
LABORATORY MANUAL

 Digital Electronics

Department of Electrical Engineering

JORHAT ENGINEERING COLLEGE

Assam-785007

Course Code Course Title Hours per week

L-T-P

Credit

C

EI181315 Digital Electronics Lab

0-0-2

1

Course outcomes:

At the end of the course, the students will be able to:

CO1:

Verify and analyze the outputs of combinational logic circuits and relate theoretical concepts with

experimental analysis.

CO2:

Verify and analyze the outputs of sequential logic circuits and relate theoretical concepts with

experimental analysis.

CO3:

Organize and write an engineering report after performing an experiment on digital circuits.

LIST OF EXPERIMENTS

Experiment

No.

Title of the Experiment

1 Realization of basic gates by using universal gates

2 Realization of XOR gate

3 Combinational Logic Design using 74xx ICs

4 Arithmetic Circuit- construction and testing using 74xxICs: Half/Full Adder

5 Construction of 1- bit comparator using 74xxICs.

6 code converters – Binary to Gray & Gray to binary.

7 Verification of Truth Table of SR Flip-Flop

8 Verification of Truth Tables of JK, D, T Flip-Flops

9 Decade Counter design

Text Books:

1. Digital Design – M. Marris Mano.

2. Logic Design Theory – NN Biswas

3. Digital Fundamental – TL Floyd

4. Digital Electronics- R. P. Jain.

Experiment 1: Realization of logic gates with the help of universal gates.

Aim: To implement the logic functions i.e. AND, OR, NOT, Ex-OR, Ex- NOR and a logical

expression with the help of NAND and NOR universal gates respectively.

Theory

Introduction

Logic gates are electronic circuits which perform logical functions on one or more inputs to

produce one output. There are seven logic gates. When all the input combinations of a logic gate

are written in a series and their corresponding outputs written along them, then this input/ output

combination is called Truth Table.

1)Nand gate as Universal gate

NAND gate is actually a combination of two logic gates i.e. AND gate followed by NOT gate. So

its output is complement of the output of an AND gate.This gate can have minimum two inputs,

output is always one. By using only NAND gates, we can realize all logic functions: AND, OR,

NOT, X-OR, X-NOR, NOR. So this gate is also called as universal gate.

1.1)NAND gates as NOT gate

A NOT produces complement of the input. It can have only one input, tie the inputs of a NAND

gate together. Now it will work as a NOT gate. Its output is

Y = (A.A)’

Y = (A)’

Figure-1: NAND gates as NOT gate

Figure-2: Truth table of NOT

1.2)NAND gates as AND gate

A NAND produces complement of AND gate. So, if the output of a NAND gate is inverted, overall

output will be that of an AND gate.

Y = ((A.B)’)’

Y = (A.B)

Figure-3:NAND gates as AND gate

Figure-4: Truth table of AND

1.3)NAND gates as OR gate

From DeMorgan’s theorems:

(A.B)’ = A’ + B’

(A’.B’)’ = A’’ + B’’ = A + B

So, give the inverted inputs to a NAND gate, obtain OR operation at output.

Figure-5: NAND gates as OR gate

Figure-6: Truth table of OR

1.4) NAND gates as Ex-OR gate

The output of a two input Ex-OR gate is shown by: Y = A’B + AB’. This can be achieved with

the logic diagram shown in the left side.

Figure-7: NAND gates as Ex-OR gate

Figure-8: Truth table of Ex-OR

1.5) NAND gates as Ex-NOR gate

Ex-NOR gate is actually Ex-OR gate followed by NOT gate. So give the output of Ex-OR gate to

a NOT gate, overall output is that of an Ex-NOR gate.

Y = AB+ A’B’

Figure-9: NAND gates as Ex-NOR gate

Figure-10: Truth table of Ex-NOR

>1.6) Implementing the simplified function with NAND gates only

We can now start constructing the circuit. First note that the entire expression is inverted and we

have three terms ANDed. This means that we must use a 3-input NAND gate. Each of the three

terms is, itself, a NAND expression. Finally, negated single terms can be generates with a 2-input

NAND gate acting as an inverted. Figure 8 illustrates a circuit using NAND gates only.

