

LabVIEW for Engineers

This page intentionally left blank

LabVIEW for Engineers

RONALD W. LARSEN
Montana State University

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

VP/Editorial Director, Engineering/Computer Science: Marcia J. Horton
Assistant/Supervisor: Dolores Mars
Senior Editor: Holly Stark
Associate Editor: Dee Bernhard
Editorial Assistant: Keri Rand
Director of Marketing: Margaret Waples
Senior Marketing Manager: Tim Galligan
Marketing Assistant: Mack Patterson
Vice-President, Production: Vince O’Brien
Senior Managing Editor: Scott Disanno
Project Manager: Greg Dulles
Senior Operations Supervisor: Alan Fischer
Operations Specialist: Lisa McDowell
Senior Art Director: Jayne Conte
Art Director: Kenny Beck
Cover Designer: Bruce Kenselaar
Media Editor: Daniel Sandin
Composition: Integra
Printer/Binder: Hamilton Printing Co.
Cover Printer: Lehigh-Phoenix Color

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this
textbook appear on appropriate page within text.

LabVIEW is a registered trademark of National Instruments, Austin, TX, 78759-3504.

Copyright © 2011 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle
River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This
publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Larsen, Ronald W.
LabVIEW for Engineers / Ronald W. Larsen.

p. cm.
Includes index.
ISBN-13: 978-0-13-609429-6 (alk. paper)
ISBN-10: 0-13-609429-5 (alk. paper)
1. LabVIEW. 2. Engineering—Data processing. 3. Engineering—Computer programs.
4. Scientific apparatus and instruments—Data processing. I. Title.
TA345.5.L33L37 2011
620.00285—dc22

2009052015

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-609429-5
ISBN 13: 978-0-13-609429-6

www.pearsonhighered.com

Contents

v

1 • INTRODUCTION 1

1.1 What is LabVIEW 1
1.2 Assumptions 2
1.3 Conventions in the Text 3
1.4 LabVIEW VIs 4
1.5 Starting LabVIEW 5
1.6 Creating a VI 12
1.7 LabVIEW Menus 21
Key Terms 24
Summary 25
Self-Assessment 25

2 • LABVIEW BASICS 26

2.1 Opening a VI 26
2.2 Basic Math in LabVIEW—Using Functions 26
2.3 Programming Preview: While Loops 37
2.4 Dataflow Programming 38
2.5 Data Types and Conversions 40
2.6 Documenting VIs 44
2.7 Printing a VI 49
2.8 Saving Your Work 49
2.9 Closing a VI 51
Key Terms 52
Summary 52
Self-Assessment 55
Problems 56

3 • LABVIEW MATH FUNCTIONS 60

3.1 Introduction 60
3.2 Basic Math Functions 62

3.3 Trigonometric and Hyperbolic Trigonometric Functions 74
3.4 Exponential and Logarithm Functions 77
3.5 Boolean and Comparison Functions 80
3.6 Programming Preview: Debugging 87
Key Terms 91
Summary 92
Self-Assessment 96
Problems 98

4 • MATRIX MATH USING LABVIEW 103

4.1 Working with Matrices and Arrays in LabVIEW 103
4.2 Extracting a Subarray from a Larger Array or Matrix 106
4.3 Adding Arrays 111
4.4 Transpose Array 112
4.5 Multiplying an Array by a Scalar 113
4.6 Matrix Multiplication 114
4.7 Element by Element Multiplication 116
4.8 Condition Number 117
4.9 Matrix Determinant 118
4.10 Inverse Matrix 120
4.11 Solving Simultaneous Linear Equations 121
4.12 Programming Preview: For Loops 127
Key Terms 133
Summary 133
Self-Assessment 137
Problems 138

5 • DATA ACQUISITION WITH LABVIEW 142

5.1 Overview of Data Acquisition 142
5.2 Sensors, Signals and Signal Conditioning 144
5.3 Data Acquisition Hardware 153
5.4 Using LabVIEW to Collect Data 158
Key Terms 174
Summary 174
Self-Assessment 175
Problems 177

