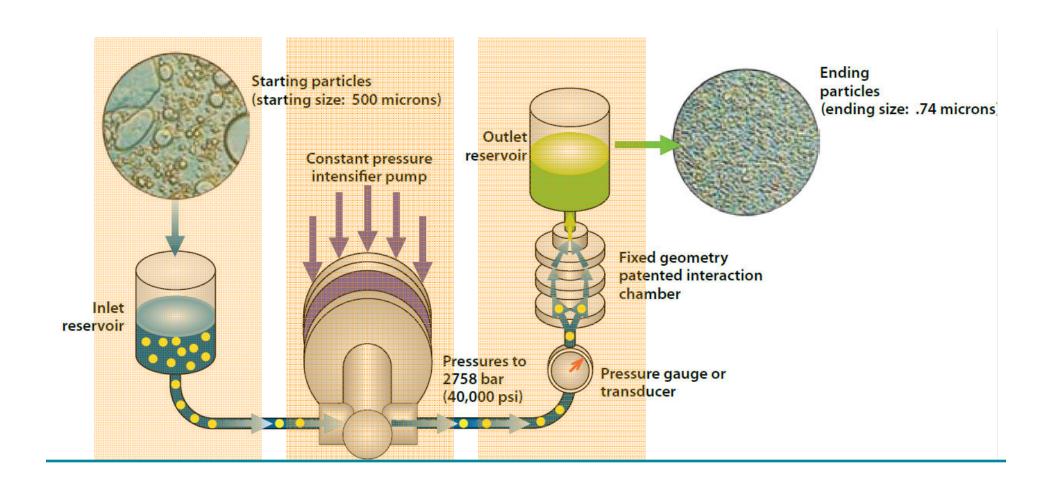
Low End Sensitivity: Pigments

Low End Sensitivity: Cosmetics

- Some (unfounded?) concerns with particles <100nm</p>
- LA-950 good at determining sub 100nm particles
- Software set to display % under any given size
- Data shown left is for skin cream and TiO2 suspension
 See Cosmetics Application Note:

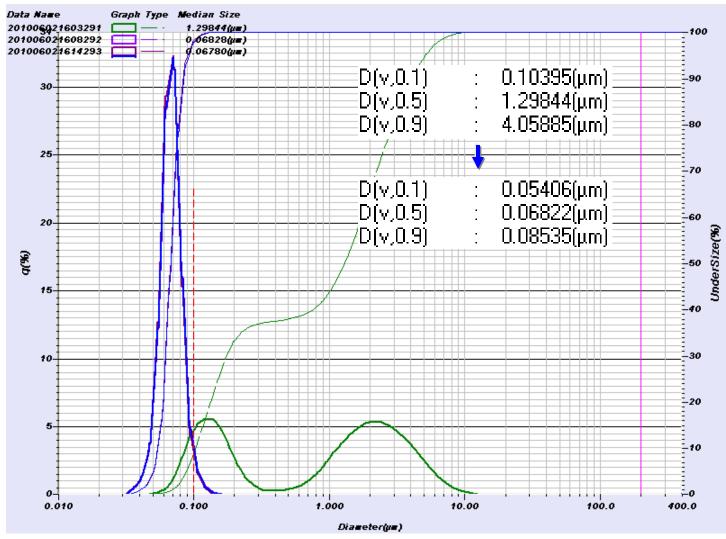
Particle Size Distribution Analyzer Applications Note

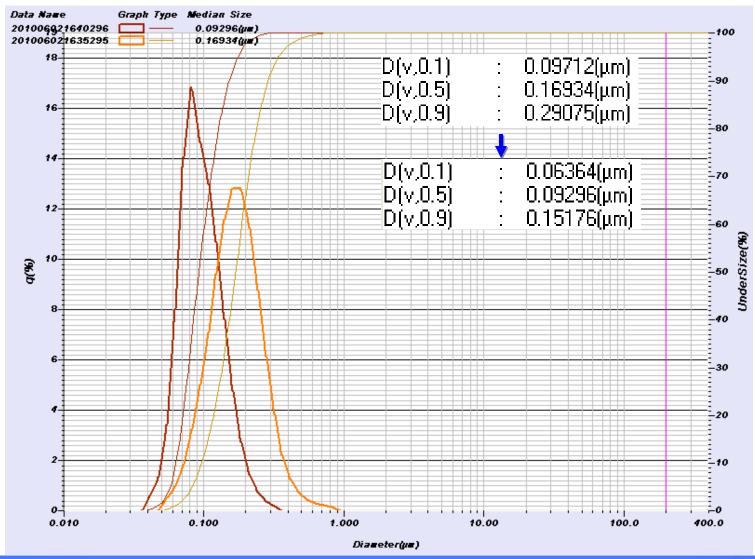
Cosmetics


AN161

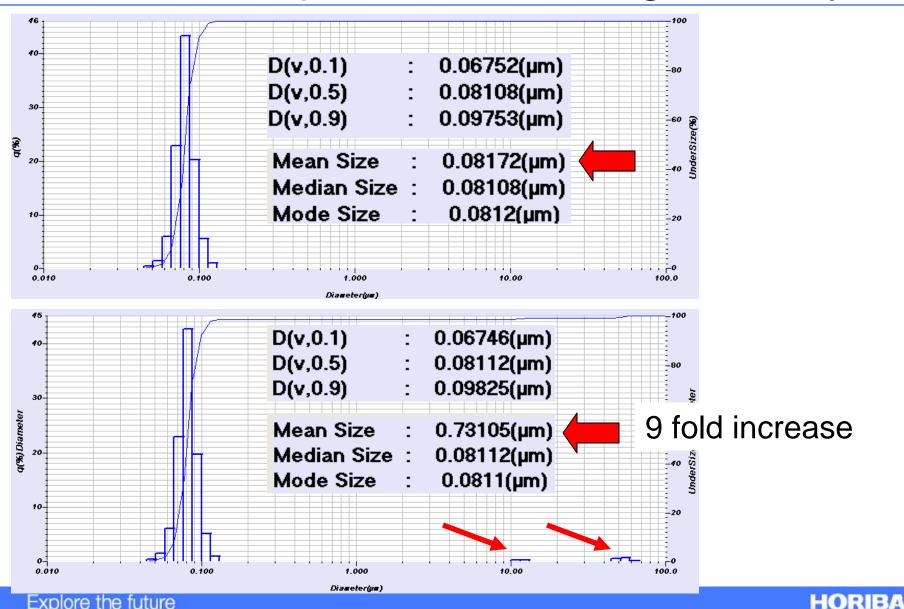
PARTICLE SIZE ANALYSIS OF COSMETICS

can be defined as products or substances that protect or enhance the or odor of a human body. Many cosmetic products include particulate material i. Some examples of cosmetic products consisting of or including particulates il powders, moisturizers, and lipstick. Particle size analysis of cosmetics is dy formulation, characterize raw materials, perform quality tests on end id potentially determine the amount of nano-particles in a product.