F=((C'.B.A)'(D'.C.A)'(C.B'.A)')'

Figure-11: Implementing the simplified function with NAND gates only

2) NOR gate as Universal Gate

NOR gate is actually a combination of two logic gates: OR gate followed by NOT gate. So its

output is complement of the output of an OR gate. This gate can have minimum two inputs, output

is always one. By using only NOR gates, we can realize all logic functions: AND, OR, NOT, Ex-

OR, Ex-NOR, NAND. So this gate is also called universal gate.

2.1)NOR gates as NOT gate

A NOT produces complement of the input. It can have only one input, tie the inputs of a NOR

gate together. Now it will work as a NOT gate. Its output is

Y = (A+A)’

Y = (A)’

Figure-12: NOR gates as NOT gate

Figure-13: Truth table of NOT

2.2)NOR gates as OR gate

A NOR produces complement of OR gate. So, if the output of a NOR gate is inverted, overall

output will be that of an OR gate.

Y = ((A+B)’)’

Y = (A+B)

Figure-14: NOR gates as OR gate

Figure-15: Truth table of OR

2.3) NOR gates as AND gate

From DeMorgan’s theorems:

(A+B)’ = A’B’

(A’+B’)’ = A’’B’’ = AB

So, give the inverted inputs to a NOR gate, obtain AND operation at output.

Figure-16:NOR gates as AND gate

Figure-17: Truth table of AND

2.4)NOR gates as Ex-NOR gate

The output of a two input Ex-NOR gate is shown by: Y = AB + A’B’. This can be achieved with

the logic diagram shown in the left side.

Figure-18: NOR gates as Ex-NOR gate

Figure-19: Truth table of Ex-NOR

2.5) NOR gates as Ex-OR gate

Ex-OR gate is actually Ex-NOR gate followed by NOT gate. So give the output of Ex-NOR gate

to a NOT gate, overall output is that of an Ex-OR gate.

Y = A’B+ AB’

Figure-20: NOR gates as Ex-OR gate

Figure-21: Truth table of Ex-OR

2.6) Constructing a circuit with NOR gates only

Designing a circuit with NOR gates only uses the same basic techniques as designing a circuit

with NAND gates; that is, the application of deMorgan’s theorem. The only difference between

NOR gate design and NAND gate design is that the former must eliminate product terms and the

later must eliminate sum terms.

F=(((C.B'.A)+(D.C'.A)+(C.B'.A))')'

Figure-22: Implementing the simplified function with NOR gates only

Procedure

Results and Discussion:

EXPERIMENT 2: Realization of XOR gate

Aim: To verify and interpret the logic and truth table for Ex-OR gates using RTL (Resistor

Transistor Logic), DTL (Diode Transistor Logic) and TTL (Transistor Transistor Logic)

logics in simulator 1 and verify the truth table for Ex-OR gates in simulator 2.

Theory

Ex-OR gate

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both of its two

inputs are high. An encircled plus sign (⊕) is used to show the Ex-OR operation.

Y= A⊕B

Figure-16: Logic Symbol of Ex-OR gate

Figure-17: Truth Table of Ex-OR gate

Ex-OR gate is created from AND, NAND and OR gates. The output is high only when both the

inputs are different.

Figure-18: Ex-OR gate through RTL Logic.

Procedure

Results and Discussion:

EXPERIMENT 3: Combinational Logic Design using 74xx ICs

Aim: To analyse the truth table of 4 * 2 decoder/de-multiplexer using NOT (7404) and AND

(7408) logic gate ICs and 2 * 4 encoder using OR (7403) logic gate IC and to understand the

working of 4 * 2 decoder and 2 * 4 encoder circuit with the help of LEDs display.

Theory

Introduction

Binary code of N digits can be used to store 2N distinct elements of coded information. This is

what encoders and decoders are used for. Encoders convert 2N lines of input into a code of N bits

and Decoders decode the N bits into 2N lines.

1) 2x4 Decoder / De-multiplexer

The name “Decoder” means to translate or decode coded information from one format into

another, so a digital decoder transforms a set of digital input signals into an equivalent decimal

code at its output

A decoder is a combinational circuit that converts binary information from n input lines to a

maximum of 2^n unique output lines.

