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Lab 3 Problem Set:
Materials properties from DFT
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In this problem set, we will perform additional first-principles calculations. These calcu-
lations will show some aspects of DFT that we did not see in Lab 2. We will use ultrasoft
pseudopotentials (US-PP) as opposed to norm-conserving pseudopotentials (NC-PP) that
we used in the last lab. Ultrasoft pseudopotentials give accurate answers with lower wave-
function cutoff (however, charge density cutoffs must remain the same), which means that
calculations can be cheaper. Furthermore, we will explore metallic and magnetic systems,
highlighting all of the necessary calculation parameteres.

Problem 1 (30 points): Iron: stability under pressure

and magnetism

You will calculate energies of different structures using the Perdew-Burke-Ernzerhof(PBE)
GGA exchange-correlation functional. Use a wavefunction cutoff of 30 Ry along with charge
density cutoff 300 Ry. A good k-point mesh is not given to you; you will have to find this
yourself. We are going to compare the energies of the HCP and BCC structures. Note that
the energy difference will be very small. Energies should be converged to within 2meV/atom.

A. Using PWscf, optimize the lattice parameters for both BCC and HCP Fe (i.e., a for BCC
and a and c for HCP). Plot the ground state energy of Fe in both structures as a function
of k-points. You may choose to do automatic optimization or directly scan a range of
lattice parameters.

B. Plot the energy as a function of unit cell volume for the two structures and find when
the HCP structure becomes more favorable than the BCC one. (note that: At pressure
greater than 15 GPa the HCP-Fe phase is more stable [see “Possible thermal and chemical
stabilization of body-centred-cubic iron in the Earth’s core”, Vocadlo L. et al. Nature,
424 (2003) 536; Xianwei Sha and RE Cohen PRB, 73 (06) 104303]). Further, note that
it is important when comparing energies that the k-point samplings for both systems are
comparable and converged.

C. Using PWscf, calculate and compare the total energy for the BCC structure in the
ferromagnetic, antiferro-magnetic, and nonmagnetic states. Think about which unit
cells and initial conditions to use. What is the ground state magnetic ordering?
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Problem 2 (40 points): Stability of the perovskite: a

case study Lead Titanate

PbTiO3 is a perovskite oxide which is ferroelectric. The ferroelectric response of PbTiO3 is
the result of a displacive transition where a low temperature tetragonal phase is preferred
over the cubic phase. In this problem, we will study the energetics of cubic PbTiO3 and use
first principles calculations to gather information pertaining to the displacive transition to
the tetragonal phase.

A. Calculate and plot the energy of cubic PbTiO3 as a function of lattice parameter. Use a
4 × 4 × 4 k-point mesh with a 1,1,1 offset (see example script in the handout). Sample
lattice parameters with a sufficiently fine grid to get a reliable value for the equilib-
rium lattice constant. To get an idea where to begin, note that the room-temperature
experimental lattice constant is about 3.97Å.

B. Using the equilibrium lattice parameter from part (A), plot the energy as a function of
displacement of the Ti atom along one of the cubic lattice directions, allowing the O
atoms to fully relax for each displacement. Report the Ti displacement at which the
total energy is at a minimum. What is the energy difference between this configuration
and the minimum-energy configuration from part (A)? Be aware that for PbTiO3, the
Ti displacement will be very small.

C. Now allow both the Ti atom and the O atoms to relax and find the minimum energy
structure, using the minimum-energy Ti displacement from part (B) as your starting
configuration. Report the final atomic positions and final energy.

D. Which phase is the most energetically stable for PbTiO3 and how does that relate to the
ferroelectric behavior of this material?

Problem 3 (30 points): Stability of the CuAu alloy

A. Calculate the equilibrium lattice parameters for FCC Cu and Au, with energy-
differences converged to 0.3mHa/atom
Explore the convergence of k-point sampling for FCC Cu and Au using LDA ultrasoft
pseudopotentials with a plane-wave energy cutoff ecutwfc=40 Ryd and charge density
cutoff ecutrho=320 Ryd.