Monitoring Size Reduction

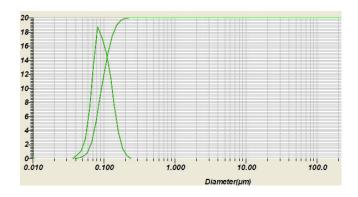

Microfluidics * See http://www.microfluidicscorp.com/

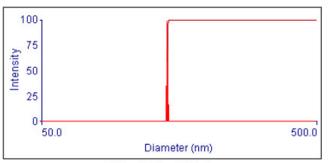
Ceria: Before, After Processing



Laser diffraction required for before sample

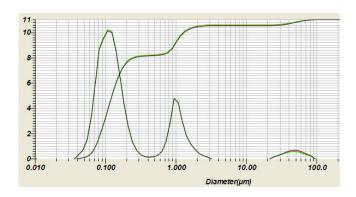
Liposome: Before, After Processing

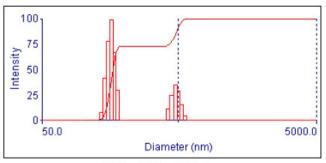

PLA Nanoparticles for Drug Delivery


© 2011 HORIBA, Ltd. All rights reserved

PLA Nanoparticles for Drug Delivery

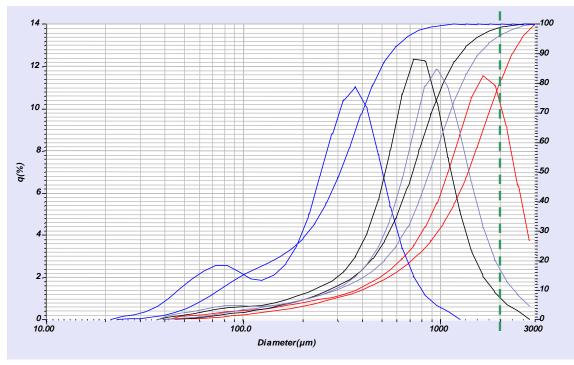
Pure



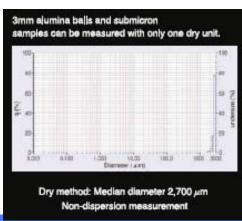


Multimodal Size Distribution

Spiked with 1 µm PSL



Sample Name	e D(v,0.1)	D(v,0.5)	D(v.0.9)
50928-6-2	0.07348(µm)	0.13085(µm)	1.21951(µm)
50928-6-2	0.07345(µm)	0.13065(µm)	1.20702(µm)
50928-6-2	0.07360(µm)	0.13155(µm)	1.25225(µm)



Multimodal Size Distribution

Dynamic Range: High end

Coffee Results

Dynamic Range: High end: Soils

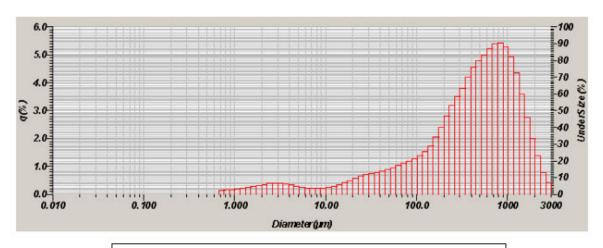
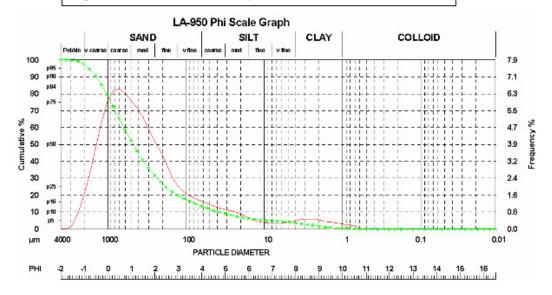
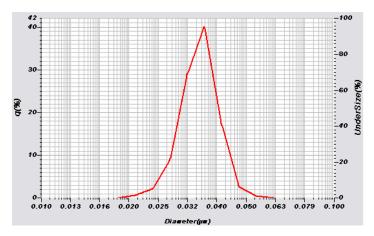



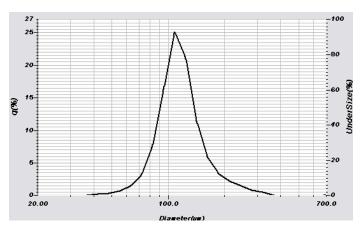
Fig. 3. Lake sediment sample measured on the LA-950

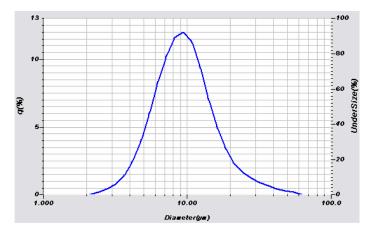
Soils Accessory: Slurry Sampler

- 15, 30, or 60 position auto sampling
- Optional magnetic stirrer base plate
- Sample mixed, removed from cup, delivered to LA-950 for analysis

Other Liquid Accessories


- Miniflow
 - ●35-55 mL liquid
 - W or w/o ultrasound
- Fraction Cell
 - 10 or 15 mL liquid
 - Magnetic stirrer
- Paste Cell
 - Sample pressed between two windows


Small Sample Volume (MiniFlow)



Colloidal Silica (weak scatterer)