6 • GETTING DATA INTO AND OUT OF LABVIEW WITHOUT
DATA ACQUISITION 181

6.1 Introduction 181
6.2 Writing LabVIEW Data to a Spreadsheet File 181

vi Contents

6.3 Writing LabVIEW Data to a Measurement File 185
6.4 Reading a LabVIEW Measurement File 189
6.5 Reading a Spreadsheet File in LabVIEW 190
6.6 Using Spreadsheet Data to Initialize a Matrix Control 199
Key Terms 209
Summary 209
Self-Assessment 211
Problems 212

7 • GRAPHING WITH LABVIEW 216

7.1 Introduction 216
7.2 Using Waveform Charts 217
7.3 Using Waveform Graphs 228
7.4 Modifying Graph Features 236
7.5 Generating 1D Arrays for Graphing 240
7.6 Putting LabVIEW Graphs to Work 242
7.7 Using XY Graphs—2D Plotting 248
7.8 3D Graphing 254
7.9 Getting Graphs onto Paper and into Reports 258
Key Terms 258
Summary 259
Self-Assessment 261
Problems 262

8 • DATA ANALYSIS USING LABVIEW VIS 264

8.1 Introduction 264
8.2 Basic Statistics 264
8.3 Interpolation 269
8.4 Curve Fitting 276
8.5 Regression 280
Key Terms 290
Summary 290
Self-Assessment 292
Problems 293

9 • PROGRAMMING IN LABVIEW 297

9.1 Introduction 297
9.2 LabVIEW Programming Basics, Expanded 297
9.3 Structures 314
Key Terms 344
Summary 344
Self-Assessment 347
Problems 348

Contents vii

10 • LOOKING FORWARD: ADVANCED MATH USING LABVIEW VIS 352

10.1 Introduction 352
10.2 Working with Polynomials 352
10.3 Statistics: Hypothesis Testing 354
10.4 Differentiation 355
10.5 Integration 357
10.6 Runge–Kutta Integration 359
10.7 Exponential Filter 361
10.8 Spectral Analysis 363
10.9 Monte Carlo Simulation 364
10.10 PID Controller 368

APPENDIX: PRINTING VIS 370

INDEX 377

viii Contents

ESource Reviewers

ix

We would like to thank everyone who helped us with or has reviewed texts in this series.

Naeem Abdurrahman, University of Texas, Austin
Sharon Ahlers, Cornell University
David G. Alciatore, Colorado State University
Stephen Allan, Utah State University
Anil Bajaj, Purdue University
Grant Baker, University of Alaska–Anchorage
William Bard, University of Texas
William Beckwith, Clemson University
Haym Benaroya, Rutgers University
John Biddle, California State Polytechnic University
Ray Biswajit, Bloomsburg University of PA
Donald Blackmon, UNC Charlotte
Tom Bledsaw, ITT Technical Institute
Fred Boadu, Duke University
Gregory Boardman, Virginia Tech
Stuart Brand, The Ohio State University
Jerald Brevick, The Ohio State University
Tom Bryson, University of Missouri, Rolla
Ramzi Bualuan, University of Notre Dame
Dan Budny, Purdue University
Betty Burr, University of Houston
Fernando Cadena, New Mexico State University
Joel Cahoon, Montana State University
Dale Calkins, University of Washington
Monica Cardella, Purdue University
Linda Chattin, Arizona State University
Harish Cherukuri, University of North

Carolina–Charlotte
Vanessa Clark, Washington University in St. Louis
Arthur Clausing, University of Illinois
Barry Crittendon, Virginia Polytechnic and State

University
Donald Dabdub, University of CA Irvine
Richard Davis, University of Minnesota Duluth
Kurt DeGoede, Elizabethtown College
John Demel, Ohio State University
James Devine, University of South Florida
Heidi A. Diefes-Dux, Purdue University
Jeffrey A. Doughty, Northeastern University
Jerry Dunn, Texas Tech University
Ron Eaglin, University of Central Florida
Dale Elifrits, University of Missouri, Rolla
Timothy Ellis, Iowa State University