B. Different unit-cell representations of the 50-50% solution of CuAu
L10 is the name associated to the ordered phase of CuAu corresponding to a solution
of 50% Cu and 50% Au. One possible representation of L10 CuAu is the pseudo-face-
centered tetragonal (pfct) unit-cell shown (’pseudo’ refers to the fact that the unit-cell
has two different types of atoms in the middle of the faces). Show how you can describe
the L10 CuAu structure by using a smaller body centered tetragonal (bct) unit-cell in-
stead of the the unit-cell shown above. Show how the lattice parameters c and a of the
new bct cell relate to the lattice parameters c and a of the pfct unit-cell reported above.
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C. At 0K, will a 50-50% solution of CuAu be segregated into pure elements or
will be ordered?
Explore relaxation of the L10 CuAu, including both lattice parameters and atom posi-
tions using calculation=’vc-relax’. Use the body-centered tetragonal unit cell with
two atoms, for which the lattice constants are a = b 6= c. How do the lattice con-
stants a and c compare to the lattice constants of the pure elements? At the relaxed
lattice parameters, check the convergence of the energy with respect to k-point sampling.

Calculate the formation energy of the alloy structure

∆Hf (CuAu) =
1

2
(Etot(CuAu)− Eb(Cu)− Eb(Au)) (1)

where Eb(Cu) and Eb(Au) are the total energies for Cu and Au in their equilibrium FCC
bulk structures, respectively. The total energy of CuAu, Etot(CuAu), must correspond
to fully relaxed equilibrium lattice parameters and internal coordinates of the alloy unit
cell. For optimal cancellation of errors, use the same calculation settings for all energies.
Is the alloy structure stable at zero temperature?
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Lab 3 Handout:
Materials properties with Quantum Espresso - PWscf

March 6, 2018

Continuing with Quantum Espresso: PWscf

In this lab we continue our use of the Quantum-Espresso(QE) package, introduced in Lab 2.
Please refer to the Lab 2 handout. Please keep in mind that this time calculations are more
complex and longer than the previous problem set.

1 Study of Iron BCC and HCP structures

In problem 1, we will compare energy of Iron (Fe) in the body centered cubic (BCC) and
hexagonal close packed (HCP) structures at different pressures, in order to evaluate the
transition pressure between the two phases [for details see “Possible thermal and chemical
stabilization of body-centered-cubic iron in the Earth’s core”, Vocadlo L. et al. Nature,
424(2003)536; Xianwei Sha and RE Cohen PRB,73(06)104303]. Moreover, we will calculate
the ferro-, anti-ferro- and para- magnetic ground states.

First we will calculate the total energy of a bulk BCC Fe and HCP Fe. To get started
the setup steps and changes to the input file for problem 1 are outlined below:

1. Pull the latest samples and scripts from the git repository and copy to your work
directory.

$ cd ~/Software/labutil

$ git pull

$ cp * ~/WORK/Lab3/

2. Copy the pseudopotential from labutil into the correct directory:

$ cd ~/WORK/Lab3/

$ cp Fe.pbe-nd-rrkjus.UPF $ESPRESSO_PSEUDO
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The bash environment variable $ESPRESSO_PSEUDO, defined in your .profile.

3. Let’s look at the sample input file Fe.scf.in

&control

calculation=’scf’

pseudo_dir = ...

outdir = ...

tstress = .true.

tprnfor = .true.

disk_io = ’none’

/

&system

ibrav = 0

nat= ...

ntyp= 1

ecutwfc= 30.0

ecutrho= 240.0

nspin=2

starting_magnetization(1) = 0.7

occupations=’smearing’

smearing=’mp’

degauss=0.02

/

&ELECTRONS

diagonalization= ’david’

conv_thr = 1e-07

mixing_beta = 0.5

/

&IONS

/

&CELL

/

ATOMIC_SPECIES

Fe 55.847 Fe.pbe-nd-rrkjus.UPF

CELL_PARAMETERS {angstrom}

...