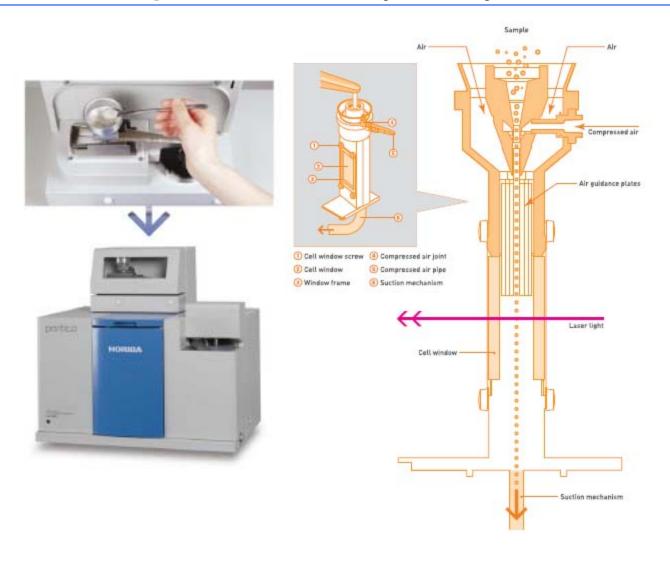
Median (D50): 35 nm

Sample Amount: 132 mg

Magnesium Stearate

Median (D50): **9.33** μ **m**

Sample Amount: 0.165 mg

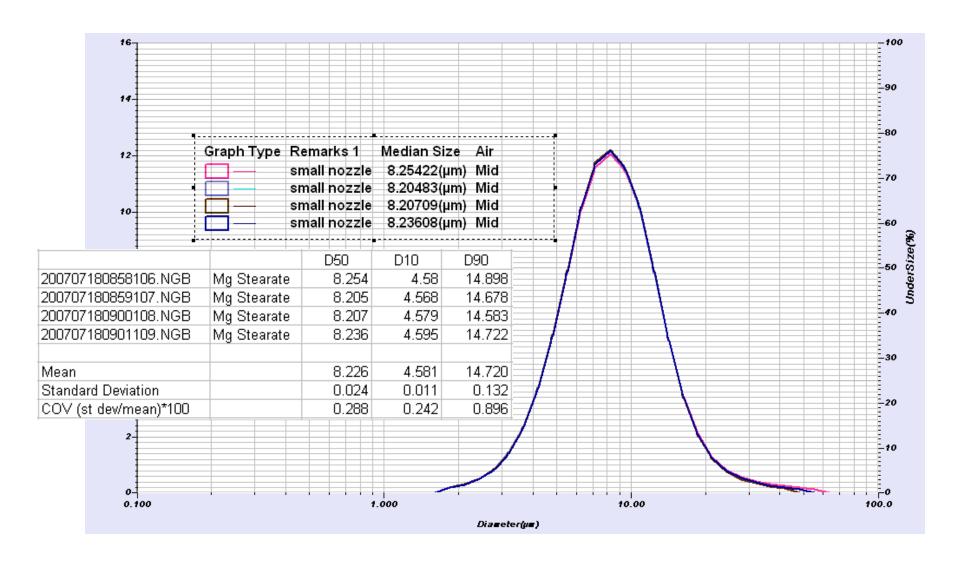

Bio-degradable Polymer Median (D50): **114** μ m Sample Amount: **1.29** mg

Built in Ultrasonic Probe

Specifications

Ultrasonic Power	Output Power		Idling Power	Power Transmited to Water	
	Circulation Speed 3	Circulation Speed 15		Circulation Speed 3	Circulation Speed 15
1	3.8	4.4	1	2.8	3.4
2	6.8	8	1.8	5	6.2
3	9.8	11	2.9	6.9	8.1
4	12.8	14.6	4.5	8.3	10.1
5	16.2	18	5.8	10.4	12.2
6	19.8	22	7.1	12.7	14.9
7	23.2	26	8.6	14.6	17.4

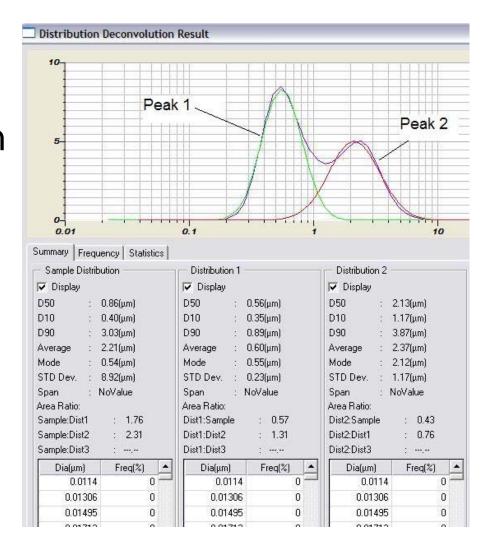
Reproducibility: Dry Powder Feeder



Direct flow of powder down to cell rather than turn 90°, then around plastic tube

Reproducibility: Dry Powder Feeder

- Automatic control of sample feed rate
 - LA-950 monitors amount of sample supplied by the vibratory feeder. Automatic feed back control keeps constant mass flow rate of powder during measurement
 - This is CRITICAL
 - More reproducible, robust
 - No ghost peaks
 - No cutting off results

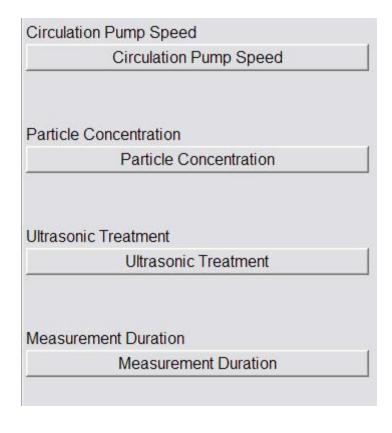

Reproducibility – Mg Stearate Dry

Unique Software features

"Multifunctions"

 To compute individual distribution size from multimodal sample distribution

Unique Software features

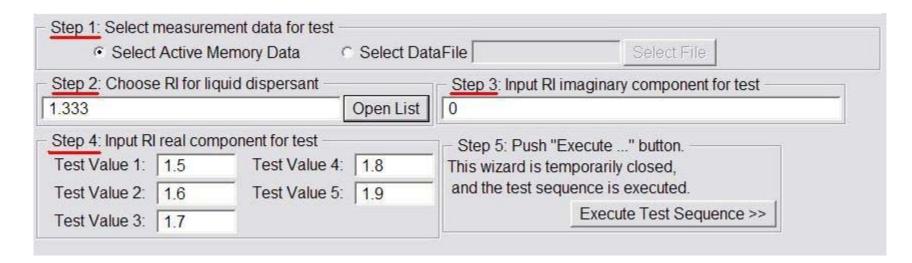

Method expert function

- To study and develop method conditions
- Search of best analytical conditions (pump speed, acquisition time, us time power....)
- Search of best calculation conditions (Refractive Indexes)
- Set a Navigation program including all improved parameters