1.1) 2-to-4 Binary Decoder

The 2-to-4 line binary decoder depicted above consists of an array of four AND gates. The 2 binary

inputs labelled A and B are decoded into one of 4 outputs, hence the description of 2-to-4 binary

decoder. Each output represents one of the minterms of the 2 input variables, (each output = a

minterm).

Fig: Logic Diagram and TRUTH TABLE of DECODER

The binary inputs A and B determine which output line from Q0 to Q3 is “HIGH” at logic level

“1” while the remaining outputs are held “LOW” at logic “0” so only one output can be active

(HIGH) at any one time.

Therefore, whichever output line is “HIGH” identifies the binary code present at the input, in other

words it “decodes” the binary input.Some binary decoders have an additional input pin labelled

“Enable” that controls the outputs from the device.

This extra input allows the decoders outputs to be turned “ON” or “OFF” as required. Output is

only generated when the Enable input has value 1; otherwise, all outputs are 0. Only a small change

in the implementation is required: the Enable input is fed into the AND gates which produce the

outputs.

If Enable is 0, all AND gates are supplied with one of the inputs as 0 and hence no output is

produced. When Enable is 1, the AND gates get one of the inputs as 1, and now the output depends

upon the remaining inputs. Hence the output of the decoder is dependent on whether the Enable is

high or low.

2) Encoder

An Encoder is a combinational circuit that performs the reverse operation of Decoder.It has

maximum of 2n input lines and ‘n’ output lines, hence it encodes the information from 2n inputs

into an n-bit code. It will produce a binary code equivalent to the input, which is active High.

Therefore, the encoder encodes 2n input lines with ‘n’ bits.

Fig: Logic Diagram of ENCODER

2.1)4 : 2 Encoder

The 4 to 2 Encoder consists of four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. At any

time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the output.

The figure below shows the logic symbol of 4 to 2 encoder :

Fig: Logic Diagram of 4 : 2 Encoder

The Truth table of 4 to 2 encoder is as follows :

Fig: TRUTH TABLE of 4 : 2 Encoder

Procedure

Results and Discussion:

EXPERIMENT 4: Arithmetic Circuit- construction and testing using 74xxICs: Half/Full

Adder

Aim:To verify the truth table of half adder and full adder by using XOR and NAND gates

respectively and analyse the working of half adder and full adder circuit with the help of

LEDs in simulator 1 and verify the truth table only of half adder and full adder in simulator

2.

Theory

Introduction

Adders are digital circuits that carry out addition of numbers. Adders are a key component of

arithmetic logic unit. Adders can be constructed for most of the numerical representations like

Binary Coded Decimal (BDC), Excess – 3, Gray code, Binary etc. out of these, binary addition is

the most frequently performed task by most common adders. Apart from addition, adders are also

used in certain digital applications like table index calculation, address decoding etc.

Binary addition is similar to that of decimal addition. Some basic binary additions are shown

below.

Schematic representation of half adder

1) Half Adder

Half adder is a combinational circuit that performs simple addition of two binary numbers. The

block diagram of a half adder is shown below.

1.1) Half Adder Truth Table

If we assume A and B as the two bits whose addition is to be performed, a truth table for half adder

with A, B as inputs and Sum, Carry as outputs can be tabulated as follows.

The sum output of the binary addition carried out above is similar to that of an Ex-OR operation

while the carry output is similar to that of an AND operation. The same can be verified with help

of Karnaugh Map.

The truth table and K Map simplification for sum output is shown below.

Sum = A B' + A' B

The truth table and K Map simplification for carry is shown below.

Carry = AB

If A and B are binary inputs to the half adder, then the logic function to calculate sum S is Ex –

OR of A and B and logic function to calculate carry C is AND of A and B. Combining these two,

the logical circuit to implement the combinational circuit of half adder is shown below.

Half Adder Logic Diagram

As we know that NAND and NOR are called universal gates as any logic system can be

implemented using these two, the half adder circuit can also be implemented using them. We know

that a half adder circuit has one Ex – OR gate and one AND gate.

1.2) Half Adder using NAND gates

Five NAND gates are required in order to design a half adder. The circuit to realize half adder

using NAND gates is shown below.

Realization of half adder using NAND gates

1.3) Half Adder using NOR gates

Five NOR gates are required in order to design a half adder. The circuit to realize half adder using

NOR gates is shown below.