ATOMIC_POSITIONS {angstrom}

Fe ...

Fe ...

K_POINTS {automatic}

2 2 1 0 0 0

The following describes some new input parameters (not seen in Lab 2) as well as
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the parameters we are concerned with varying in Lab 3. As mentioned in the Lab 2
handout the full description of all parameters in the input file can be found on the
Quantum Espresso website.

• ecutwfc= 30.0

ecutrho= 240.0

Since we are using ultrasoft pseudopotentials (USPP), charge density needs to be
represented on a larger grid in reciprocal space, with a cutoff at least 8-12 times
larger than the kinetic energy cutoff for the wavefunctions. You will notice in
the scripts that the multiplier is set to 8. Just as a note, for norm conserving
pseudopotentials (NCPP) it is sufficient to set the multiplier to 4.

• nspin=2

This is the spin-polarization of the system. In previous calculations this was set to
1 (the default) for a non-spin-polarized calculation, i.e. bands are occupied with 2
electrons each and there is no separate calculation for spin-up and -down electrons.
However, if we are to treat magnetic systems we need to take spin-polarization
into account, this is turned on by setting nspin=2.

• starting_magnetization(1) = 0.7

Because we want to search for a magnetic ground state, we put the system in
an initial magnetic state with starting magnetization(1). Here the integer 1
refers the the atom type and the value 0.7 (can range for −1 to +1). And since
we have defined only one type (Fe) we can only find either a ferromagnetic or a
non-magnetic state. You can imagine that other types of magnetism will require
different definitions of both starting magnetization(1) and atom types (one
beauty of computation is that you can give many different types of the same atom
– e.g., Fe1, Fe2, etc.)

• occupations=’smearing’

smearing=’mp’

degauss=0.02

Because we are concerned here with a metallic system, we run into some issues
with Brillouin zone integration. More specifically, in a metal bands are occupied
up to the Fermi energy and because of this discontinuity, Brillouin zone integration
with our rather sparse k-point grids will lead to large discrepancies in energy with
regard to k-point sampling (think about if the band crossed the Fermi level at
a k-point that we have sampled, versus somewhere in between sampled points).
To combat this problem (without going to enormous expensive k-point grids)
we introduce a fictitious temperature, or ”smearing”. This results in fractional
occupation of some of the states above the Fermi-energy and in effect make for a
smoother function for the integration. To that end we use a few more parameters:
First the temperature is turned on (with occupations=’smearing’), then we
decide on a type of smearing (in this case smearing=’mp’), and finally we need to
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define a parameter that determines the ‘amount’ of smoothing (degauss=0.02).
This value is in Ryd units and is the spread of the smearing function. degauss

should always be tested; small enough not to introduce unphysical effects, but
large enough to decrease k-point sampling. However, in the interest of time we
will not do so for this Lab.

• For the BCC case the structure needs only one atomic position

ATOMIC_POSITIONS {angstrom}

Fe 0.000000000000 0.00000000000000 0.0000000000000

while for the HCP case, two will be needed.

• K_POINTS {automatic}

2 2 1 0 0 0

Remember that k-point sampling is related to the inverse of the cell parameters.
That is, for BCC, sampling should be over 2×2×2, etc. grids, while for the HCP
case the sampling should be 2× 2× 1, 4× 4× 2, etc. to reflect the difference in c
versus a lattice parameters as closely as possible, in order to get a more uniform
sampling mesh.

4. To run the simulation manually you can type

$ pw.x < Fe.scf.in > Fe.scf.out

5. The script Fe_sample.py provides an example Python workflow using familiar func-
tions, to help you run a series of calculations automatically. You will notice that the
parameter dictionary now includes the new keywords. Note the new parameter ncpu=2
in the run_qe_pwscf() function, it specifies how many cpu cores the PWscf code will
use. Since some of your computations will take a few minutes, you can speed up the
computations by allocating more cores to your virtual machine (in VirtualBox Settings
/ System / Processor) before starting it. On Google Cloud, your instance may have
more cores available, depending on how you set it up.

2 Stability of perovskite Lead Titanate

In this problem, we will be looking at PbTiO3 in the cubic phase and tetragonal phases.
The atomic positions of the cubic perovskite structure are shown below (corners of the cube
are Pb, faces contain the O cages, and center of cell is Ti).
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Take a look at the provided example file PbTiO3.rel.in. The order of the keywords in
each block is not important and may be different in your inputs. However, the order of the
blocks &control, ..., &cell is important:

&control

calculation = ’relax’

tstress = .true.

tprnfor = .true.

pseudo_dir = ...

outdir= ...

/

&system

ibrav = 0

nat = 5

ntyp = 3

ecutwfc = 30.0

ecutrho = 240.0

/

&electrons

diagonalization=’david’

mixing_beta = 0.7,

conv_thr = 1e-07

/

&ions

/

&cell
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/

ATOMIC_SPECIES

Pb 207.2 Pb.pz-d-van.UPF

Ti 47.88 Ti.pz-sp-van_ak.UPF

O 15.9994 O.pz-rrkjus.UPF

CELL_PARAMETERS {angstrom}

3.9 0.0 0.0

0.0 3.9 0.0

0.0 0.0 3.9

ATOMIC_POSITIONS {angstrom}

Pb 0.00000 0.00000 0.00000 0 0 0

Ti 1.95000 1.95000 1.95000 0 0 0

O 0.00000 1.95000 1.95000

O 1.95000 0.00000 1.95000

O 1.95000 1.95000 0.00000

K_POINTS {automatic}

3 3 3 1 1 1

• calculation = ’relax’

For parts (B) and (C), instead of a single self-consistent field calculation, we will be
doing a ’relax’ calculation. This includes a series of SCF calculations, where each
calculation finds all the forces and displaces the ions (those that are not explicitly
constrained) until forces are small. The ions are allowed to move in order to reduce
the total system energy. Note that for part (A), you should use ’scf’, as in Problem
1.

• &ions

ion_dynamics=’bfgs’

/

Since we will be using ion relaxation, we now use the IONS name list section. We are not,
however, using real dynamics – i.e., there is no time coordinate used in the relaxations
– but just searching for the minimum energy relaxations. This section is ignored by
the code for the scf calculations of part (A). If interested in more ion dynamics flags
(other than BFGS) see the full input file description.

• Pb 0.0 0.0 0.0 0 0 0

Ti 0.5 0.5 0.5 0 0 0

You will notice that there are now three additional flags at the end of our atomic
coordinates. These flags define the degrees of freedom available for those atoms during

6



relaxation (0 = disallow motion in that direction for that atom, the default 1 = allow
motion in that direction). In the example shown above, the Pb and Ti ions are fixed,
while the O ions are allowed to relax. The format is:

atomic label pos_x pos_y pos_z allow_x allow_y allow_z

Finally, you will find that using Python scripts will save you tons of time on this problem
set – i.e., not using scripts could mean that you spend literally days sitting at a computer
waiting for runs to finish. You should be able to set up the appropriate scripts based on the
ones we’ve already used for examining Fe and also the example script from last problem set.
If you are still uncomfortable with writing your own Python functions, please ask for help
from other students or make an appointment to work out some basic scripts for completing
this problem set.

3 Metallic Alloy: the case study of CuAu

Metallic alloys form a large class of scientifically interesting and technologically important
materials. Properties such as structure, phase stability, elastic behavior, magnetism and
conductivity, are all related directly to the underlying electronic structure, see [S. Muller J.
of Physics: Condensed Matter 15 (2003) R1429].

In this problem we will calculate the structural formation energy of the alloy AuCu, which
is one of the most studied alloys due to its practical applications in catalysis. Moreover, it
is a typical superlattice alloy with a rich phase diagram containing ordered and disordered
phases across the range of compositions. The chemical compositions Cu3Au, CuAu and
CuAu3, present ordered structures in a wide range of temperatures. Here we will focus on
the case of CuAu, meaning a 50-50% solution of Au and Cu. The ordered phase CuAu is
represented by a body-centered-tetragonal unit cell with two atoms (one Au and one Cu).
This structure and this chemical composition of binary alloy is usually called L10.

For a metallic alloy, one of the most important quantities is the structural formation
energy, defined as:

∆Hf (AmBn) =
1

m + n
(Etot(AmBn) −mEb

A(aA) − nEb
B(aB)) (1)

where Eb
A(aA) and Eb

B(aB) are the total energies for the elements A and B in their bulk,
calculated for their equilibrium lattice constants aA and aB, respectively. The total energy
of the binary alloy is Etot(AmBn), must correspond to the fully relaxed geometric configura-
tion. Plotting the structural formation energy as a function of the concentration c, defined
as c = m/(n + m), we can evaluate phase stability at each concentration. Keep in mind
that, even if the pure elements A and B have the same Bravais lattice, their alloys might
have different symmetry, depending on differences in atom sizes.
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First, you will calculate the total energies for the pure energies for the pure elements Au
and Cu. Use your knowledge of PWscf and ASE to set up and converge these calculations.
You can choose to scan over the lattice parameters to find the minimum, or use automatic
variable-cell relaxation in PWscf. Your input file for Cu may look like this:

&control

calculation=’vc-relax’

pseudo_dir = ...

outdir= ...

tstress = .true.

tprnfor = .true.

/

&system

ibrav = 0

nat= 1

ntyp= 1

ecutwfc = 40.0

ecutrho = 320.0

occupations=’smearing’

smearing=’mp’

degauss=0.02

/

&electrons

diagonalization=’david’

conv_thr = 1e-07

mixing_beta = 0.2

/

&ions

ion_dynamics = ’bfgs’

/

&cell

cell_dynamics = ’bfgs’

/

ATOMIC_SPECIES

Cu 63.546 Cu.pz-d-rrkjus.UPF

CELL_PARAMETERS {angstrom}

0.0 2.0 2.0

2.0 0.0 2.0

2.0 2.0 0.0

ATOMIC_POSITIONS {angstrom}

Cu 0.00000 0.00000 0.00000

K_POINTS {automatic}

8 8 8 0 0 0
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• The keyword calculation=’vc-relax’ tells the code to optimize cell parameters as
well as atomic positions using the Hellman-Feynman theorem approach. For this to
work, you need to explicitly include the &ions and &cell blocks in the input, which by
default set the minimization algorithm to ’bfgs’ (listed above explicitly). An important
point is that PWscf will first determine all the symmetry operations in the structure
(you will see 48 symmetry operations for an fcc cell), and the entire set of scf and
relaxation calculations will be constrained according to the initial symmetry.

• Use LDA pseudopotentials Au.pz-d-rrkjus.UPF and Cu.pz-d-rrkjus.UPF, down-
loaded them from the QE website pseudopotential repository. When you are interested
in comparing energies for different systems, always be sure that pseudopotentials use
the same exchange correlation functional, and that the same pseudopotentials are used
for the same elements.

The CuAu compound, which has alternating layers of Cu and Au, should be rep-
resented as a body-centered tetragonal unit cell with a basis of two atoms. Make
use of ASE to construct the cell, and visualize it with VESTA to make sure it looks
right. You may want to use the VESTA menu option ”objects / boundary” and
set the supercell size at 2x2x2 for visualization to get a clearer view of the repeated
unit cell. A sample input file AuCu.vcr.in is provided for your reference in the
~/Software/labutil/lab3_samples repository. You will need to do all the nec-

essary scripting and convergence testing yourself. Ask for help if you get stuck.
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