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Lab 4: Finite State Machines  
EE-459/500 HDL Based Digital Design with Programmable Logic 

Electrical Engineering Department, University at Buffalo 
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1. Objective 

 

The objective of this lab is to study several different ways of specifying and implementing finite state 

machines (FSMs). We also discuss finite state machines with datapath (FSMD). 

 

2. Introduction 

 

There are two basic types of sequential circuits: Mealy and Moore. Because these circuits transit among a 

finite number of internal states, they are referred to as finite state machines (FSMs). In a Mealy circuit, the 

outputs depend on both the present inputs and state. In a more circuit, the outputs depend only on the 

present state. The most common way of schematically representing a Mealy sequential circuit is shown in 

Fig.1. 

 

 
 

 

The state register normally consists of D flip-flops (DFFs). However, other types of flip-flops can be 

utilized, such as JKFFs. The normal sequence of events is: (1) inputs X change to a new value, (2) after a 

clock period delay, outputs Z and next state NS become stable at the output of the combinational circuit, (3) 

the next state signals NS are stored in the state register; that is, next state NS replace present state PS at the 

output of the state register, which feeds back into the combinational circuit. At this time, a new cycle is 

ready to start. These operational cycles are synchronized with the clock signal CLK. 

 

It is worth mentioning that some authors further classify sequential circuits into two categories. The first 

category, referred to as “regular sequential circuits”, includes circuits like (shift) registers, FIFOs, and 

binary counters and variants. The second category, referred to as “finite state machines” (FSMs), include 

circuits that typically do not exhibit a simple, repetitive pattern. 

 

3.  Example 1: MEALY machine design – BCD to Excess-3 code converter  

 

In this example, we’ll design a serial converter that converts a binary coded decimal (BCD) digit to an 

excess-3-coded decimal digit. Excess-3 binary-coded decimal (XS-3) code, also called biased representation 

or Excess-N, is a complementary BCD code and numeral system. It was used on some older computers with 

Figure 1 State transition table and block diagram of a Mealy type seq. circuit (BCD to excess-3 converter) 
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a pre-specified number N as a biasing value. It is a way to represent values with a balanced number of 

positive and negative numbers. In our example, the XS-3 code is formed by adding 0011 to the BCD digit. 

The table and state graph in Fig.2 describe the functionality of our design. For details, please read pages 19-

25 in the textbook. 

 

 
 

 

There are several ways to model this sequential machine. One popular/common approach is to use two 

processes to represent the two parts of the circuit: the combinational part and the state register. For clarity 

and flexibility, we use VHDL’s enumerated data type to represent the FSM’s states. The following VHDL 

code describes the converter (file code_conv_2processes.vhd): 

 
-- Behavioral model of a Mealy state machine: code converter w/ 2 processes 

-- It is based on its state table. The output (Z) and next state are 

-- computed before the active edge of the clock. The state change 

-- occurs on the rising edge of the clock. 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity Code_Converter is 

  port( 

   enable: in std_logic; 

   X, CLK: in std_logic; 

       Z: out std_logic); 

end Code_Converter; 

 

architecture Behavioral of Code_Converter is 

 

type state_type is (S0, S1, S2, S3, S4, S5, S6);  

signal State, Nextstate: state_type; 

-- a different way: represent states as integer signals:  

-- signal State, Nextstate: integer range 0 to 6; 

 

begin 

 

-- Combinational Circuit 

process(State, X)               

begin 

 case State is 

 when S0 => 

Figure 2 Code converter: table and state graph 
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   if X = '0' then Z <= '1'; Nextstate <= S1; 

   else Z <= '0'; Nextstate <= S2; end if; 

 when S1 => 

   if X = '0' then Z <= '1'; Nextstate <= S3; 

   else Z <= '0'; Nextstate <= S4; end if; 

 when S2 => 

   if X = '0' then Z <= '0'; Nextstate <= S4;  

   else Z <= '1'; Nextstate <= S4; end if; 

 when S3 => 

   if X = '0' then Z <= '0'; Nextstate <= S5;  

   else Z <= '1'; Nextstate <= S5; end if; 

 when S4 => 

   if X = '0' then Z <= '1'; Nextstate <= S5; 

   else Z <= '0'; Nextstate <= S6; end if; 

 when S5 => 

   if X = '0' then Z <= '0'; Nextstate <= S0;  

   else Z <= '1'; Nextstate <= S0; end if; 

 when S6 => 

   if X = '0' then Z <= '1'; Nextstate <= S0;  

   else Z <= '0'; Nextstate <= S0; end if; 

 when others => null;          -- should not occur 

 end case; 

end process; 

 

-- State Register 

process (enable, CLK) 

begin 

  if enable = '0' then 

    State <= S0; 

  elsif rising_edge (CLK) then 

    State <= Nextstate; 

  end if; 

end process;  

 

end Behavioral; 

 

Note that in each branch of the case statement, the output Z and Nextstate are assigned values. The second 

process represents the state register, which is updated on the rising edge of the CLK signal. 