Realization of half adder using NOR Gates

2) Full Adder

Full adder is a digital circuit used to calculate the sum of three binary bits which is the main

difference between full adder and half adder. Full adders are complex and difficult to implement

when compared to half adders. Two of the three bits are same as before which are A, the augend

bit and B, the addend bit. The additional third bit is carry bit from the previous stage and is called

'Carry' – in generally represented by CIN. It calculates the sum of three bits along with the carry.

The output carry is called Carry – out and is represented by COUT.

The block diagram of a full adder with A, B and CIN as inputs and S, COUT as outputs is shown

below.

Full Adder Block Diagram and Truth Table

Based on the truth table, the Boolean functions for Sum (S) and Carry – out (COUT) can be derived

using K – Map.

The simplified equation for sum is S = A'B'Cin + A'BCin' + ABCin

The simplified equation for COUT is COUT = AB + ACIN + BCIN

In order to implement a combinational circuit for full adder, it is clear from the equations derived

above, that we need four 3-input AND gates and one 4-input OR gates for Sum and three 2-input

AND gates and one 3-input OR gate for Carry – out.

Full Adder Logic Diagram

2.1) Full Adder using NAND gates

As mentioned earlier, a NAND gate is one of the universal gates and can be used to implement

any logic design. The circuit of full adder using only NAND gates is shown below.

Full Adder using NAND gates

2.2)Full Adder using NOR gates

As mentioned earlier, a NOR gate is one of the universal gates and can be used to implement any

logic design. The circuit of full adder using only NOR gates is shown below.

Full Adder using NOR gates

Procedure

Results and Discussion:

EXPERIMENT 5: Construction of 1- bit comparator using 74xxICs.

Aim: To analyse the truth table of 1-bit comparator by using NOT, AND and NOR logic

gate ICs and to understand the working of 1-bit comparator with the help of LEDs display.

Theory

Introduction

A magnitude digital comparator is a combinational circuit that compares two digital or binary

numbers in order to find out whether one binary number is equal, less than or greater than the

other binary number. We logically design a circuit for which we will have two inputs one for A

and other for B and have three output terminals, one for A > B condition, one for A = B condition

and one for A < B condition.

Figure-1: Block Diagram of Comparator

1) 1-Bit Magnitude Comparator :

A comparator used to compare two bits is called a single bit comparator. It consists of two inputs

each for two single bit numbers and three outputs to generate less than, equal to and greater than

between two binary numbers. The truth table for a 1-bit comparator is given below :

Figure-2: Truth Table of 1-Bit Comparator

From the above truth table logical expressions for each output can be expressed as follows:

A > B : AB'

A < B : A'B

A = B : A'B' + AB

By using these Boolean expressions, we can implement a logic circuit for this comparator as given

below :

Figure-3: Logic Circuit of 1-Bit Comparator

Applications of Comparators :

1. Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).

2. These are used in control applications in which the binary numbers representing physical

variables such as temperature, position, etc. are compared with a reference value.

3. Comparators are also used as process controllers and for Servo motor control.

4. Used in password verification and biometric applications.

Procedure

Results and Discussion:

EXPERIMENT 6: code converters – Binary to Gray & Gray to binary

Aim: To analyse the truth table of binary to gray and gray to binary converter using

combination of NAND gates and to understand the working of binary to gray and gray to

binary converter with the help of LEDs display.

Theory

Introduction

Binary Numbers is default way to store numbers, but in many applications binary numbers are

difficult to use and a variation of binary numbers is needed. This is where Gray codes are very

useful.

Gray code has property that two successive numbers differ in only one bit because of this property

gray code does the cycling through various states with minimal effort and used in K-maps, error

correction, communication etc.

In computer science many a times we need to convert binary code to gray code and vice versa.

This conversion can be done by applying following rules :

1) Binary to Gray conversion :

1. The Most Significant Bit (MSB) of the gray code is always equal to the MSB of the given

binary code.

2. Other bits of the output gray code can be obtained by Ex-ORing binary code bit at that

index and previous index.

