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What are some consequences of the different 
electron configurations?  What physical properties 

will be influenced?
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Magnetism and Electron Configuration

Two types of magnetism based on electron configuration.

Paramagnetic Diamagnetic
Unpaired electrons All electrons paired

d-Electron configurations of coordination compounds are experimentally 
determined by measuring magnetic susceptibility, χ.

paramagnetic –

diamagnetic –

having unpaired e-; the substance is attracted to (or adds to) the 
external field

lacking unpaired e-; the substance is repelled by (or subtracts from) 
the external field
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Transition Metals and Magnetism

What factors affect the magnetism of transition metals?

1. Oxidation State

Consider Cu+ vs. Cu2+

2. Coordination Geometry

Consider Square Planar vs. 
Tetrehedral NiIIL4

3. Ligand Identity

D-orbital Splitting
Octahedral (∆o)
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Transition Metals and Magnetism

Spectrochemical Series
Strong σ donors or π acceptors induce bigger energy gaps 

in d orbitals (∆o)

I- < Br- < Cl- < F- < OH- < H2O < NH3 < NO2
- < PPh3 < CH3

- < CN- < CO

Why does CO induce 
such large ∆o?

Consider Fe2+

Fe(OH)6
4- vs. Fe(CN)6

4-

Low Field
High Spin

High Field
Low Spin
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Transition Metals and Magnetism
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Manganese Acetylacetonate (acac)

How will this molecule coordinate to a metal ion?

Bidentate through both oxygen atoms

How many acac ligands will manganese accept 
assuming octahedral geometry?

Three

If this complex is neutral, what is the charge on Mn?

Mn3+

How many d electrons?
Four
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Mn(acac)3 Synthesis

KMnO4

Mn(acac)3

Slow addition of acac
(aqueous)

Rapid addition results in 
foam…what might this be?

Dry on frit
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The Paramagnetic Complex [Mn(acac)3] – Magnetic Susceptibility
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[Mn(acac)3]: Possible d-Electron Configurations

O

Mn

O
O O

O O

Mn3+ electron configuration?

d-orbital splitting in an octahedral ligand field?

t2g

eg

E ∆o

t2g

eg
E

∆o

Large ∆o Small ∆o

Low-spin complex High-spin complex

Strong-field ligands Weak-field ligands

[Ar] 3d4

Remember: 4s e- are lost first (lower Z*)

Possible d-electron configurations?
Two options, depending on strength of Mn—acac interactions 
(ligand field strength).

Our goal: Determine d-electron configuration and strong/weak character of acac ligand.



A Brief Review of NMR

How does NMR work?

• Nuclei have spins – +1/2 and -1/2 for 1H.
• Nuclear “magnets” line up parallel or antiparallel to the external 

magnetic field.

• The external field is modulated around its “central” value (300 MHz, in 
our case) by passing current through coils.

• Nuclei in different chemical environments absorb at different frequencies 
(undergoing spin transitions).

• The chemical shifts we report (in ppm) are shifts from the frequency of 
the external field.
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The Evans Method for Determining Magnetic Susceptibility

You will determine the degree to which your paramagnetic sample adds to 
the external field of the NMR magnet.

Mn(acac)3 in 99.8% CDCl3
Dilute solution of known 
concentration

99.8% CDCl3 only

ppm

Should see two separate solvent peaks in the NMR. The difference 
between them (∆ν) is related to the magnetic susceptibility

Compare the solvent peak for CHCl3 alone (0.2%/99.8% CDCl3) to peak for 
CHCl3 in the presence of the paramagnetic sample



Calculations: Determining χM ,χM’ and n

Goal of calculations: To determine number of unpaired d-electrons, n

Strategy:

1. Determine total magnetic susceptibility, χM, from the measured 
frequency difference between the two solvent peaks, ∆ν (Eqn 10).

2. Solve for magnetic susceptibility due to unpaired electrons, χM’ (Eqn 4).

3. Use χM’ and measured temperature (in kelvins) to solve for n (Eqn 8).
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d-electron configuration low- or high-spin?
acac ligand strong- or weak-field?



Experimental Notes

1. Prepare a dilute solution of Mn(acac)3 of known concentration.

a) Use the smallest measurable mass (~ 1 mg); deliver a known 
volume with a graduated syringe or micropipette.

b) Solution should be light yellow/tan. You may need to dilute 
further; just keep track of exactly what you do so that you can 
calculate the final molar concentration.

2. I will prepare the capillary tubes containing pure CDCl3 (with 0.2% 
CHCl3). When your sample is complete, put one in your NMR tube, 
making sure it drops to the bottom.

3. On your spectrum:

a) Zoom in and label your two solvent peaks (maximum precision).

b) Make sure you have the recorded temperature.



Formal Report (Due Thurs., 4/9)

Your report should consist of:

• Your NMR spectrum, with chemical shifts labeled 

• Calculations of χM, χ’M, and n 
• Note: In Table 12-1 (p. 122), the χM values given have been 

multiplied by 106; the correct values are on the order of 10-6 cm3

mol-1.  This also applies to the value for the metal given in the 
footnote:  it should be -13 × 10-6 cm3 mol-1.

• Make sure to check you report with the rubric on the course website!
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