
 1

Lab Exercise – HTTP

Objective
HTTP (HyperText Transfer Protocol) is the main protocol underlying the Web. HTTP functions as a re-

quest–response protocol in the client–server computing model. A web browser, for example, may be the

client and an application running on a computer hosting a website may be the server. The client submits

an HTTP request message to the server. The server, which provides resources such as HTML files and other

content, or performs other functions on behalf of the client, returns a response message to the client. The

response contains completion status information about the request and may also contain requested con-

tent in its message body. A web browser is an example of a user agent (UA). Other types of user agent

include the indexing software used by search providers (web crawlers), voice browsers, mobile apps, and

other software that accesses, consumes, or displays web content. HTTP is designed to permit intermediate

network elements to improve or enable communications between clients and servers. High-traffic web-

sites often benefit from web cache servers that deliver content on behalf of upstream servers to improve

response time. Web browsers cache previously accessed web resources and reuse them when possible to

reduce network traffic. HTTP is an application layer protocol designed within the framework of the Inter-

net protocol suite. Its definition presumes an underlying and reliable transport layer protocol and Trans-

mission Control Protocol (TCP) is commonly used.

Step 1: Open the http Trace
Browser behavior can be quite complex, using more HTTP features than the basic exchange, this trace

will show us how much gets transferred.

1. Open the trace file from here: https://kevincurran.org/com320/labs/wireshark/trace-http.pcap

You should then see a Wireshark screen like below.

Figure 1: The Wireshark screen after opening the http trace file

https://kevincurran.org/com320/labs/wireshark/trace-http.pcap

 2

Step 2: Inspect the Trace

2. To focus on HTTP traffic, enter and apply a filter expression of “http”.

This filter will show HTTP requests and responses, but not the individual packets that are involved. You

should see a screen like below.

Figure 2: Trace of HTTP traffic

Recall that an HTTP response carrying content will normally be spread across multiple packets. When

the last packet in the response arrives, Wireshark assembles the complete response and tags the packet

with protocol HTTP. The earlier packets are simply TCP segments carrying data; the last packet tagged

HTTP includes a list of all the earlier packets used to make the response. A similar process occurs for the

request, but in this case it is common for a request to fit in a single packet. With the filter expression of

“http” we will hide the intermediate TCP packets and see only the HTTP requests and responses.

 3

3. Select the first GET in the trace and expand its HTTP block.

(This will be 802 GET /img/MIT_logo.gif HTTP/1.1 as shown below).

Figure 3: The first GET packet in trace: get /img/MIT_logo.gif HTTP/1.1

This will let us inspect the details of an HTTP request.

4. Inspect the HTTP header by expanding the down arrow beside “Hypertext Transfer Protocol” In

the middle pane (as shown below).

Figure 4: The Hypertext transfer protocol for the first http request

Observe that the HTTP header follows the TCP and IP headers, as HTTP is an application protocol that is

transported using TCP/IP. To view it, select the packet, find the HTTP block in the middle panel, and ex-

pand it (by using the “v” expander or icon). This block is expanded in figure above.

Explore the headers that are sent along with the request. First, you will see the GET method at the start

of the request, including details such as the path. Then you will see a series of headers in the form of

tagged parameters. There may be many headers, and the choice of headers and their values vary from

browser to browser. See if you have any of these common headers:

• Host. A mandatory header, it identifies the name (and port) of the server.

 4

• User-Agent. The kind of browser and its capabilities.

• Accept, Accept-Encoding, Accept-Charset, Accept-Language. Descriptions of the formats that will

be accepted in the response, e.g., text/html, including its encoding, e.g., gzip, and language.

• Cookie. The name and value of cookies the browser holds for the website.

• Cache-Control. Information about how the response can be cached.

The request information is sent in a simple text and line-based format. If you look in the bottom panel

you can read much of the request directly from the packet itself.

5. Select the response that corresponds to the first GET in the trace and expand its HTTP block (see

below).

Figure 5: The response that corresponds to the first GET in the trace

The Info for this packet will indicate “200 OK” in the case of a normal, successful transfer. You will see

that the response is similar to the request, with a series of headers that follow the “200 OK” status code.

However, different headers will be used, and the headers will be followed by the requested content.

 Examine the common headers such as:

• Server. The kind of server and its capabilities.

• Date, Last-Modified. The time of the response and the time the content last changed.

• Cache-Control, Expires, Etag. Information about how the response can be cached.

 5

Step 3: Content Caching

The second fetch in the trace is a re-fetch of the first URL. This fetch presents an opportunity for us to

look at caching in action, since it is highly likely that the image or document has not changed and there-

fore does not need to be downloaded again. HTTP caching mechanisms should identify this opportunity.

We will now see how they work.

6. Click on the third line in the sample trace i.e. 892 GET /img/MIT_logo.gif HTTP 1.1

Figure 6: The second fetch - 892 GET /img/MIT_logo.gif HTTP 1.1

7. Expand its HTTP block (see below)

Figure 7: The HTTP block of 892 GET /img/MIT_logo.gif HTTP 1.1

Now find the header that will let the server work out whether it needs to send fresh content. The server

will need to send fresh content only if the content has changed since the browser last downloaded it. To

work this out, the browser includes a timestamp taken from the previous download for the content that

it has cached. This header was not present on the first GET since we cleared the browser cache so the

browser had no previous download of the content that it could use. In most other respects, this request

will be the same as the first-time request.

 6

This header is called “If-Modified-Since”, i.e., it asks the server to send the content if it has been modi-

fied since a given time (see the header below).

8. Now select the response to the re-fetch, and expand its HTTP block.

Figure 8: The response to cached image

We can see that caching worked as expected, this response will not contain the content. Instead, the

status code of the response is “304 Not Modified”. This tells the browser that the content is unchanged

from its previous copy, and the cached content can then be displayed.

Note the timestamp value comes from the “Last-Modified” header of the most recent download of the

content. It is a server timestamp for when the content last changed – it is not a timestamp according to

the browser clock, and it is not a timestamp of the time of the download

 7

Step 4: Complex Pages

Now we will examine the fourth fetch in the trace. This fetch was for a more complex web page that will

likely have embedded resources. So the browser will download the initial HTML plus all of the embed-

ded resources needed to render the page, plus other resources that are requested during the execution

of page scripts. As we will see, a single page can involve many GETs.

9. Click on no 34 which is 750 GET / HTTP/1.1 (as shown below).

Figure 8: The large fourth fetch in http trace

10. Summarize the GETs for this page by bringing up a HTTP Load Distribution panel. You will find

this panel under “Statistics” and “HTTP”.

Figure 9: Statistics  HTTP  Load Distribution

Looking at this panel will tell you how many requests were made to which servers. This is typical, when

surfing, chances are that your fetch will request content from other servers you might not have sus-

pected to build the page. These other servers may include third parties such as content distribution net-

works, ad networks, and analytics networks. Our panel is shown below – the page fetch involved 98 re-

quests to 5 different servers.

 8

Figure 10: HTTP Load Distribution panel

11. For a different kind of summary of the GETs, bring up a HTTP Packet Counter panel.

Figure 11: Statistics  HTTP  Packet Counter

 9

You will also find this panel under “Statistics” and “HTTP”, and you should filter for the packets that are

part of the fetch as before. This panel will tell you the kinds of request and responses. Our panel is

shown in the figure below. You can see that it consists of GET requests that are matched by 200 OK re-

sponses and 304 Not Modified. However, there are a variety of other response codes that you might ob-

serve in your trace, such as when the resource is already cached.

Figure 12: HTTP Packet Counter panel

You might be curious to know what content is being downloaded by all these requests. As well as seeing

the URLs in the Info column, you can get a summary of the URLs in a HTTP Request panel under “Statis-

tics” and “HTTP”. Each of the individual requests and responses has the same form we saw in an earlier

step. Collectively, they are performed in the process of fetching a complete page with a given URL.

For a more detailed look at the overall page load process, use a site such as Google’s PageSpeed or

https://www.webpagetest.org/. These sites will test a URL of your choice and generate a report of the

page load activity, telling what requests were fetched at what times and giving tips for decreasing the

overall page load time.

The beginning of the “waterfall” diagram for the page load corresponding to a trace on www.ul-

ster.ac.uk is shown in the next figure. After the initial HTML resource is fetched there are many subse-

quent quick fetches for embedded resources such as JavaScript scripts, CSS stylesheets, images, and

more.

https://developers.google.com/speed/pagespeed/insights/
https://www.webpagetest.org/
http://www.ulster.ac.uk/
http://www.ulster.ac.uk/

 10

Figure 13: Start of waterfall graph for https://www.ulster.ac.uk/ (from pageloadtest.org)

Figure 14: Summary stats for https://www.ulster.ac.uk/ (from pageloadtest.org)

https://www.ulster.ac.uk/
https://www.ulster.ac.uk/