There are four inputs and four outputs. The input variable are defined as B3, B2, B1, B0 and

the output variables are defined as G3, G2, G1, G0. From the truth table, combinational

circuit is designed.The logical expressions are defined as :

B3 = G3

B2 ⊕ B3 = G2

B1 ⊕ B2 = G1

B0 ⊕ B1 = G0

Figure-1: Binary to Gray Code Converter Circuit

Figure-2: Binary to Gray Code Converter Truth Table

2) Gray to binary conversion :

1.The Most Significant Bit (MSB) of the binary code is always equal to the MSB of the given

binary number.

2.Other bits of the output binary code can be obtained by checking gray code bit at that index. If

current gray code bit is 0, then copy previous binary code bit, else copy invert of previous binary

code bit.

There are four inputs and four outputs. The input variable are defined as G3, G2, G1, G0 and the

output variables are defined as B3, B2, B1, B0. From the truth table, combinational circuit is

designed.The logical expressions are defined as :

G0 ⊕ G1 ⊕ G2 ⊕ G3 = B0

G1 ⊕ G2 ⊕ G3 = B1

G2 ⊕ G3 = B2

G3 = B3

Figure-3: Gray to Binary Code Converter Circuit

Figure-4: Gray to Binary Code Converter Truth Table

Procedure

Results and Discussion:

EXPERIMENT 7: Verification of Truth Table of SR Flip-Flop

Aim: To verify the truth table and timing diagram of SR, JK flip-flop by using NAND &

NOR gates ICs and analyse the circuit of SR flip-flop with the help of LEDs display.

Theory

Introduction

A flip flop is an electronic circuit with two stable states that can be used to store binary data. The

stored data can be changed by applying varying inputs. Flip-flops and latches are fundamental

building blocks of digital electronics systems used in computers, communications, and many other

types of systems.

1) R-S flip flop

2) D flip flop

3) J-K flip flop

4) T flip flop

The basic NAND gate RS flip flop circuit is used to store the data and thus provides feedback

from both of its outputs again back to its inputs. The RS flip flop actually has three inputs, SET,

RESET and its current output Q relating to its current state as shown in figure below.

Figure-1:S-R flip flop circuit diagram

Figure-2:Characteristics table of S-R flip flop

Procedure

Results and Discussion:

EXPERIMENT 8: JK, T and D flip-flops by using NAND & NOR gates ICs and analyse

the circuit of RS, JK, T and D flip-flops with the help of LEDs display.

Theory

Introduction

A flip flop is an electronic circuit with two stable states that can be used to store binary data. The

stored data can be changed by applying varying inputs. Flip-flops and latches are fundamental

building blocks of digital electronics systems used in computers, communications, and many other

types of systems.

1) R-S flip flop

2) D flip flop

3) J-K flip flop

4) T flip flop

1) D flip flop

A D flip flop has a single data input. This type of flip flop is obtained from the SR flip flop by

connecting the R input through an inverter, and the S input is connected directly to data input. The

modified clocked SR flip-flop is known as D-flip-flop and is shown below. From the truth table

of SR flip-flop we see that the output of the SR flip-flop is in unpredictable state when the inputs

are same and high. In many practical applications, these input conditions are not required. These

input conditions can be avoided by making them complement of each other.

Figure-3: Circuit diagram of D flip flop

Figure-4: Characteristics table of D flip flop

2) J-K flip flop

In a RS flip-flop the input R=S=1 leads to an indeterminate output. The RS flip-flop circuit may

be re-joined if both inputs are 1 than also the outputs are complement of each other as shown in

characteristics table below.

Figure-5: Circuit diagram of J-K flip flop

Figure-6:Characteristics table of J-K flip flop

3) T flip flop

T flip-flop is known as toggle flip-flop. The T flip-flop is modification of the J-K flip-flop. Both

the JK inputs of the JK flip – flop are held at logic 1 and the clock signal continuous to change as

shown in table below.

Figure-7: Circuit diagram of T flip flop

Figure-8: Characteristics table of T flip flop

Procedure

Results and Discussion:

EXPERIMENT 9: Decade counter design

Aim: To verify the truth table and timing diagram of Decade counter and analyse the circuit

of Decade counter .

Theory

Usually, counter circuits are digital in nature, and count in natural binary. Many types of counter

circuits are available as digital building blocks, for example a number of chips in the 4000 series

implement different counters. Occasionally there are advantages to using a counting sequence

other than the natural binary sequence such as the binary coded decimal counter, a linear feedback

shift register counter, or a Gray-code counter. Counters are useful for digital clocks and timers,

and in oven timers, VCR clocks, etc.

