Name: Course: Date:

Classify each as a carbohydrate, protein, lipid or nucleic acid.

1	starch	10	polysaccharide
2	cholesterol	11	phospholipid
3	steroid	12	glycerol
4	glycogen	13	monosaccharide
5	nucleotide	14	cellulose
6	RNA	15	amino acid
7	polypeptide chain	16	enzyme
8	glucose	17	saturated fat
9	unsaturated fatty acid	18	DNA

Identify the <u>specific</u> molecule for each description. Some terms (from above)may be used more than once.

17	_ provides long-term energy storage for animals	
18	instructions for building proteins	
19	_ provides immediate energy	
21	_ provides short-term energy storage for plants	
23	forms the cell membrane of all cells	
24	speeds up chemical reactions by lowering activation energ	У
25	_ one sugar	
26	_ cells convert this into ATP	
27	_ monomer of proteins	
28	_ provides long-term energy storage for plants	
29	genetic material	
30	steroid that makes up part of the cell membranes	
31	3-carbon "backbone" of a fat	
32	_ provides short-term energy storage for animals	
33	_ many sugars	
34	_ monomer of nucleic acids	
35	forms the cell wall of plant cells	_
		Doo

Which <u>specific</u> molecule (e.g. saturated fat, unsaturated fat, protein, glucose, starch, cellulose) is each food <u>mostly</u> made of?

36	almond	44	celery
37	spinach	45	soy beans
39	bacon	47	egg white
40	noodles	48	table sugar
41	orange juice	49	popcorn
43	wheat	51	olive oil

State whether each is found in animals, plants or both.

52	saturated fat	61	glucose
53	protein	62	RNA
54	steroid	63	polysaccharide
55	amino acid	64	glycogen
56	DNA	65	starch
57	cellulose	66	phospholipid
58	monosaccharide	67	enzyme

Are lipids polar or non-polar?

Are lipids soluble in water?

Draw the general chemical structure of an amino acid.

What are the three parts that make up a nucleotide? Draw a nucleotide.

a	 	 	-
b	 	 	

c. _____

What are the four bases for DNA?

What are the four bases for RNA?

Due: Tuesday September 18 by 1pm

Name:

Course:

<u>Pre-Lab</u>

Lab Manual – pages 48 – 49 "discussion and review"

Concepts in Biology text book – Ch. 3

Part 1. What will happen when a protein is cooked?

Hypothesis:

Materials:

cooking pan, egg (optional)

Procedure:

• Watch the following video.

http://highered.mcgraw-hill.com/sites/0072943696/student_view0/chapter2/animation_protein_denaturation.html

- Cook (or imagine or watch a video) an egg sunny side up.
- Observe how the egg looks (out of the shell) before it is cooked and compare it to how it looks once it is cooked
- Record your observations (hint hint this should be put in your "results" section. Remember from lab #1 all the things to include when observing. Maybe include taste this time too.)

Questions:

- 1. What type of bonds link individual amino acids together?
- 2. The helix that forms in a protein chain as a result of hydrogen bonds and other weak forces is an example of _____.
- 3. In the stable form of protein, what is generally oriented to the interior of the protein molecule?
- 4. When an egg is fried, what happens to the protein in the egg?
- 5. When forming a semi-solid gel such as gelatin, what type of molecule does the process of protein coagulation entrap?

Conclusion:

What causes the change in appearance of the egg white?

Part 2: How is mayonnaise made?

Materials:

white vinegar, one egg, vegetable oil, bowl, whisk

Procedure:

Taken from Lab Manual, page 56, part 5

- Into a mixing bowl, place an egg yoke (not the egg white).
- Add 25 mL of white vinegar and mix.
- V-e-r-y slowly add vegetable oil to the bowl as you whip the mixture vigorously with a whisk
- Stop mixing when you reach the right consistency for mayonnaise.

- It normally takes about one cup of vegetable oil to make this recipe.
- Add a pinch or two of salt to taste and other seasonings, such as garlic, if desired.
- Store the mayonnaise in your refrigerator!
- Record observations

Results:

Bring your mayonnaise into lab on Thursday September 13

Questions:

- 1. How long did it take for the materials to mix together?
- 2. Does your resulting substance look and taste like mayonnaise?
- 3. Did a chemical or physical change take place?

Conclusion:

Why/How were the vinegar and the oil able to mix together?

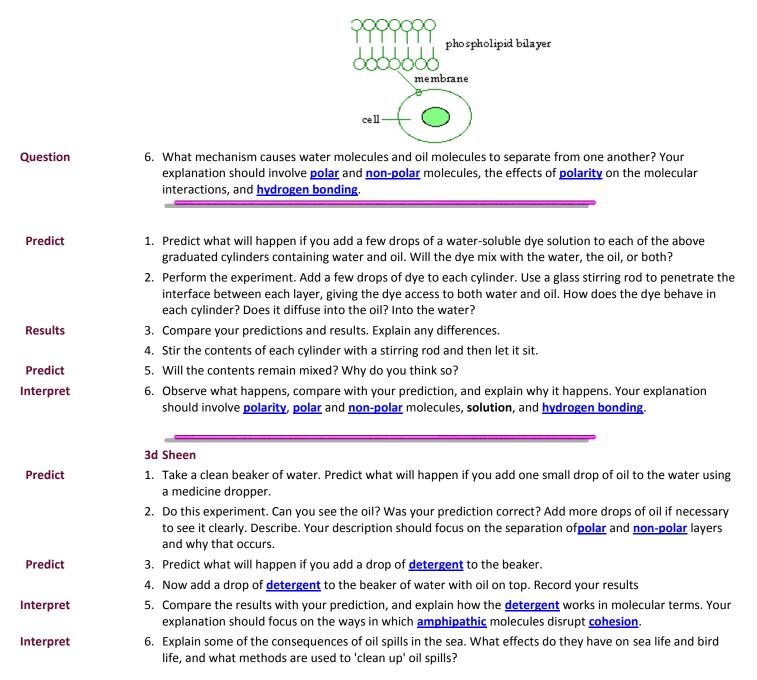
Part 3: Will oil and water mix?

Hypothesis:

Materials:

water, detergent, dye, 10 mL graduated cylinder, stir rod

Key words may be found at: <u>http://www.biologylessons.sdsu.edu/classes/lab1/lab1.html</u>


Procedure:

	1. Put 8 ml of water into a 10 ml graduated cylinder.
Predict	 2. What will happen if you add cooking oil? (Predict by choosing a, b, c, d, or e below) a. the oil will float on top of the water b. the oil will sink to the bottom of the water c. the oil will dissolve in the water d. the oil will become mixed up with the water e. other (what?)
	Gently add 2 ml of cooking oil by tilting the cylinder of water slightly and letting the oil run slowly down the inside of the cylinder.
Results	4. What happened?
	5. Save this graduated cylinder with its contents and get a clean 10 ml cylinder for the next experiment.
	1. Place 8 ml of cooking oil in a 10 ml graduated cylinder.
Predict	 2. What will happen when you add water? (Predict by choosing a, b, c, d, or e below) a. the water will float on top of the oil b. the water will sink to the bottom of the oil c. the water will dissolve in the oil d. the water will become mixed up with the oil e. other (what?)
	Gently add 2 ml of water by tilting the cylinder of oil slightly and letting the water run slowly down the inside of the cylinder.
Results	4. What happened?
Question	5. Which is less dense (that is that has less weight per ml.), oil or water?

Interpret

6. This characteristic behavior of water and oil is of critical importance for living things, determining many properties of the cell. Can you explain how? Consider the picture that follows:

Figure 10. Enlargement of Cell Membrane to Show Phospholipid Bilayer.