Unique Software features

Analytical conditions

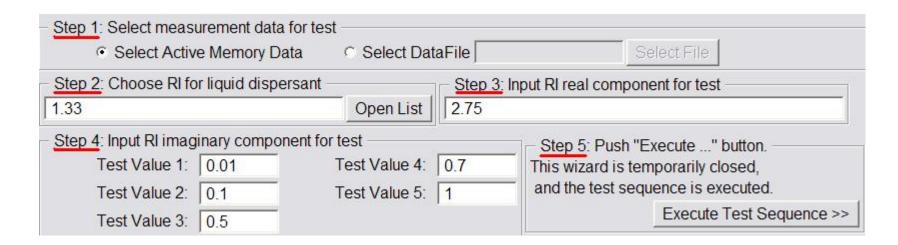
Calculation conditions



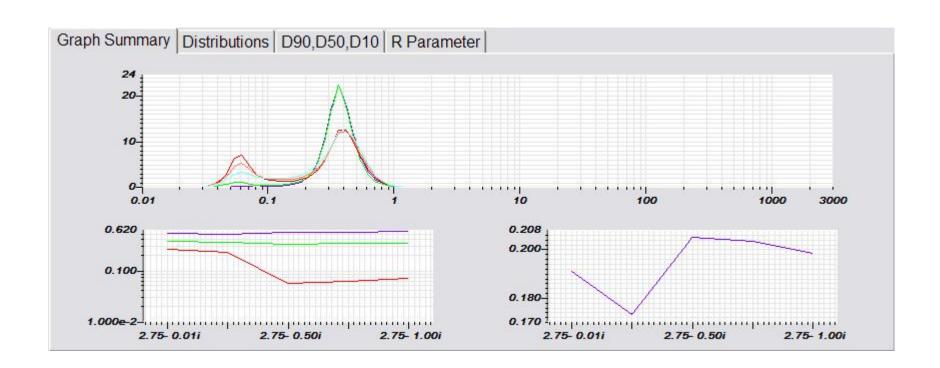
View Method Expert webinar on website (Download Center)

Automated RI computation

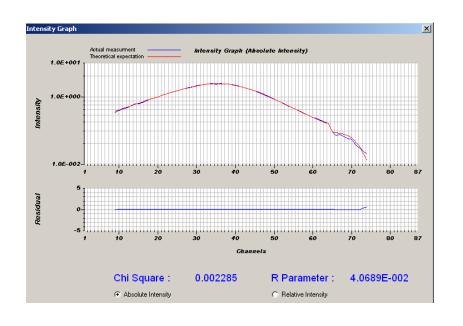
Real part study

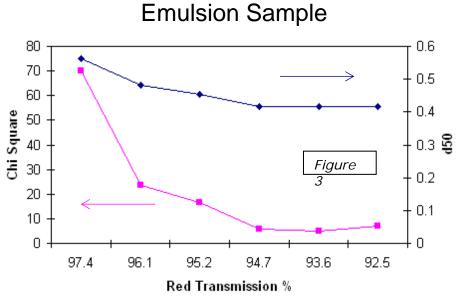

- Need to fix imaginary part
- Set up to 5 real parts
- Software will compute all RI and display R parameter variation with RI selection

Automated RI computation


Imaginary part study

- Need to fix real part
- Set up to 5 imaginary parts
- Software will compute all RI and display R parameter variation with RI selection




Automated RI computation

"Method Expert"- Final RI study

Accuracy: Error Calculations

$$\chi^{2} = \sum \left\{ \frac{1}{\sigma_{i}^{2}} [y_{i} - y(x_{i})]^{2} \right\} \qquad R = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{y_{(x_{i})}} |y_{i} - y(x_{i})| \right\}$$

yi The measured scattered light at each channel (i) of the detector.

y (xi) The calculated scattered light at each channel (i) of the detector based on the chosen refractive index kernel and reported particle size distribution.

σi The standard deviation of the scattered light intensity at each channel (i) of the detector. A larger σi indicates lower reliability of the signal on a given detector.

N The number of detectors used for the calculation

Specifications: Accuracy and Precision

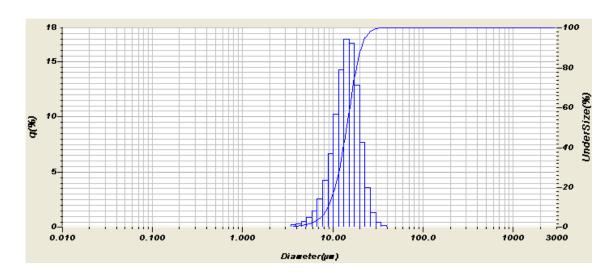
(A) Low accuracy, low precision measurements form a diffuse, off-center cluster;
(B) Low accuracy, high precision measurements form a tight off-center cluster;
(C) High accuracy, low precision measurements form a cluster that is evenly distributed but distant from the center of the target;
(D) High Accuracy, high precision measurements are clustered in the center of the target.

Accuracy

- Comparison to referee technique
 - Microscope (image analysis) is referee technique for particle characterization
- Challenged with particle size standards
 - Monodisperse latex spheres
 - Verifies optics
 - May pass even if problems with sampler
 - Polydisperse glass spheres
 - Verifies complete system
 - Should find problems with samplers

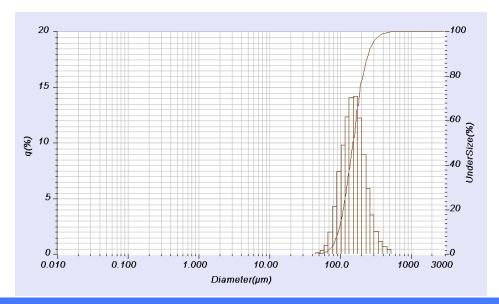
Accuracy

- Verification following accepted practices using polydisperse standards:
 - ●ISO13320 and USP <429>
 - − D₅₀ deviates < 3% from certified range
 - $-D_{10} \& D_{90}$ deviate < 5%

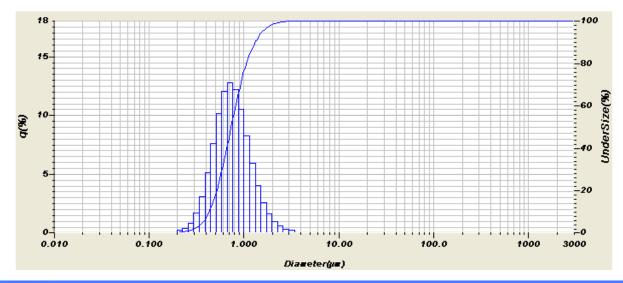

AND

- -COV D50 < 3%
- -COV D10 & D90 < 5%

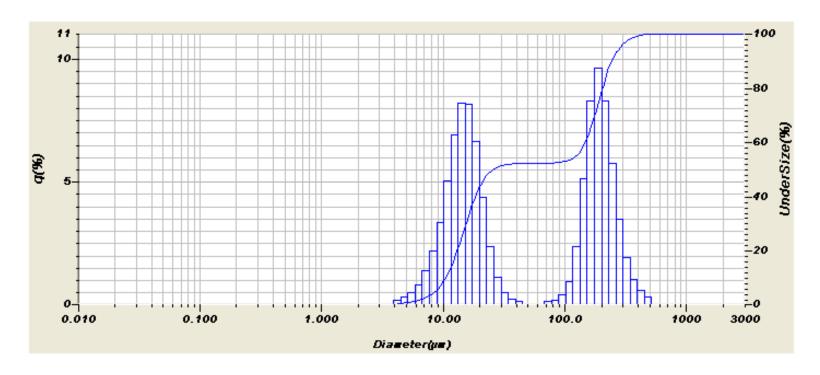
Note: Coefficient of Variation = (standard deviation/mean)*100 also called RSD


Accuracy Test: PS202

PS202 (3-30μm)	D10	D50	D90
Standard Value (µm)	9.14	13.43	20.34
Uncertainty (µm)	0.86	0.86	1.44
ISO standard error	5%	3%	5%
Lower limit (µm)	7.866	12.193	17.955
Measured Result (µm)	9.721	13.916	18.959
Upper Limit (µm)	10.500	14.719	22.869

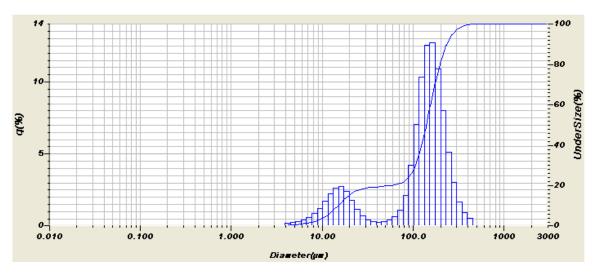

Accuracy Test: PS 225

PS225 (50-350μm)	D10	D50	D90
Standard Value (µm)	93.7	150.5	238.8
Uncertainty (µm)	3.54	2.52	6.02
ISO standard error	5%	3%	5%
Lower limit (µm)	85.652	143.541	221.141
Measured Result (µm)	94.217	153.815	252.542
Upper Limit (µm)	102.102	157.611	257.061

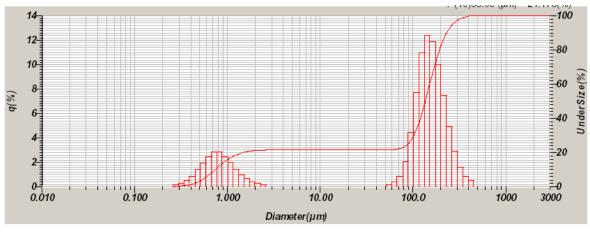


Accuracy Test: PS 181

PS181 (0.1-1μm)	D10	D50	D90
Standard Value (μm)	0.36	0.65	1.11
Uncertainty (µm)	0.06	0.06	0.13
ISO standard error	5%	3%	5%
Lower limit (µm)	0.285	0.5723	0.931
Measured Result (μm)	0.434	0.709	1.296
Upper Limit (µm)	0.441	0.7313	1.302



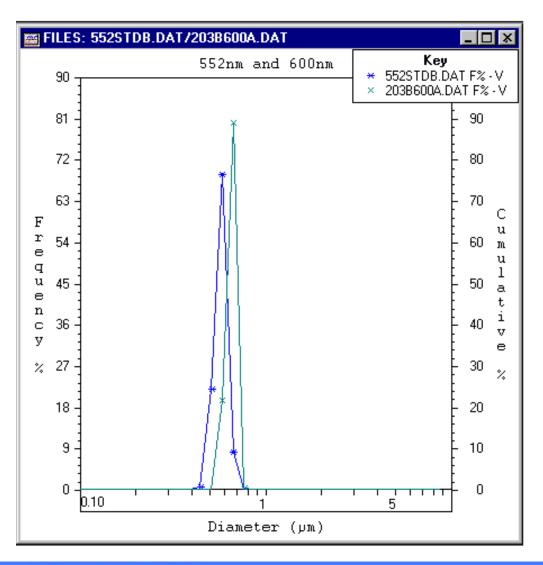
Mix of 50/50 PS202 & 225



Excellent baseline resolution: 48/52 calculated proportions

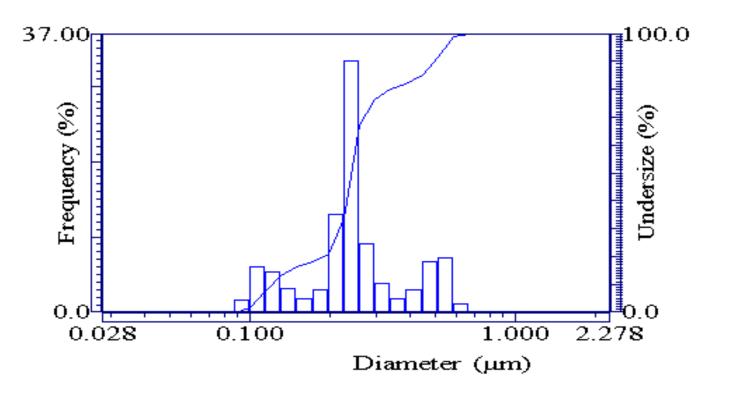
Mixed Standards

5 parts PS225 to 1 part PS202



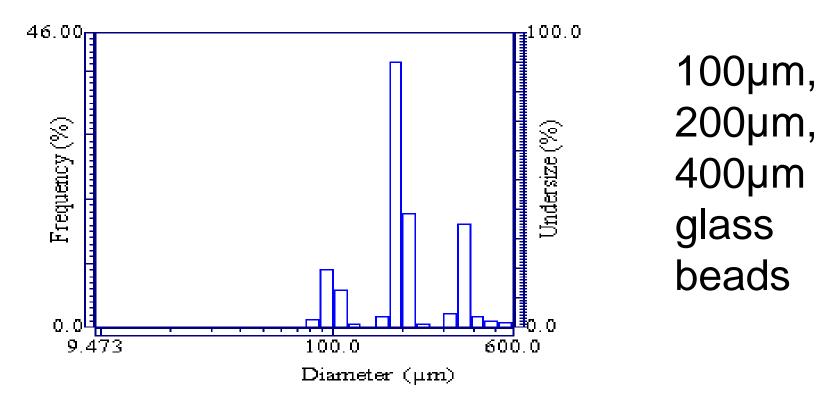
5 parts PS225 to 1 part PS181

Resolution

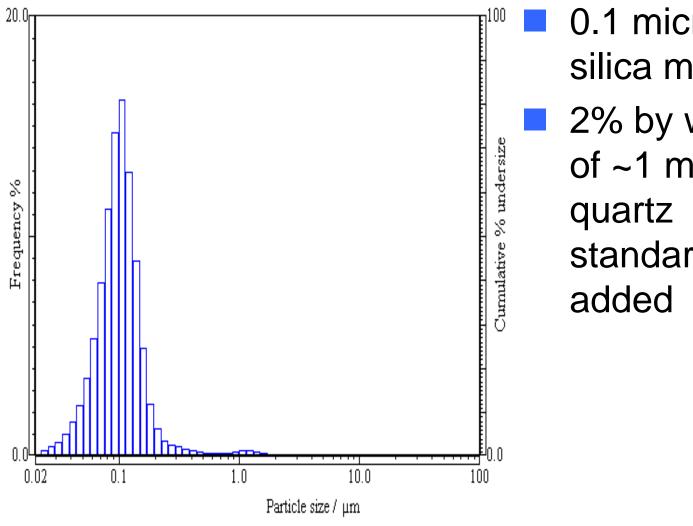

- Ability to measure small differences in particle size
- Small differences between successive samples (different production lots) are most important
- Detection limit of small amount of material outside of main size distribution
- Best defined by user's real-world requirements

Resolution

- Resolve size difference between two materials of similar size.
- 552nm and 600nm PSL
- Can separate peaks when measured separately
- Would merge into one peak if measured together


Resolution: Small Particles

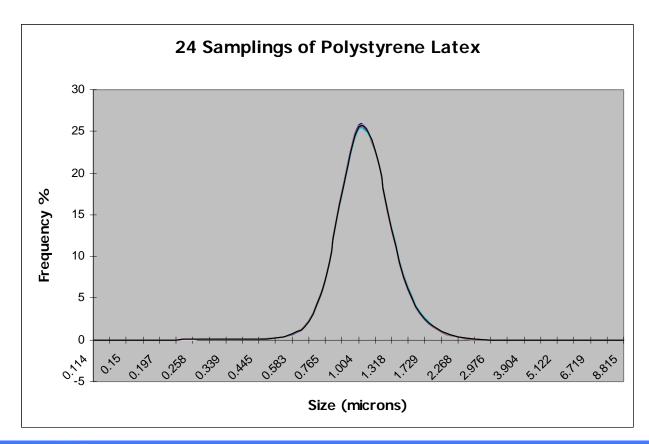
83nm, 204nm, 503nm PSL


Resolution of multiple modes in a single sample.

Resolution: Large Particles

Resolution of multiple modes in a single sample.

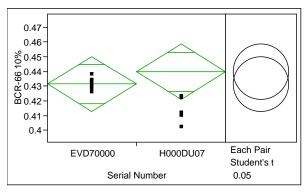
Resolution: Small Amount of Second Peak

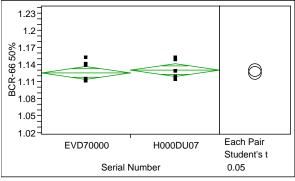


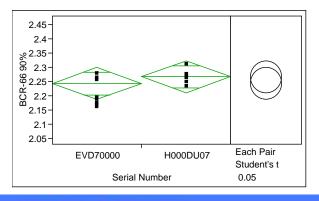
- 0.1 micron silica material
- 2% by weight of ~1 micron standard

HORIBA Explore the future

Precision (Repeatability)


 Repeatability: Measuring the same sample multiple times as it recirculates within the system




LA-950 Accuracy & Precision Data

Accuracy and Precision for PSL Standards						
Standard value	102nm	491nm	1.02um	12.01um	102um	1004um
Tolerance	3nm	4nm	0.022um	0.07um	1.4um	14um
1	104.41	489.41	1.021	11.97	102.64	1001.14
2	104.39	489.28	1.019	11.97	102.66	1000.20
3	104.39	490.24	1.019	11.97	102.73	1001.49
4	104.33	489.52	1.021	11.96	102.70	1001.28
5	104.38	489.55	1.019	11.97	102.73	1000.14
6	104.36	489.52	1.021	11.97	102.74	1000.27
7	104.36	489.50	1.019	11.97	102.76	1001.67
8	104.35	489.91	1.021	11.96	102.74	1001.22
9	104.37	488.99	1.021	11.97	102.74	1000.76
10	104.34	489.68	1.021	11.97	102.76	1000.45
Average	104.37	489.56	1.020	11.97	102.72	1000.86
Std. Dev.	0.024	0.321	0.001	0.004	0.039	0.540
CV	0.02%	0.07%	0.10%	0.03%	0.04%	0.05%

Analysis of Variance (ANOVA): BCR-66*

Summary of Fit	10%	50%	90%
Rsquare	0.02698	0.03032	0.02330
Adj Rsquare	-0.03384	-0.03029	-0.03775
Root Mean Square Error	0.02654	0.01566	0.07936
Mean of Response	0.4356	1.1276	2.2553
Observations	18	18	18

t Test	10%	50%	90%
Difference	0.00833	0.00522	0.02311
Std Err Dif	0.01251	0.00738	0.03741
Upper CL Dif	0.03486	0.02088	0.1024
Lower CL Dif	-0.01819	-0.01043	-0.05619
Confidence	0.95	0.95	0.95
t Ratio	0.6660	0.7072	0.6178
DF	16	16	16
Prob > t	0.5149	0.4896	0.5454

Tool Difference	10%	50%	90%
EVD70000	0.4314	1.1250	2.2438
H000DU07	0.4398	1.1302	2.2669
Grand Mean	0.4356	1.1276	2.2553
Difference of Tools	-0.00833	-0.00522	-0.02311
% Difference	-1.91%	-0.46%	-1.02%
Tolerance Level		±10%	

^{*}see AN146 LA-950 Repeatability Study on www.horiba.com

Reproducibility

- Prepare sample, measure, drain, repeat
- What would be good reproducibility?
- Test COV according to ISO13320
 - CV < 3% at D_{50}
 - \bullet CV < 5% at D₁₀ & D₉₀
 - Double values if D₅₀ <10 µm</p>
- Test COV according to USP<429>
 - \bullet CV < 10% at D₅₀
 - \bullet CV < 15% at D₁₀ & D₉₀
 - Double values if D₅₀ <10 µm</p>

Automatic Reproducibility Calculations

- ISO13320-1-1999 "Particle size analysis Laser diffraction methods — Part 1: General principles
- EP 2.9.31 "Laser Diffraction Measurement of Particle Size"; Lead for this monograph
- Appearance in Pharmacopeial Forum 28, Number 3 2002
- Now in USP 28, NF25
 - in Stage 4 of the harmonization process with the EP and the JP

General Chapters Status

Chapter Title	Summary Status	Most Recent/Proposed PF	Official/Proposed Official Date	Expert Committee
<429> LIGHT DIFFRACTION MEASUREMENT OF PARTICLE SIZE	Official in PF	31(4)	USP 27 1S	GC

