
Assembly Language LAB

Islamic University – Gaza
Engineering Faculty
Department of Computer Engineering
2013
ECOM 2125: Assembly Language LAB
Eng. Ahmed M. Ayash

Lab # 1

Introduction to Assembly
Language

February 11, 2013

1

Objective:

To be familiar with Assembly Language.

1. Introduction:

Machine language (computer's native language) is a system of impartible instructions

executed directly by a computer's central processing unit (CPU).

 Instructions consist of binary code: 1s and 0s

Machine language can be made directly from java code using interpreter.

The difference between compiling and interpreting is as follows. Compiling translates the

high-level code into a target language code as a single unit. Interpreting translates the

individual steps in a high-level program one at a time rather than the whole program as a

single unit. Each step is executed immediately after it is translated.

C, C++ code is executed faster than Java code, because they transferred to assembly

language before machine language.

2

Using Visual Studio 2012 to convert C++ program to assembly language:

- From File menu >> choose new >> then choose project.

 Or from the start page choose new project.

- Then the new project window will appear,

 - choose visual C++ and win32 console application

 - The project name is welcome:

This is a C++ Program that print "Welcome all to our assembly Lab 2013”

3

To run the project, do the following two steps in order:

1. From build menu choose build Welcome.

2. From debug menu choose start without debugging.

The output is

To convert C++ code to Assembly code we follow these steps:

1)

2)

4

3)

We will find the Assembly code on the project folder we save in (Visual Studio

2012\Projects\Welcome\Welcome\Debug), named as Welcome.asm

Part of the code:

2. Assembly Language

Assembly Language is a programming language that is very similar to machine language,

but uses symbols instead of binary numbers. It is converted by the assembler (e.g. Tasm and

Masm) into executable machine-language programs.

Assembly language is machine-dependent; an assembly program can only be executed on a

particular machine.

2.1 Introduction to Assembly Language Tools

Software tools are used for editing, assembling, linking, and debugging assembly language

programming. You will need an assembler, a linker, a debugger, and an editor.

5

2.1.1 Assembler

An assembler is a program that converts source-code programs written in assembly

language into object files in machine language. Popular assemblers have emerged over the

years for the Intel family of processors. These include MASM (Macro Assembler from

Microsoft), TASM (Turbo Assembler from Borland), NASM (Netwide Assembler for both

Windows and Linux), and GNU assembler distributed by the free software foundation. We

will use MASM 6.15 and TASM.

• Masm.exe creates an .obj file from an .asm file.

2.1.2 Linker

A linker is a program that combines your program's object file created by the assembler

with other object files and link libraries, and produces a single executable program. You

need a linker utility to produce executable files.

• Link.exe creates an .exe file from an .obj file.

• Use make16.bat to assemble and link a 16-bit format assembly program.

• Use make32.bat to assemble and link a 32-bit format assembly program.

2.1.3 Debugger

A debugger is a program that allows you to trace the execution of a program and examine

the content of registers and memory.

 For 16-bit programs, MASM supplies a 16-bit debugger named CodeView.

CodeView can be used to debug only 16-bit programs and is already provided with

the MASM 6.15 distribution.

2.1.4 Editor

You need a text editor to create assembly language source files. MASM6.15 has its own

editor or you can use for example Notepad++.

6

To make programs in assembly language, you must know some information about the 8086

microprocessor. The 8086 contains 14 registers. Each register is 16 bits long. See Figure (1)

Figure (1): Registers of 8086 microprocessor

7

General-Purpose Registers:

Named storage locations inside the CPU, optimized for speed.

To Access Parts of Registers we can Use 8-bit name, 16-bit name, or 32-bit name; this is

applied to EAX, EBX, ECX, and EDX.

Each register has different usage as shown in Table (1) below. The general purpose

registers can be "split". AH contains the high byte of AX and AL contains the low byte.

You also have: BH, BL, CH, CL, DL, DH.

So if for example, DX contains the value 1234h DH would be 12h and DL would be 34h.

Table(1): Registers of 8086 microprocessor and their purposes

And a 16-bit FLAG Register. The FLAGS Register consists of 9 status bits. These bits are

also called flags, because they can either be SET (1) or NOT SET (0). All these flags

have a name and purpose.

8

Control Flags: Control flags control the CPU’s operation. For example, they can cause the

CPU to break after every instruction executes, interrupt when arithmetic overflow is detected.

Programs can set individual bits in the EFLAGS register to control the CPU’s operation.

Examples are the Direction, Trap and Interrupt flags.

Status Flags: The Status flags reflect the outcomes of arithmetic and logical operations performed

by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and Carry flags.

Table(2): FLAGS Register

Instruction Forms:

Assembly instructions are made up of an operation code (op-code) and set operands. The

op-code identifies the action to be taken. The operands identify the source and destination

of the data. The operands identify CPU registers, memory locations, or I/O ports. The

complete form of an instruction is:

op-code destination operand, source operand

For example:

INC AX ; one operand (add 1 to register AX)

MOV AX, 100 ; two operands (store 100 in register AX)

Segments:

Code, Data, Stack and Extra; within the 1 MB of memory space the 8086 defines four

64 Kbyte memory blocks called the code segment, data segment, stack segment, and the extra

segment.

9

3. Hello Program on MASM assembler

Installing MASM:

Just extract the MASM6.15.zip on C:

Assembling, Linking, Running a .asm File on MASM:

1-Make a folder for your assembly file

2-Extract the file MASM Files

3-Copy all the files in MASM Files to your Folder.

4-Open the command window

Start->Run

5-Write cmd then enter

6-Change Directory to your Folder using cd command

Or, instead of the previous steps, you can just open the cmd shortcut, which is in the MASM Files

folder, and then the cmd will run with the location you are in.

7-On cmd write edit hello.asm then, the following screen will appear.

8-Write your Assembly code as the following:

11

9-Save your work then exit the editor

10-Type make16 hello then enter

Once a program is written, it can be assembled and linked using the make16.

Note:

If you use a 32 bit registers you will assemble and link using make32 instead of make16

command.

The following files will be created

Yourfile.obj

Yourfile.lst

Yourfile.exe

11-Run your program using hello

11

Analysis of the Hello program:

Description Instruction

is a directive to tell the assembler to arrange data

segment, code segment and stack segment as

DOS arrangement.

DOSSEG

is a directive to tell the assembler to use one data

 segment and one code segment.

All data fits in one 64K segment, all code fits in

one 64K segment. Maximum program size is

128K.

MODEL SMALL

is a directive to put in data segment. .DATA

is a directive to put in code segment. .CODE

is a default address of data segment to put it in ax

register.
 @Data

As note we can't put data in ds register directly.

So we use intermediate register (ax) as in the

mov ds, ax

mov ax, @data

mov ds, ax

Put the service 9 in ah. mov ah, 9

(Interrupt 21 hexa), it has many services like

9,8,2, and each one has special work.
int 21h

The two statements to terminate the execution of

the program.
mov ah,4ch

 int 21h

is a directive to indicate the end of the file END

12

Hello Program on TASM assembler

Assembling, Linking, Running a .asm File on TASM:

1-Extract the file TASM Files

2- Click Start Run then write cmd and click OK.

3- Go to directory C:\Tasm\Bin

4- Type the command C:\Tasm\Bin\edit hello.asm

5- Write your code then save and exit.

6- Write C:\Tasm\Bin\tasm hello.asm to create the file hello.obj. This file is the machine

 language for the program.

7- Write C:\Tasm\Bin\ tlink hello.obj to create the file hello.exe. This file is executable program.

8- Finally, write C:\Tasm\Bin\hello.exe. You will show the message on DOS screen.

13

Notes:

1. In TASM your code must be written in the following path C:\TASM\BIN.

2. We use the following code to print msg on the screen.

mov ax,@data

 mov ds,ax

 mov ah,9

 mov dx, offset msg

 int 21h

Debugging Assembly Language programs:

For Debugging you can use:

Debug hello.exe

14

The complete set of possible flag mnemonics in Debug (ordered from left to right) are as

follows:

Default Segments for Debug Commands.

15

Turbo Debugger (TASM Debugger):

The Turbo Debugger is a program that allows you to single-step your program (that

means run it line-by-line while you watch what happens). You can observe the registers,

the memory dump, individual variables, flags, and the code as you trace through your

program. Also it is used to debug errors that have to be made by logic reasons. After you

write your program you can use assembly turbo debugger by follow the following:

C:\Tasm\Bin\td Hello

Description Number

Indicate to the menu bar of turbo debugger. 1

Indicate to the region contain Code pane. 2

Indicate to the region contain Register pane. 3

Indicate to the region contain Data pane. 4

Indicate to the region contain Flag pane. 5

Indicate to the region contain Stack pane. 6

Indicate to the instruction pointer (IP) it contains the offset address of the

instruction will be execute.

7

Indicate to Code register that have value of (1432) and we get it from register

pane.

8

The offset address of each instruction. 9

This statement tells the assembler to put (@data) default offset address in AX

and this value from figure equal to (1433).

10

Indicate to the machine language of statement and from figure it is equal to

(B83314).

11

This column is the values of Registers. 12

16

CodeView Debugger (MASM Debugger):

 For 16-bit programs, MASM supplies a 16-bit debugger named CodeView.

CodeView can be used to debug only 16-bit programs and is already provided with

the MASM 6.15 distribution.

 For 32-bit protected-mode programs, you need a 32-bit debugger. The latest version

of the 32-bit Windows debugger is available for download for free from Microsoft.

To debug your code do as follows:

runCV Hello

The highlight bar in the source window is automatically placed on your program's first

executable instruction:

17

Begin Tracing the Program:

Press the F8 function key to begin tracing the program. Watch the highlight bar in the

source window move downward, each time showing the next instruction about to be

executed. Watch the registers change values.

18

Restart the Program:

Any time while debugging, you can restart a program by selecting Restart from the Run

menu. Try it now, and again trace the program using the F8 key. After finishing the

debugging, select Exit from the File menu.

Note:

1. RunCV does not work on windows 7, but it works fine on windows xp.

2. For the students who don’t have windows xp, you can install xp on a virtual box such

 as VMware.

4. Lab work:

Write the previous code, “hello.asm” program then use Debugger to single step through

this program using the (TRACE) command.

Homework:

Write an assembly language program to print all letters as follows:

AB..........YZ

Note: To print a character on the screen you have to use the int 21h with the service 2,

the character to be printed have to be in dl. For Example, the following code print A on

the screen.

mov ah, 2

mov dl, 41h

int 21h

Note: Don’t use loop.

