Lab safety

ANNOUNCE OBJECTIVE

Announcements
-Classroom procedure

- Remind 101
- Teams

Objective

- SWBAT explain the importance of lab safety.
- SWBAT discuss proper lab safety procedures for various situations in the laboratory.

Lab Safety Toolkit

DO	DONT	
1.		
2.		
3.		
4.		

Lab Safety Gallery Walk

C - 2 (small group voice)
H - use notes and your group
A -Lab Safety Gallery Walk
M - stay with YOUR group
P - complete assignment

Independent Practice

- ALL: Memorize the first 10 elements of the periodic table
- Standard: Lab Safety Menu Pick 1 Entrée

- Hon/Pre AICE: Lab Safety Menu Pick 1 Entrée and 2 Side dishes

Lab Equipment

- Classroom procedure
- TEAMS
- Homework

1. ALL: Memorize the first 10 elements of the periodic table

ANNOUNCE

Quiz Next Class!

2. Any assignments you have not completed in class

OBJECTIVE

- SWBAT identify and accurately use a variety of lab equipment and glassware.

Triple Beam Balance

Thermometer For measuring temperature

Test Tube for heating a small amount of substance

Spring Scale
For measuring weight / force

Test Tube Clamp

for measuring and pouring liquids; for heating or mixing substances

A - Beaker

B - Florence Flask

C - Erlenmeyer Flask

Wire Gauze
to protect the bottom of a beaker or flask from flame; to support a beaker or flask on a ring clamp

Graduated Cylinder

Forceps or Tweezers

Beaker Tongs
for measuring and pouring liquids; not for heating or mixing substances
for plucking or handling small objects

For removing / holding a hot beaker

Medicine / Eye Dropper

for transferring a small amount (drops) of liquid

Goggles

To protect the eyes

Test Tube Brush
For cleaning inside a test tube

Bunsen Burner
for heating, sterilization, and combustion

Glass Stirring Rod
to mix or stir substances;
made of glass to resist heat, stains, corrosion

Scientific Notation

 Significant figures
ANNOUNCE

OBJECTIVE

- SWBAT convert between scientific and standard notation.
- SWBAT determine the amount of significant figures a number represents.

Scientific
 Notation

Used to express the very large and the very small numbers so that problem solving will be made easier.
Scientists can
work with very
large and very
small numbers
more casily if
the numbers are
written in
scientific
notation.

- The mass of one gold atom is 3.27×10^{-22} grams 0.000000000000000000000327 grams
- One gram of hydrogen contains 6.02×10^{22} atoms 602000000000000000000 000. atoms
- Exponents that are positive
- Decimal moves right
- Large numbers
- Exponents that are negative
- Decimal moves left
- Small numbers

$$
4.08 \times 10^{3} \quad 4.08 \times 10^{-3}
$$

CHIECK FOB

 UNDERISTANDING: Try changing these numbers from Scientific Notation to Standard Notation:1) 9.6780×10^{4}
2) $7.4521 \times 10-3$
3) $8.513904567 \times 10^{2}$
4) 4.09748×10^{-5}
851.3904567

96780
. 0074521
.0000409748

1. Move the decimal so that the number is between 1 and 10

Examples: 96780

. 0074521
851.3904567
. 0000409748

Standard

2. Add your multiplication sign and your base (10).

9.6780。 $\quad 10$

3. Count how many spaces the decimal moved and this is the exponent

$$
9.6780 \quad x \quad 10^{4}
$$

3. If the number you started with is:

- Greater than $\mathbf{1}=$ positive exponent
- Less than $1=$ negative exponent

1) $9872432 \quad 9.872432 \times 10^{6}$

CIIECK FOR

 UNDDISTANDINE:
 Standard Notation to Scientific
Notation:
2) $.00003453 .45 \times 10^{-5}$
3) .08376
8.376×10^{2}
4) 5673
5.673×10^{3}

Significant Figures

Every measurement has UNITS.
Every measurement has UNCERTAINTY.

Graduated
cylinder

Accuracy and Precision in Measurements

Good accuracy
Good precision

Accuracy is

Poor accuracy Good precision

Poor accuracy
Poor precision

A measurement can have high precision, but not be as accurate.

Reflex Test

1. 3 tries each
2. Would you consider your data to be:

Good accuracy
Good precision

Poor accuracy
Good precision

Poor accuracy
Poor precision

Sigmificant Figures

- All measurements are essentially inaccurate
-Faulty technique
-Precision of measuring device
-Human error
- Measurements need to convey precision
- Must include degree of uncertainty

Sigmificant Figures

Significant figures in a measurement include :

1. all of the digits that are known precisely
2. plus one last digit that is estimated
(a) Measured length $=0.6 \mathrm{~m}$

1 m
(b) Measured length $=0.61 \mathrm{~m}$

- ALL: Memorize elements 11-20 of the periodic table
- Name
- Symbol
- Atomic number

Homework

- Standard:
- Complete any incomplete classwork
- Hon/Pre AICE:
- Complete any incomplete classwork

Dimensional Analysis

ANNOUNCE

OBJECTIVE

- Classroom procedure
- Homework includes anything you have NOT completed in class
- SWBAT identify a word problems question, known variables, equivalence statement, and solve with the appropriate units.

SWBAT convert between different units.

5 MIN STARTER ACTIVITY

Unit 1-lec5- Dimensional Analysis
Starter Activity: Perform each of the indicated measurements with your group. 1. Length of a pencil:

Find the length of the pencil in cm (include uncertainty): \qquad cm

What would the length of the pencil be in mm (smallest lines): ___ mm
2. Volume of a bottle:

How much volume can the bottle at your table hold? \qquad ml or \qquad oz.

DIMENSIONAL ANALYSIS:

Equivalence statements:

Conversion factors:

Dimensional Analysis.
Converting from \qquad - unit to an \qquad unit
3 steps:
1.
2.

Although the pencil length and water bottle volume did not change, you were able to record the values in more than one unit.

Starter activity

"Do you need to always re-measure an object if you want to record a new unit value?"

Used to convert between units...

- Equivalence Statement: Relates the same amount in different units.
- Ex:
$2.54 \mathrm{~cm}=1$ inch.
conversion factors: relates equivalence in a ratio
- Ex:
$\frac{2.54}{1 \text { in }}$
or $\frac{1 \text { in }}{2.54 \mathrm{~cm}}$

Converting from a known unit to an unknown unit

Steps:
L - circle what your looking for
G - underline what your given
R - write the relationship (equivalence statement)
S - box the solution

These dominos are set up in a pattern... can you see it?
What would be the next 3 dominos in the series?

Look only at the units, is this unit conversion set up like the dominos?

Ex.A. You've collected 1,200 pennies. How much is this in dollars?

equivalence statement $\rightarrow 100$ pennies $=1$ dollar

R:

S:
$=12$ dollars

A new baby weighs 7.8 lb , What is it's mass in kilograms?

$$
\text { equivalence statement } \rightarrow \mathbf{1 k g}=2.205 \mathrm{lb} \text {. }
$$

L:
G:

R:

S:
$=3.5 \mathrm{~kg}$

Ex.C. How many seconds are in 2 days?

equivalence statement(s) \rightarrow ?

L:
G:

R:

S:
$=172800 \mathrm{~s}$

- Find 1 partner \& complete the word problem
- Find a new partner for each question
- You will have 4 minutes a question
- SHOW YOUR WORK!

Practice Appointments

Examples: Convert the following: show all of your work! ! ! !

Appt A: 360 seconds to milliseconds
(note: 1000 milliseconds = 1 second)
L:
$\mathrm{G}:$
R:
S:

4 MINUTES

How did you do?

A. 360 seconds to milliseconds \rightarrow
$360 \mathrm{~s} \times \frac{1000 \mathrm{~ms}}{1 \mathrm{~s}}=360,000 \mathrm{~ms}$

Examples: Convert the following: show all of your work! ! ! !

Appt B: 4.98 feet to centimeters

$$
\text { (note: } 1 \mathrm{ft}=12 \mathrm{in} \text { and } 2.54 \mathrm{~cm}=1 \mathrm{in} \text {) }
$$

L:
$\mathrm{G}:$

R:
S:

4 MINUTES

How did you do?

B. 4.98 feet to $\mathrm{cm} \rightarrow$

$4.98 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=152 \mathrm{~cm}$

Examples: Convert the following: show all of your work!!!!

Appt C: 1500 seconds to hours (note: $60 \mathrm{sec}=1 \mathrm{~min}$ and $60 \mathrm{~min}=1 \mathrm{hr}$)
L:
G:
R:
S:

4 MINUTES

How did you do?

C. 15000 seconds to hours \rightarrow
$1500 \mathrm{~s} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{1 \mathrm{hr}}{60}=\underline{1500 \mathrm{hr}}=.42 \mathrm{hr}$

Examples: Convert the following: show all of your work! ! ! !

Appt D: 75 m to km
(note: $1000 \mathrm{~m}=1 \mathrm{~km}$)
L:
G:
R:
S:

4 MINUTES

How did you do?

D. 75 m to $\mathrm{km} \rightarrow$
$75 \mathrm{~m} \times \quad \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=0.075 \mathrm{~km}$

Dimensional Analysis Enrichment

- Read card game directions
- Complete the card game score sheet as you play the game
- You must complete 6 chains

- Homework:

- Complete enrichment Q on back when done
- ALL: Memorize elements 11-20 of the periodic table
- Name
- Symbol
- Atomic number