The counters will be assembled using two 74LS73 dual J-K flip-flop chips and a 74LS02 quad

NOR chip. Note that each flip-flop has an asynchronous Reset (R’) input besides the synchronous

J-K inputs. This enables one to reset any of the flip-flops by making R’ = 0 irrespective of the

status of the clock (CK) input. The asynchronous R’ input will be utilised in this experiment to

initialise the flip-flop outputs as well as to obtain counters having cycle length N is less than 16.

Pin connections:

Binary Ripple Counter

1. Make J = K = 1 for all the flip-flops, thereby converting the J-K flip-flops to T flip-flops.

Connect all R’ inputs together to an Input Switch, and the outputs Q0,Q1,Q2,Q3 to four LED

Displays.

2. Set up an Up-counting Binary Ripple Counter by making clock connections as follows: CK0 =

Manual Clock (CLK-M), CK1 = Q0, CK2 = Q1, CK3 = Q2.

3. Using the Input Switch connected to the common R’ input, initialise the counter to the stat

4. Apply Manual Clock pulses and tabulate the state sequence for the entire cycle.

5. Now change the clock input connections to CK1 = Q0’, CK2 = Q1’, CK3 = Q2’, to obtain a

Down-counting Binary Ripple counter.

Asynchronous (ripple) counter:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed from its

own inverted output. This circuit can store one bit, and hence can count from zero to one before it

overflows (starts over from 0). This counter will increment once for every clock cycle and takes

two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and

a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half

the frequency of the input clock. If this output is then used as the clock signal for a similarly

arranged D flip-flop (remembering to invert the output to the input), you will get another 1 bit

counter that counts half as fast. Putting them together yields a two-bit counter:

Cycle Q1 Q2 (Q1:Q0)dec

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 0 0 0

Synchronous counter:

A simple way of implementing the logic for each bit of an ascending counter (which is what is

depicted in the image to the right) is for each bit to toggle when all of the less significant bits are

at a logic high state. For example, bit 1 toggles when bit 0 is logic high; bit 2 toggles when both

bit 1 and bit 0 are logic high; bit 3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.

Synchronous counters can also be implemented with hardware finite state machines, which are

more complex but allow for smoother, more stable transitions. Hardware-based counters are of

this type.

Decade counter:

A decade counter is one that counts in decimal digits, rather than binary. A decade counter may

have each digit binary encoded (that is, it may count in binary-coded decimal, as the 7490

integrated circuit did) or other binary encodings (such as the bi-quinary encoding of the 7490

integrated circuit). Alternatively, it may have a "fully decoded" or one-hot output code in which

each output goes high in turn (the 4017 is such a circuit). The latter type of circuit finds

applications in multiplexers and demultiplexers, or wherever a scanning type of behavior is useful.

Similar counters with different numbers of outputs are also common. The decade counter is also

known as a mod-counter when it counts to ten (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). A Mod Counter that

counts to 64 stops at 63 because 0 counts as a valid digit.

A decade counter has the count sequence 0 → 1 → 2 →.....→ 8 → 9 → 0.., which can be achieved

by making R’ = (Q3 •Q1)’ for all the flip-flops in a 4-bit binary counter. This forces the counter

to go to the state 0000 as soon as the counter makes the transition from the state 1001 representing

count 9 to the next state 1010 according to the normal up counting sequence.

Decade synchronous counter

The logic for the J-K inputs required for a Decade Synchronous Counter is as follows:

J0 = K0 = 1; J1 = Q0•Q3’, K1 = Q0; J2 = K2 = Q0•Q1; J3 = Q0•Q1•Q2, K3 = Q0.

Multipurpose 4-bit Synchronous Counter

CD4029 is a multipurpose 4-bit counter capable of operating in all the four combinations of

Binary/BCD and Up/Down modes, depending on the values of the control inputs B/D’ and U/D’.

In addition, the 4-bit output Q3Q2Q1Q0 of the counter can be preset to any value by applying the

desired bits to the direct inputs D3D2D1D0 and making the Set ENable control SEN

=

Procedure

Results and Discussion:

