
EE 231 - 1 - Fall 2016

Lab 4: Arithmetic Logic Unit (ALU)

Introduction

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part
of the computer which performs arithmetic operations on numbers, e.g. addition,
subtraction, etc. In this lab use the Verilog language to implement an ALU having 10
functions. Use of the case structure will make this job easy.

ACCA Data_Out

ALU

Z C

Result

Alu_Ctrl

Figure 1: Arithmetic Logic Unit (ALU)

The ALU that you will build (see Figure 1) will perform 10 functions on 8-bit inputs (see
Table 1). Please make sure you use the same variable name as the ones used in this lab. Do
NOT make your own. The ALU will generate an 8-bit result (Result), a one bit carry (C),
and a one bit zero-bit (Z). To select which of the 10 functions to implement, you will use
Alu Ctrl as the selection lines.

1 Prelab

1.1. Fill out Table 1 (Give unique values to each instruction.) How many bits should
Alu Ctrl be?

1.2. Write code to implement the ALU.

2 Lab

2.1. Write a Verilog program based off of your code written in the Prelab to implement the
ALU.

2.2. Design the ALU using Verilog. Make sure you deal with any unused bit combi-
nations of the Alu Ctrl lines. (Hint: review default cases)



EE 231 - 2 - Fall 2016

2.3. Simulate the ALU and test different combinations of DATA and ACCA. Test ALL of
the instructions.

2.4. Create another program that will call your ALU module. In this module, have ACCA

and DATA as external inputs as well as Alu Ctrl. Output your results on two 7-segment
displays. (Pinouts are included in Table 2)

2.5. Program your ALU code into your FPGA.

Table 1: Arithmetic Logic Unit Instructions

Alu Ctrl Instruction Operation (Mnemonic)

LDDA Loads ACCA with the value on the Data bus. Z changes to 1 if
Result == 0. (Load ACCA from Data)

ADDA Adds the value on the Data bus to the value in ACCA and saves the
result in ACCA. C is the carry (out) from addition and Z is set if the
result is 0. (Add ACCA and Data)

SUBA Subtracts the value on the Data bus from the value in ACCA and
saves the result in ACCA. C is the carry (in) from subtraction and Z

is set if the result is 0. (Subtract value in Data from ACCA)

ANDA Perform a bitwise AND of the value on the Data bus with the value
in ACCA. Save the result in ACCA. C should be the logical AND of the
value on the Data bus with the value in ACCA. Z is set if the result
is 0. (AND of ACCA and value on Data)

ORAA Perform a bitwise OR of the value on the Data bus with the value
in ACCA. Save the result in ACCA. C should be the logical OR of the
value on the Data bus with the value in ACCA. Z is set if the result
is 0. (OR of ACCA and value on Data)

COMA Replace the value in ACCA with its one’s complement. C is set to 1
and Z is set if the result is 0. (Compliment ACCA)

INCA Increment value in ACCA. Z is set if the result is 0. (INCA ACCA)

LSLA Logical shift left of ACCA. C is set to the previous MSB of ACCA and
Z is set if the result is 0. (Logical shift left ACCA)

LSRA Logical shift right of ACCA. C is set to the previous LSB of ACCA and
Z is set if the result is 0. (Logical shift right ACCA)

ASRA Arithmetic shift right of ACCA. C is set to the previous LSB of ACCA
and Z is set if the result is 0. (Arithmetic shift right ACCA)

ZERO Zero the value of ACCA. C is set to 0 and Z is set to 1. (Zero ACCA)

RST Reset ACCA to 0xFF. C is set to 0 and Z is set to 0. (Reset ACCA)



EE 231 - 3 - Fall 2016

Table 2: CMOD-S6 DIP Assignments

DIP Pin FPGA Pin Wire Wire FPGA Pin DIP Pin

1 P5 PIO01 PIO48 M2 48

2 N5 PIO02 PIO47 M1 47

3 N6 PIO03 PIO46 L2 46

4 P7 PIO04 PIO45 L1 45

5 P12 PIO05 PIO44 K2 44

6 N12 PIO06 PIO43 K1 43

7 L14 PIO07 PIO42 J2 42

8 L13 PIO08 PIO41 J1 41

9 K14 PIO09 PIO40 G2 40

10 K13 PIO10 PIO39 G1 39

11 J14 PIO11 PIO38 H2 38

12 J13 PIO12 PIO37 H1 37

13 H14 PIO13 PIO36 F2 36

14 H13 PIO14 PIO35 F1 35

15 F14 PIO15 PIO34 E2 34

16 F13 PIO16 PIO33 E1 33

17 G14 PIO17 PIO32 D2 32

18 G13 PIO18 PIO31 D1 31

19 E14 PIO19 PIO30 C1 30

20 E13 PIO20 PIO29 B1 29

21 D14 PIO21 PIO28 A2 28

22 D13 PIO22 PIO27 B3 27

23 C13 PIO23 PIO26 A3 26

24 VU GND 25

3 Supplement: Verilog (3)

3.1 Parameterization

3.1.1 Macros

Listing 1: Macros in Verilog
1 ‘define Rst_Addr 8’hFF // Gets Expaned

2 assign data = ‘Rst_Addr; // Tic is Necessary

3.1.2 Parameters

Listing 2: Parameters in Verilog



EE 231 - 4 - Fall 2016

1 parameter num = 8;

Parameters are constants, not variables.

3.2 Operators

3.2.1 Ternary Operator

Listing 3: Ternary Operator in Verilog
1 assign y = sel ? a : b;

If sel is true, y is assigned to a, otherwise it is assigned to b.

3.2.2 Concatenation

Listing 4: Concatenation in Verilog
1 {a, b, c}

Bits are concatenated using { }.

3.2.3 Comparison

Listing 5: Comparison in Verilog
1 if(a > b) y = a;

Compare a to b, if true set y equal to a. Other comparisons are listed in Listing 6.

Listing 6: Comparison Operators
1 > // Greater than

2 < // Less than

3 >= // Greater than or equal to

4 <= // Less than or equal to

5 == // Equality

6 === // Equality including X and Z

7 != // Inequality

8 !== // Inequality including X and Z

3.2.4 Logical Operators

Listing 7: Logical Operators
1 ! // Logical negation

2 && // Logical and

3 || // Logical or



EE 231 - 5 - Fall 2016

3.2.5 Binary Arithmetic Operators

Listing 8: Binary Arithmetic Operators
1 + // Addition

2 - // Subtraction

3 * // Multiplication

4 / // Division (truncated)

5 % // Modulus

3.2.6 Unary Arithmetic Operators

Listing 9: Unary Arithmetic Operators
1 - // Change the sign of the operand

3.2.7 Bitwise Operators

Listing 10: Bitwise Operators
1 ~ // Bitwise negation

2 & // Bitwise AND

3 | // Bitwise OR

4 ^ // Bitwise XOR

5 ~^ // Bitwise XNOR

6 ^~ // Bitwise XNOR (also)

3.2.8 Unary Reduction Operators

• Produce a single bit result by applying the operator to all the bits of the operand.

Listing 11: Unary Reduction Operators
1 ~ // Bitwise negation

2 & // Bitwise AND

3 | // Bitwise OR

4 ‘& // Reduction NAND

5 ~| // Reduction NOR

6 ^ // Bitwise XOR

7 ~^ // Bitwise XNOR

8 ^~ // Bitwise XNOR (also)

3.2.9 Shift Operators

• Left operand is shifted by the number of bit positions given by the right operand.

• Zeros are used to fill vacated bit positions.

Listing 12: Shift Operators
1 << // Logical left shift

2 >> // Logical right shift



EE 231 - 6 - Fall 2016

3.2.10 Precedence

Listing 13: Precedence
1 /* Highest Precedence */

2 !, ~

3 *, /, %

4 +, -

5 <<, >>

6 <, <=, >, >=

7 &

8 ^, ^~

9 |

10 &&

11 ||

12 ?:

13 /* Lowest Precedence */


	Prelab
	Lab
	Supplement: Verilog (3)
	Parameterization
	Macros
	Parameters

	Operators
	Ternary Operator
	Concatenation
	Comparison
	Logical Operators
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Bitwise Operators
	Unary Reduction Operators
	Shift Operators
	Precedence