Software Automation

Export Summary	Print Summary	Edit Layout	Best Fit Columns	Hide Selected	Exit					
File Nar	ne	Sample N	ame	Material	Sourc	Lot Number	Test or Assay.	10.000%	Median Size	90.000%
PS202-A.NGB	PS20	2	GL	ASS	WHITEI	00977	G0400R5R-BW	9.739	14.690	20.957
PS202-A.NGB	PS20	2	GL	ASS	WHITEI	2403	H006D1D-BW	9.238	14.248	20.443
PS202-A.NGB	PS20	2	GL	ASS	WHITEI	00973	H000BS0Z-BW	9.577	14.740	21.455
PS202-B.NGB	PS20	2	BE	ADS	DUKE			9.810	15.022	21.761
PS202-B.NGB	PS20	2	GL	ASS	WHITEI	1482	435869200701-E	9.418	14.321	20.330
PS202-B.NGB	PS20	2	GL	ASS	WHITEI	2436	F0H0080L-BW	9.356	14.503	21.139
PS202-B.NGB	PS20	2	BE	ADS	WHITEI			9.200	14.255	20.558
PS202-B.NGB	PS20	2	GL	ASS	WHITEI	00977	G0400R5R-BW	9.740	14.697	20.986
PS202-B.NGB	PS20	2	GL	ASS	WHITEI	2403	H006D1D-BW	9.228	14.212	20.327
PS202-B.NGB	PS20	2	GL	ASS	WHITEI	00973	H000BS0Z-BW	9.574	14.763	21.559
PS202-C.NGB	PS20	2	BE	ADS	DUKE			9.802	15.008	21.737
PS202-C.NGB	PS20	2	GL	ASS	WHITEI	1482	435869200701-E	9.414	14.338	20.412
PS202-C.NGB	PS20	2	GL	ASS	WHITEI	2436	F0H0080L-BW	9.340	14.471	21.077
PS202-C.NGB	PS20	2	BE	ADS	WHITEI			9.213	14.268	20.568
PS202-C.NGB	PS20	2	GL	ASS	WHITEI	00977	G0400R5R-BW	9.737	14.684	20.945
PS202-C.NGB	PS20	2	GL	ASS	WHITEI	2403	H006D1D-BW	9.236	14.226	20.363
PS202-C.NGB	PS20	2	GL	ASS	WHITEI	00973	H000BS0Z-BW	9.549	14.650	21.191
PS202-D.NGB	PS20	2	GL	ASS	WHITEI	1482	435869200701-E	9.375	14.212	19.982
PS202-E.NGB	PS20	2	GL	ASS	WHITEI	1482	435869200701-E	9.430	14.336	20.366
PS202.NGB	PS20	2_A	Std		Whiteho	0730	MP	10.161	14.012	18.152
PS202.NGB	PS20	2	Gla	ssbeads	Whiteho	00632	431091200101-E	11.801	13.326	14.828
PS202.NGB	PS20	2	Qua	artz	Whiteho			9.108	14.125	20.337
PS202A.NGB	PS20	2	gla	SS	Whiteho	1478	433581200301-4	9.156	14.082	19.949
PS202B.NGB	PS20	2	gla	SS	Whiteho	1478	433581200301-4	9.158	14.084	19.954
PS202C.NGB	PS20	2	gla	ss	Whiteho	1478	433581200301-4	9.159	14.078	19.928
Average								9.534	14.492	20.808
Std. Dev.								0.859	1.547	2.948
RSD								9.010	10.675	14.168
USP-429 (15.0,	10.0, 15.0)							PASSED	FAILED	PASSED

Qualification: Accuracy and Repeatability

- Use polydisperse standard
- Three independent measurements, calculate mean
- X50 <3% "certified range of values"
- X10 & X90 < 5% "certified range of values"
- Also check repeatability
- COV X50 < 3%
- COV X10 & X90 < 5%

See Verification webinar on website


Software Automation

Select Summary Items			
Item List		Summary Items	
Remarks 1 Remarks 2 Remarks 3 Remarks 4 Remarks 5 Remarks 6 Remarks 7 Remarks 8 Remarks 9 Remarks 10 ID#	Add>>	File Name Sample Name Material Source Lot Number Test or Assay. Number Diameter on Cumulativ Median Size Diameter on Cumulativ	e %[02]
		Clear Up	Down
Font: MS Sans Serif - 10		Font	Open
Orientation: • Portrait C Landscape	е		
✓ Include Summary Averages ✓ Show RSD (C.V.)	✓ Include Summary St	d. Dev.	Save As
_ Validation			Cancel
Specification: Custom	•		ov 1
Max % D(v,0.1) M	1ax % D(v,0.5)	D(v,0.9)	OK
D(v, 0.5) > 10μm 15	12 15		
D(v, 0.5) < 10μm 30 2	20 30		

Qualification in Practice

HORIBA Laser Scattering Particle Size Distribution Analyzer LA-950

Accuracy & Precision Specifications

Accuracy - Guaranteed!

- •+/- 0.6% on NIST-traceable polystyrene latex calibration standards
- •3% on d50 (median) for broad-distribution glass bead standards
- •5% on d10 and d90 for broad-distribution glass bead standards Meets or exceeds all requirements of ISO 13320 and USP 429

Precision - 0.1%

The combination of a rigid optical bench, stable, high-intensity light sources, optimized detectors, and highly-refined electronics virtually eliminates variability in the background noise and fluctuations in the response of the instrument. The *Partica* LA-950 has a guaranteed precision of 0.1% on polystyrene latex calibration standards

Instrument to Instrument Variation

Minimized Instrument to Instrument Variation

As a result of each instrument being extremely accurate and precise, the variation in results from instrument to instrument is decreased. This is particularly important when multiple units are installed at different production facilities or when comparing data from supplier to customer.

Sample	CV D10	CV D50	CV D90
PS202 (3-30μm)	2%	1%	2%
PS213 (10-100μm)	2%	2%	2%
PS225 (50-350μm)	1%	1%	1%
PS235 (150-650μm)	1%	1%	2%
PS240 (500-2000μm)	3%	2%	2%

All samples measured on 20 different instruments

Customer Data: Intermediate Precision

Design of Intermediate Precision Experiments							
1	N = 6 Assays	Day-1	Analyst-1	Instrument-1			
2	N = 6 Assays	Day-1	Analyst-2	Instrument-1			
3	N = 6 Assays	Day-1	Analyst-1	Instrument-2			
4	N = 6 Assays	Day-1	Analyst-2	Instrument-2			
5	N = 6 Assays	Day-2	Analyst-1	Instrument-1			
6	N = 6 Assays	Day-2	Analyst-2	Instrument-1			
7	N = 6 Assays	Day-2	Analyst-1	Instrument-2			
8	N = 6 Assays	Day-2	Analyst-2	Instrument-2			

Customer Data: LA-910 Intermediate Precision

				Grand RSD					
Analyst	Dov	Inatr#	Donlingto		DE(nm)	D10(nm)	DE0(nm)	D00(nm)	D05(nm)
Analyst	Day	Instr.#	Replicate	Dmean (nm) 107	D5(nm) 45	D10(nm)	D50(nm)	D90(nm)	D95(nm)
1	1	1	2	107	-	56	95	171	211
					45	56	95	171	210
1	1	1	3	106	45 45	56	94	168	206
			4	107	-	56	95	170	209
1	1	1	5	106	45	55	94	169	208
1	1	1	6	103	45 44	55	93	163	195
1	1	2	1	102		53	88	165	200
1	1	2	2	101	44	53	87	163	206
1	1	2	3	101	44	53	87	162	202
1	1	2	4	100	44	53	87	161	201
1	1	2	5	101	44	53	87	161	202
1	1	2	6	98	44	53	87	152	188
1	2	1	1	108	45	56	96	172	212
1	2	1	2	108	45	56	96	171	210
1	2	1	3	106	45	56	95	168	205
1	2	1	4	107	45	56	95	169	208
1	2	1	5	107	45	56	95	169	208
1	2	1	6	106	45	56	95	168	206
1	2	2	1	103	44	53	89	166	211
1	2	2	2	103	44	53	88	167	210
1	2	2	3	102	44	53	89	165	207
1	2	2	4	102	44	53	88	164	206
1	2	2	5	102	44	53	88	164	206
1	2	2	6	101	44	53	88	163	205
2	1	1	1	107	45	55	94	172	214
2	1	1	2	107	45	55	94	173	216
2	1	1	3	105	45	55	93	168	207
2	1	1	4	106	45	55	93	170	212
2	1	1	5	106	45	55	93	171	213
2	1	1	6	106	45	55	93	169	208
2	1	2	1	102	44	53	88	164	209
2	1	2	2	100	44	53	87	161	202
2	1	2	3	100	44	53	87	158	198
2	1	2	4	100	44	53	86	158	199
2	1	2	5	100	44	53	87	159	200
2	1	2	6	99	44	53	87	157	197
2	2	1	1	109	45	56	97	176	216
2	2	1	2	108	45	56	96	174	214
2	2	1	3	107	45	56	95	170	208
2	2	1	4	106	45	55	94	169	208
2	2	1	5	106	45	55	94	170	209
2	2	1	6	106	45	56	94	169	207
2	2	2	1	103	44	54	89	165	209
2	2	2	2	104	44	53	89	169	217
2	2	2	3	103	44	53	88	167	212
2	2	2	4	102	44	53	88	165	210
2	2	2	5	101	44	54	88	162	203
2	2	2	6	101	44	54	89	161	200

	Grand RSD						
	Dmean (nm)	D5(nm)	D10(nm)	D50(nm)	D90(nm)	D95(nm)	
Average	104	45	54	91	166	207	
STDEV	3.0	0.5	1.3	3.5	5.0	5.8	
% RSD	2.8	1.1	2.4	3.9	3.0	2.8	
RSD limit	6%	10%	10%	6%	10%	10%	

Instrument to instrument variability: LA-910

6-8 Instruments:

Formulation	Dmean	D10	D50	D90
	sd (nm)	sd (nm)	sd (nm)	sd (nm)
А	2.8	2.1	3.5	2.1
В	4.5	7.1	4.7	6.9
С	9.5	6.5	9.5	12.2
D	10.6	7.9	10.1	18.2
E	8.7	5.4	8.7	19.4
F	9.2	10.0	9.5	14.6

Dmean	D10	D50	D90
rsd (%)	rsd (%)	rsd (%)	rsd (%)
2.8	3.4	3.6	1.5
2.6	6.0	2.8	2.9
6.1	6.5	6.5	5.4
5.9	7.0	5.9	7.0
5.4	5.5	5.7	8.1
6.0	10.7	6.6	6.4

Customer Data: LA-950 Precision

LA-950 # 1:

Formulation 1	Dmean	D5	D10	D50	D90	D95
1	156	113	120	154	195	209
2	155	112	119	153	194	208
3	155	112	119	153	194	208
4	156	113	119	154	195	209
5	154	111	119	152	193	207
6	155	112	119	152	194	208
Average	155	112	119	153	194	208
Std Dev	0.8	0.8	0.5	1.0	0.8	0.7
RSD	0.5	0.7	0.4	0.6	0.4	0.4

LA-950 #2:

Formulation 1	Dmean	D5	D10	D50	D90	D95
1	154	112	119	152	192	208
2	154	112	119	152	192	208
3	155	113	119	152	192	208
4	155	113	119	152	193	208
5	154	112	119	152	193	207
6	155	112	119	153	193	208
Average	155	112	119	152	192	208
Std Dev	0.5	0.5	0.0	0.6	0.3	0.5
RSD	0.3	0.5	0.0	0.4	0.1	0.3

Instrument to instrument variability: LA-950

4 Instruments:

Formulation 1	Dmean	D5	D10	D50	D90	D95
Average (nm)	155	112	119	152	193	208
Std Dev (nm)	0.8	0.8	0.7	1.0	1.1	0.7
RSD (%)	0.5	0.7	0.6	0.6	0.6	0.3

Formulation 2	Dmean	D5	D10	D50	D90	D95
Average (nm)	193	136	147	187	247	264
Std Dev (nm)	1.5	0.5	0.4	0.6	0.4	1.1
RSD (%)	0.8	0.4	0.3	0.3	0.2	0.4

Reliability and Support

- LA-950 (V1) launched in 2004, hundreds of installations, not a single light source or detector failure yet
- Full applications support worldwide
 - Application labs in US (x2), France, Germany, Japan (x2), Singapore, China (x2), Korea
- Two day hands-on training course in NJ and CA
- Web based training all lectures from 2 day diffraction training course
- HORIBA: a brand you can trust

Conclusions

- Most advanced laser diffraction analyzer available
- LA-950 publishes most detailed performance specifications
- Best small particle sensitivity
- High performance across entire dynamic range: wet and dry
- Most automated software to test both accuracy and reproducibility

Q&A

Ask a question at labinfo@horiba.com

Keep reading the monthly HORIBA Particle e-mail newsletter!

Visit the Download Center to find the video and slides from this webinar.