 

To test this converter on the Atlys board, we’ll design a circuit that uses two shift-registers, the converter, 

and a clock divider, as shown in the diagram of Fig.3. The input is provided parallel as four bits via four 

slide switches while the output is displayed on four LEDs. We use a clock divider to generate a slower 

clock signal (about 1 Hz) to make it easier to monitor the operation of the whole system. 

 

So, create a new ISE project (let’s call it lab4_fsm) and add to it the following VHDL files: 

code_conv_2processes.vhd, ck_divider.vhd, shift_register.vhd, and top_level.vhd. These files contain 

the declaration and description of all necessary entities to implement the system from Fig.3. These files 

together with other useful files (e.g., .ucf file) are included in the downloadable archive with all the data for 

this lab. Read top_level.vhd and figure out what exactly the “control” block in Fig.3 does. 
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Run the Implement Design step inside ISE WebPack to perform placement and routing. Generate the 

programming .bit file and program the FPGA. Verify the operation of your design. Observe and comment. 

 

 
 

 

Generally, there are other ways to describe the behavioral model for the code converter: 

 One way is to use only a single process (rather than two processes as discussed above). In this case, the 

next-state is not computed explicitly, but the state register is updated directly to the proper next-state 

value on the rising edge of the clock signal. You can see the VHDL code of such an approach in Fig. 2-

56, page 106, in the textbook. 

 Another way is to use the so called dataflow approach. Basically, this is based on using Boolean 

equations that implement the combinational part of the state machine. An example of this is shown in 

Fig. 2-57, page 107, in the textbook. Because method assumes that we know these equations, it is not a 

preferred method. 

 Yet another approach to write the VHDL code for the state machine is to create a structural model. 

The structural model describes all actual gates and flip-flops and their connectivity. An example of this 

is shown in Fig. 2-58, page 108, in the textbook. 

 Finally, there is yet another way of describing a state machine: state machine editor. However, this can 

be done when using the Aldec-HDL tool. The State Diagram Editor of Aldec is a tool designed for the 

graphical editing of state diagrams of synchronous and asynchronous machines. Drawing a state 

diagram is an alternative approach to the modeling of a sequential device. Instead of writing the HDL 

code, one can enter the description of a logic block as a graphical state diagram. The tool will then 

automatically generate the HDL code based on the entered graphical description. Due to the intuitive 

graphic form, state diagrams are easy-to-learn and far more readable than the HDL code [1]. We’ll not 

use this in this course. However, it is mentioned here for the sake of completeness. For more info you 

may want to check out [2,3]. 

The method using two processes is the recommended one because it is closer to how actually the hardware 

works and it is more readable as a VHDL code. 

 

4. Example 2: Finite state machine with datapath (FSMD) - bit difference calculator 

 

A finite state machine with datapath (FSMD) combines a FSM and regular sequential circuits. The FSM, 

sometimes referred to as a control-path or controller, examines the external commands and status and 

generates control signals to specify operations of the regular sequential circuits, which are known 

collectively as a data-path [4]. The FSMD is used to implement systems described by RT (register 

Figure 3 Block diagram of top-level design to test the BCD to XS3 converter 
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transfer) methodology, where the system’s functionality is specified as data manipulation and transfer 

among a collection of registers.  

 

Most realistic circuits combine a controller and a datapath to perform some computation. The use of the 

FSMD model is especially recommended whenever the structure of the datapath is important. For example, 

if you are creating a custom pipelined datapath for a specific application, specifying the structure of the 

pipeline is likely important. 

 

The combination of a controller and datapath can be represented using several models in VHDL. In this lab, 

we'll look at two different models. To do that, we’ll design and simulate a simple example: a bit difference 

calculator [5]. The design’s description is as follows: Given an input of a generic width, the entity 

calculates the difference between the number of 1s and 0s. If for example there are 3 more 1s than 0s, the 

output is 3. If there are 3 more 0s than 1s, the output is -3. 

 

Implementation A: behavioral model using two processes 

 

A simplified pseudocode description of the bit difference calculator is as follows: 

 

Inputs: go, input (arbitrary width) 

Outputs: output(arbitrary width), done (1 bit) 

 

while (go == 0); 

value = input; // Store input in a register called value. 

diff = 0; 

for width iterations { 

 if bit0 of value == 1 

  diff++; 

 else 

  diff--; 

 value = shiftRight(value,1); 

} 

output = diff; 

done = 1; 

 

One possible implementation as a FSMD is described by the state graph in Fig.4. 

The VHDL file top_level_bit_diff_impl_A.vhd describes the entity bit_diff and its architecture the design. 

 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity bit_diff is 

  generic ( 

    width : positive := 16); 

  port ( 

    clk    : in  std_logic; 

    rst    : in  std_logic; 

    go     : in  std_logic; 

    input  : in  std_logic_vector(width-1 downto 0); 

    output : out std_logic_vector(width-1 downto 0); 

    done   : out std_logic); 

end bit_diff; 
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architecture FSMD_2P of bit_diff is 

 

  type STATE_TYPE is (S_INIT, S_CHECK_BIT, S_STORE_OUTPUT, S_DONE); 

 

  signal state, next_state : STATE_TYPE; 

  signal value, next_value : std_logic_vector(width-1 downto 0); 

  signal diff, next_diff   : signed(width-1 downto 0); 

  signal count, next_count : integer range 0 to width; 

  signal output_s, next_output : std_logic_vector(width-1 downto 0); 

begin 

 

  -- this process defines all registers used in the FSMD 

  process(clk, rst) 

  begin 

    if (rst = '1') then 

      value    <= (others => '0'); 

      count    <= 0; 

      diff     <= (others => '0'); 

      output_s <= (others => '0'); 

      state    <= S_INIT; 

    elsif (clk'event and clk = '1') then 

      -- these are the only registers used by the 2-process FSMD 

      value    <= next_value; 

      count    <= next_count; 

      diff     <= next_diff; 

      output_s <= next_output; 

      state    <= next_state; 

    end if; 

Figure 4 State graph of FSMD implementation 



7 
 

  end process; 

 

  -- combinational logic 

  process(go, input, value, count, diff, output_s, state) 

    variable temp : integer range 0 to width; 

  begin 

    next_count  <= count; 

    next_value  <= value; 

    next_diff   <= diff; 

    next_output <= output_s; 

    next_state  <= state; 

    done <= '0'; 

 

    case state is 

      when S_INIT => 

        next_count <= 0; 

        next_diff  <= (others => '0'); 

        next_value <= input; 

        if (go = '1') then 

          next_state <= S_CHECK_BIT; 

        end if; 

 

      when S_CHECK_BIT => 

        if (value(0) = '0') then 

          next_diff <= diff - 1; 

        elsif (value(0) = '1') then 

          next_diff <= diff + 1; 

        end if; 

        next_value <= std_logic_vector(shift_right(unsigned(value), 1)); 

        temp := count + 1; 

        next_count <= temp; 

        if (temp = width) then 

          next_state <= S_STORE_OUTPUT; 

        end if; 

 

      when S_STORE_OUTPUT => 

        next_output <= std_logic_vector(diff); 

        next_state  <= S_DONE; 

 

      when S_DONE => 

        done       <= '1'; 

        next_state <= S_INIT; 

 

      when others => null; 

    end case; 

  end process; 

 

  output <= output_s; 

 

end FSMD_2P; 
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At this time, you should create a simple testbench VHDL file (you can do it by modifying 

testbench_top_level.vhd file from Example 1) and simulate using Aldec-HDL the above entity. Verify its 

operation and comment. 

 

Implementation B: structural model using component instantiations for registers, muxes, adders, 

subtracters, etc. 

 

The structural implementation is recommended when the exact structure of the datapath is important. In this 

model, we separate the controller and datapath from each other. Then, typically, we define the datapath 

structurally and then combine it with a corresponding controller (FSM) described using any of the possible 

models discussed in Example 1. 

 

For example, assume that we really wanted to implement the datapath described in Fig.5. Then, the 

following files: top_level_bit_diff_impl_B.vhd, datapath.vhd, fsm.vhd, add.vhd, sub.vhd, reg.vhd, 

mux2x1.vhd, comp.vhd describe all the entities required for implementing the design. Read these files to 

understand the description. Then, use the same testbench that you created to simulate the previous 

implementation (implementation A) of this design to verify also the operation of this description too. 

 

 
 

5. Lab assignment 

 

Design and code in VHDL the converter from Example 1 but as a Moore machine. Verify its operation 

using Aldec-HDL simulator.  The lab report should include state diagram, VHD code, description, and 

waveforms. 
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