Nurgun Erdol, Florida Atlantic University
Christopher Fields, Drexel University
Patrick Fitzhorn, Colorado State University
Julie Dyke Ford, New Mexico Tech
Susan Freeman, Northeastern University
Howard M. Fulmer, Villanova University
Frank Gerlitz, Washtenaw Community College
John Glover, University of Houston
Richard Gonzales, Purdue Calumet
John Graham, University of North Carolina–Charlotte
Hayden Griffin, Virginia Tech
Laura Grossenbacher, University of Wisconsin Madison
Ashish Gupta, SUNY at Buffalo
Otto Gygax, Oregon State University
Malcom Heimer, Florida International University
Robin A. M. Hensel, West Virginia University
Donald Herling, Oregon State University
Orlando Hernandez, The College of New Jersey
David Herrin, University of Kentucky
Thomas Hill, SUNY at Buffalo
A. S. Hodel, Auburn University
Susan L. Holl, California St. U. Sacramento
Kathryn Holliday-Darr, Penn State U Behrend College, Erie
Tom Horton, University of Virginia
David Icove, University of Tennessee
James N. Jensen, SUNY at Buffalo
Mary Johnson, Texas A & M Commerce
Vern Johnson, University of Arizona
Jean C. Malzahn Kampe, Virginia Polytechnic Institute and State University
Moses Karakouzian, University of Nevada Las Vegas
Autar Kaw, University of South Florida
Kathleen Kitto, Western Washington University
Kenneth Klika, University of Akron
Harold Knickle, University of Rhode Island
Terry L. Kohutek, Texas A&M University
Thomas Koon, Binghamton University
Reza Langari, Texas A&M
Bill Leahy, Georgia Institute of Technology
John Lumkes, Purdue University
Mary C. Lynch, University of Florida
Melvin J. Maron, University of Louisville
Christopher McDaniel, UNC Charlotte
Khanjan Mehta, Penn State University Park
F. Scott Miller, University of Missouri-Rolla
James Mitchell, Drexel University
Robert Montgomery, Purdue University
Naji Mounsef, Arizona State University
Nikos Mourtos, San Jose State University
Mark Nagurka, Marquette University
Romarathnam Narasimhan, University of Miami
Shahnam Navee, Georgia Southern University

x ESource Reviewers

James D. Nelson, Louisiana Tech University
Soronadi Nnaji, Florida A&M University
Sheila O’Connor, Wichita State University
Matt Ohland, Clemson University
Paily P. Paily, Tennessee State University
Kevin Passino, Ohio State University
Ted Pawlicki, University of Rochester
Ernesto Penado, Northern Arizona University
Michael Peshkin, Northwestern University
Ralph Pike, Louisiana State University
Andrew Randall, University of Central Florida
Dr. John Ray, University of Memphis
Marcella Reekie, Kansas State University
Stanley Reeves, Auburn University
Larry Richards, University of Virginia
Marc H. Richman, Brown University
Jeffrey Ringenberg, University of Michigan
Paul Ronney, University of Southern California
Christopher Rowe, Vanderbilt University
Blair Rowley, Wright State University
Liz Rozell, Bakersfield College
Mohammad Saed, Texas Tech University
Tabb Schreder, University of Toledo
Heshem Shaalem, Georgia Southern University
Randy Shih, Oregon Institute of Technology
Howard Silver, Fairleigh Dickenson University
Avi Singhal, Arizona State University
Greg Sun, University of Massachusetts Boston
John Sustersic, The Penn State University
Tim Sykes, Houston Community College
Murat Tanyel, Geneva College
Toby Teorey, University of Michigan
Scott Thomas, Wright State University
Virgil A.Thomason, University of TN at Chattanooga
Neil R.Thompson, University of Waterloo
Dennis Truax, Mississippi State University
Raman Menon Unnikrishnan, Rochester Institute

of Technology
Thomas Walker, Virginia Tech
Michael S.Wells, Tennessee Tech University
Ed Wheeler, University of Tennessee at Martin
Joseph Wujek, University of California, Berkeley
Edward Young, University of South Carolina
Garry Young, Oklahoma State University
Steve Yurgartis, Clarkson University
Mandochehr Zoghi, University of Dayton

ESource Reviewers xi

This page intentionally left blank

LabVIEW for Engineers

This page intentionally left blank

Introduction

1.1 WHAT IS LABVIEW?
In the past, LabVIEW was just a graphical programming language that was
developed to make it easier to collect data from laboratory instruments using
data acquisition systems. LabVIEW was always easy to use once you got used
to wiring connectors to write your computer programs, and it definitely makes
data acquisition an easier task than without LabVIEW, but LabVIEW is not
just for data acquisition any more.

LabVIEW can be used to perform the following:

• acquire data from instruments
• process data (e.g., filtering, transforms)
• analyze data
• control instruments and equipment

For engineers, LabVIEW makes it possible to bring information from
the outside world into a computer, make decisions based on the acquired data,
and send computed results back into the world to control the way a piece of
equipment operates.

As an example, the LabVIEW program (front panel) shown in Figure 1.1
reads a process measurement (a temperature value) from a piece of equipment,
compares the measured process temperature with the desired temperature
(called a setpoint), and outputs a signal to a controller to try to control the
temperature at the setpoint value. You can see in Figure 1.1 that when the
temperature went above setpoint, the controller output decreased. This causes
a valve on a heat source to close (partially) to bring the temperature back to
setpoint.

In this brief example:

• A temperature value was read from an external device.
• The desired setpoint temperature was entered on a control on the front panel.
• A controller output was calculated using a PI Controller algorithm.
• The controller output was written to an external device.

O b j e c t i v e s
After reading this chapter,
you will know:

what LabVIEW is and how
it can be used to acquire,
process, and analyze data
what a LabVIEW VI is, and
how front panel and block
diagrams are used
how to start LabVIEW
and create a blank VI
how to use LabVIEW menus
to open and save VIs

C H A P T E R 1

LabVIEW’s ability to get data from outside the real world, use the data inside a pro-
gram, and send results back out to the real world allows engineers to interact with
and control events in the real world, not just inside computers. Using LabVIEW
programs is a fast and efficient way to develop a new device or prototype a new
instrument. And LabVIEW is becoming such an industrial standard that the Lab-
VIEW program used to create the prototype may soon be the program used in the
commercial version as well.

1.2 ASSUMPTIONS

The author is making a few assumptions about the reader and about the version of
LabVIEW that you have available.

1.2.1 Target Audience

As part of the Pearson-Prentice Hall E-Source series, this text is targeted at first-
and second-year engineering students. As such, the reader is assumed to have
some mathematical ability, but very little experience with LabVIEW. And while
LabVIEW is often used for data acquisition, that is not the primary focus of this

2 Introduction

Figure 1.1
LabVIEW VI for PI Controller (front panel).

Base Full Student Pro Dev Topic

✓ ✓ ✓ ✓ ✓ Trig Functions

✓ ✓ ✓ ✓ ✓ Boolean Functions

✓ ✓ ✓ ✓ ✓ Matrix Math

No* ✓ ✓ ✓ ✓ Simultaneous Equations Function

✓ ✓ ✓ ✓ ✓ File I/O

✓ ✓ ✓ ✓ ✓ Graphs

✓ ✓ ✓ ✓ ✓ Basic Statistics

No ✓ ✓ ✓ ✓ Interpolation

No ✓ ✓ ✓ ✓ Curve Fitting

No ✓ ✓ ✓ ✓ Regression

No ✓ ✓ ✓ ✓ Integration

No ✓ ✓ ✓ ✓ Differentiation

No ✓ ✓ ✓ ✓ Differential Equations

*An easy workaround is presented in the text.

Section 1.3 Conventions in the Text 3

text. Instead, we will focus on using the mathematical power of LabVIEW to
tackle the analysis of data sets, whether they are acquired from an experimental
system or not.

1.2.2 LabVIEW Versions

LabVIEW is a well-developed program, and the changes from one version to another
are small.The author has used LabVIEW 8.5 and LabVIEW 2009 Full versions with no
added bells or whistles in developing the examples in this text. For the material covered
in this text, users of earlier versions of LabVIEW will see very few differences.
LabVIEW is sold in the following packages:

• Base Package—reduced mathematics functionality
• Full Package—complete set of math functions
• Student Edition—full package with a watermark in the lower right corner of each

front panel
• Professional Package—can create stand-alone applications
• NI Developer Suite—includes extra add-ons and toolkits

In this text, we will make use of many of the math functions that are available
only in the Full, Student, Professional, and Developer packages. Some of the more
advanced analysis techniques illustrated in this text will be unavailable in the Base
package. For example,

It is assumed that the reader has access to at least the Student LabVIEW package.

1.3 CONVENTIONS IN THE TEXT

The following conventions are used in this text:

• Keywords—shown in italics the first time they appear.
• Literals—items meant to be typed exactly as they appear in the text are shown in

bold font.

4 Introduction

Figure 1.2
PI Controller VI, block diagram.

• Function and Control names—the functions to be selected from the Functions
Palette and the Controls to be selected from the Controls Palette will be shown in
bold font. The location within the palette structure is indicated using slashes, as
Main Palette / Sub-Pallet / Group / Function.

• Menu Selections—when actions are initiated from a menu, the menu and
submenu choices are indicated, separated by slashes as Menu Option /
Submenu Option.

1.4 LABVIEW VIs

LabVIEW programs are called VIs. Originally, VI stood for virtual instrument, but
LabVIEW is now used for many more applications than just creating a computer
simulation of an instrument, and LabVIEW programs are typically referred to sim-
ply as VIs.

A LabVIEW VI has two parts:

• Front Panel—Displays the controls (knobs, buttons, graphs, etc.) and represents the
graphical interface for the VI.An example of a VI front panel is shown in Figure 1.1.

• Block Diagram—Holds the programming elements (called blocks, functions, or
sometimes subVIs) that are wired together to build the graphical program. The
block diagram for the PI Controller VI is shown in Figure 1.2.

This text is intended for students who are new to LabVIEW, so Figure 1.2 is
presented as a preview only. For students who want to know a little more about how
the LabVIEW program works, Figure 1.3 shows the major program sections in the
PI Controller. (If you are not interested in the program details, you can skip ahead
to Section 1.5.)

Section 1.5 Starting LabVIEW 5

Figure 1.3
The parts of a LabVIEW program.

1. Read an analog voltage (the process measurement) from the data acquisition
system.

2. Get parameter values from the controls on the front panel.
3. Display values on the front panel using numeric indicators and graphs.
4. Calculate the controller output value.
5. Write an analog voltage (the controller output) to the data acquisition system.

1.5 STARTING LABVIEW

The learning approach that is used in this text is to try to get the reader creating
LabVIEW programs as quickly as possible. To accomplish this, some features may
be presented briefly at first, with just enough information to allow an example to be
developed. The details will be presented later in the chapter.

That said; let’s start LabVIEW.
LabVIEW is started from the Windows Start menu as illustrated in Figure 1.4.

Start Menu / All Programs / National Instruments LabVIEW

If LabVIEW has been used recently, there will be an icon in the left panel of
the Windows Start menu (marked with (1) in Figure 1.4). Otherwise, use the All

6 Introduction

Figure 1.4
Start menu showing two
options for starting
LabVIEW.

Programs button and find the National Instruments LabVIEW icon in the list of
installed programs (marked with (2) in Figure 1.4).

Alternatively, there might be a shortcut to LabVIEW on the computer desktop, as
shown in Figure 1.5. If your computer does not have a desktop shortcut for LabVIEW,
you can create one by right-clicking on the National Instruments LabVIEW icon
(marked with (2) in Figure 1.4) and selecting Create Shortcut from the pop-up menu.

As LabVIEW loads, the title screen shown in Figure 1.6 is displayed. Once the
program has loaded into memory, the title screen disappears, and the Getting Started
window (shown in Figure 1.7) is displayed.

The Getting Started window performs the following:

• provides access to online support for LabVIEW
• provides access to the LabVIEW Help system
• allows you to create a blank VI or an empty project
• allows you to open a recently used VI or project
• allows you to search for LabVIEW examples

Note: The Getting Started window is displayed by default, but that can be changed
by using menu options Tools / Options to open the Options dialog, then selecting
the Environment category, and checking or clearing the box before Skip Getting
Started window on launch.

Figure 1.5
Desktop shortcut icon for
LabVIEW.

Section 1.5 Starting LabVIEW 7

Figure 1.6
LabVIEW title screen, shown as program is loading.

LabVIEW Nomenclature:

• VI is synonymous with LabVIEW program. LabVIEW programs are stored
as files with .vi extensions. LabVIEW VIs include a graphical user interface (front
panel), and a block diagram that contains the programming elements.

• A project is a collection of related program elements that are intended to
work together. A project can contain multiple VIs plus additional program
elements.

1.5.1 The LabVIEW Editing Environment

LabVIEW VIs can be created quickly, can be modified as needed, and give scientists
and engineers the ability to collect and analyze the data they need in order to
accomplish their goals. LabVIEW provides an editing environment that makes it
easy to create, modify, and run VIs.

Creating a LabVIEW VI is easy. First, you open a blank VI, then you add con-
trols to the front panel and programming functions to the block diagram, and wire
them together to create a functioning program. For now, we will create a blank VI
just so we can look around at the LabVIEW workspace.

To create a blank VI in LabVIEW,

• Start LabVIEW (Start / All Programs > / National Instruments LabVIEW). Wait
for the Getting Started screen to be displayed.

• Click Blank VI on the Getting Started window.

Note: If your version of LabVIEW has been set to skip the Getting Started window,
starting LabVIEW should automatically open a blank VI.

8 Introduction

Figure 1.7
LabVIEW Getting Started window.

The blank VI will be displayed in two windows:

• front Panel, labeled Untitled 1 Front Panel
• block Diagram, labeled Untitled 1 Block Diagram

Controls Palette
When the front panel is displayed, the Controls Palette (Figure 1.8) is opened as
well. The Controls Palette provides access to the objects (controls, indicators, knobs,
and graphs) that are placed on the front panel.

Note: By default, the Controls Palette is displayed any time a front panel is being
edited, but the default can be changed. If the Controls Palette is not visible, use menu
options View / Controls Palette from the front panel to display the Controls Palette.

Since there are a large number of controls available, they are collected into a
number of categories and each category can be expanded or collapsed. In Figure 1.8
only the Express category is shown expanded.

Section 1.5 Starting LabVIEW 9

Figure 1.8
The Controls Palette is
available when editing the
Front Panel of a VI.

• The Classic set of tools includes the switches and knobs that originally came
with LabVIEW, while the Modern set provides controls with a more updated
appearance.

• The Express set of controls collects the most commonly used tools in one place,
which can be very handy when developing a front panel.

Functions Palette
When editing a VI’s block diagram, the Functions Palette is shown. In Figure 1.9 the
Programming and Express categories are shown expanded.

Note: By default, the Functions Palette is displayed any time a block diagram is
being edited, but the default can be changed. If the Functions Palette is not visible,
use menu options View / Functions Palette from the block diagram to display the
Functions Palette.

Programming in LabVIEW is all about selecting objects from the Controls and
Functions Palettes and placing them on either the front panel (controls) or block
diagram (functions). Then, the objects must be connected (wired) appropriately on
the block diagram. We will demonstrate this process many times throughout the rest
of this book.

Note: The Functions Palette contains functions, VIs, and Express VIs.All of these can
be placed on a block diagram to create your graphical programs—they can be used in
the same fashion. In this text we use the term function loosely, applying the term to
most of the programming elements on the Functions Palette. The more specific defi-
nitions are as follows:

• Function—a program element that does not have a front panel or block diagram,
but does have a connector pane indicating how the function should be wired.
Functions appear on the Functions Palette with a pale yellow background.

• VI—a VI is a LabVIEW program. A VI can be used within another VI. When this
is done, it is called a SubVI. VIs appear on the Functions Palette with a pale
yellow strip across the top of the icon (or yellow border when expanded) and
“.vi” in the name.

10 Introduction

• Express VI—an Express VI is a more sophisticated VI that can be configured
using a dialog box. The dialog box automatically opens when the Express VI is
placed on the block diagram. Double-click the VI’s icon to re-open the dialog
when needed. Express VIs appear on the Functions Palette with a blue strip
across the top of the icon (or blue border when expanded).

PRACTICE!

Look in the Functions Palette to find the groups containing the following functions:

• Add
• Wait (look for a wristwatch icon)

Look in the Controls Palette for the groups containing:

• Dial Numeric Control
• Toggle Switch

Figure 1.9
The Functions Palette is
available when editing the
Block Diagram of a VI.

Section 1.5 Starting LabVIEW 11

Solution

Add function:

From the block diagram:

• functions Palette/Mathematics Group/Numeric Group/Add function
• functions Palette/Express Group/Arithmetic & Comparison Group/Express

Numeric Group/Add function

Wait function:

From the block diagram:

• functions Palette/Programming Group/Timing Group/Wait (ms) function

Dial Numeric Control:

From the front panel:

• controls Palette/Express Group/Numeric Controls Group/Dial
• controls Palette/Modern Group/Numeric Group/Dial
• controls Palette/Classic Group/Classic Numeric Group/Dial

Toggle Switch:

From the front panel:

• controls Palette/Express Group/Buttons & Switches Group/Toggle Switch
• controls Palette/Modern Group/Boolean Group/Vertical (or Horizontal) Toggle

Switch
• controls Palette/Classic Boolean Group/Vertical (or Horizontal) Toggle Switch

1.5.2 The Tools Palette

LabVIEW provides a third palette, called the Tools Palette (see Figure 1.10), but it is
not automatically displayed. By default, automatic tool selection is activated and the
Tools Palette is not shown.

Figure 1.10
The Tools Palette.

The Tools Palette is not needed for routine tasks, but it can be displayed
using menu options View / Tools Palette from either the front panel or the block
diagram.

The Tools Palette options provide a good overview of the various tasks that
must be accomplished to program in LabVIEW. In the following list, the usage of
each of the tools in the Tools Palette are described, along with the way to accom-
plish the same task using automatic tool selection.

12 Introduction

• Automatic Tool Selection Button (top of Tools Palette)—this is a toggle button
with a green LED display that indicates when automatic tool selection is activated.

• Operate Value Tool (finger)—used to push buttons (to toggle a Boolean value, to
select a menu item, etc). If automatic tool selection is activated, moving the
mouse over a control that can be operated selects this tool.

• Position / Size / Select Tool (arrow)—used to relocate and resize controls. If auto-
matic tool selection is activated, moving the mouse near the border of a control
selects this control.

• Edit Text Tool (A with cursor)—used to enter text (on labels and string constants). If
automatic tool selection is activated, double-click in a text field to select this control.

• Connect Wire Tool (Spool)—used to connect wires between block outputs and
inputs. If automatic tool selection is activated, positioning the mouse near a con-
nector or a wire selects this tool.

• Object Shortcut Menu Tool (Menu icon)—opens a pop-up menu of options for
controls and programming blocks. Right-clicking on any object also opens the
pop-up menu.

• Scroll Window Tool (Cupped Hand)—used to drag a window (e.g., to scroll to a
hidden portion of a large block diagram). If automatic tool selection is activated,
you must use the scroll bars at the edges of the windows to scroll.

• Set / Clear Breakpoint Tool (Stop sign)—Breakpoints are used when debugging
programs to freeze execution so you can see what is happening within the program.
Breakpoints are always set on the block diagram. If automatic tool selection is acti-
vated, you can right-click on a function or wire and select Set Breakpoint from the
pop-up menu.

• Probe Data Tool (Probe symbol: yellow circle, arrow, P character)—Probes can
be placed on wires to show the value in the wire when the program is run. Probes
are placed on the block diagram, but they are visible over the front panel as well.
If automatic tool selection is activated, you can right-click on a wire and select
Probe from the pop-up menu.

• Get Color Tool (Dropper)—used to set the current foreground and background
colors. Click the dropper on a colored object, and the foreground and background
colors shown at the bottom of the Tools Palette will be set to the colors of the
selected object.

Note: You can also click on the foreground and background colors shown at the
bottom of the Tools Palette and select colors from a color selection palette.

• Set Color Tool (Paintbrush)—sets the foreground and background colors of a
colored object to the colors shown at the bottom of the Tools Palette. This is pre-
dominantly used on the front panel, although there are a few objects that can be
colored on the block diagram as well (e.g., labels).

For most common tasks, the automatic tool selection mechanism works very
well and eliminates the need to keep changing the currently selected tool.

1.6 CREATING A VI

We will demonstrate how to build a LabVIEW programs VIs with an example. In
the example, we will build a very simple VI that has a toggle switch and an LED
indicator that illuminates when the switch is “on” (Figure 1.11).

The example is intended to be about as simple as possible. It contains two con-
trols (toggle switch and stop button) and one indicator (LED). It takes one wire on
the block diagram to complete the programming.

Section 1.6 Creating a VI 13

We will work through the example quickly, with the intent of providing an
overview of the VI development process.The best way to learn LabVIEW is to create
the VIs on your own computer as they are presented in the text.

1.6.1 Developing a Simple Virtual Instrument—Example 1

If you click the Blank VI link on the Getting Started window, LabVIEW will close
the Getting Started window and create a blank VI with the temporary name
“Untitled 1”. (If you have multiple unsaved VIs being edited, they will be named
“Untitled 1”, Untitled 2”, and so on.) Standard practice is to assign more descriptive
names the first time you save the VI.

The new VI’s front panel and block diagram are shown in two new windows as
illustrated in Figure 1.12.

Figure 1.11
Power Indicator VI
developed as Example 1.

Figure 1.12
The front panel and block diagram for a new VI (temporarily named “Untitled 1”).

By default, the front panel is shown on top of the block diagram because
LabVIEW assumes that the “standard” way to build a VI is as follows:

• First, add controls to the front panel.
• Second, wire the nodes (the back side of the controls) on the block diagram.

The standard approach works in most instances.
More specifically, we will use the following steps to build the power indicator VI.

1. Create a blank VI.
2. Add a toggle switch to the front panel.
3. Add an LED indicator to the front panel.

14 Introduction

Figure 1.13
Creating a blank VI from
the Getting Started window.

4. Wire the toggle switch node to the LED indicator node on the block diagram.
5. Save the VI with a descriptive name.
6. Run and test the VI.

Step 1. Create a blank VI
There are two ways to create a new, blank VI, depending on whether or not the
LabVIEW editor is already running.

• If LabVIEW is already running, create a new blank VI using menu
options File / New VI from either a front panel or a block diagram.

• If LabVIEW is not already running, start LabVIEW and click on Blank
VI on the Getting Started window as shown in Figure 1.13. (You can also
use menu options File / New VI from the Getting Started window.)

Whichever method you use, a new, blank VI front panel and block diagram
will be displayed.

Note: The Getting Started window is displayed whenever LabVIEW is running
and no VIs are being edited. As soon as the blank VI is displayed, the Getting
Started window will be hidden.

Step 2. Add a toggle switch control to the front panel
When you select (click on) the front panel, the Controls Palette (Figure 1.14)
will be displayed. Drag a Vertical Toggle Switch control from the Controls
Palette to the front panel.

Controls Palette / Express Group / Buttons and Switches Group /
Vertical Toggle Switch

The Controls Palette is a graphical menu of all of the controls that you can
place on the front panel. The controls are collected into groups to make the
control you want to use easier to find. For this example, all of the controls we
will need will be in the Express group.

Notes:

• The most commonly used controls have been gathered into the Express
group.This keeps most of the controls you will need together in one location.

• The LabVIEW Palettes can be resized. In this text they are typically
shown resized to save space.

Section 1.6 Creating a VI 15

The following mouse clicks will get you to the toggle switch:

1. On the Controls Palette, click on the Express group. This causes the var-
ious types of controls and indicators available in the Express group to be
shown, as illustrated in Figure 1.14.

2. Click on the Buttons group within the Express group.This will cause all of
the various types of buttons and switches to be displayed, as illustrated in
Figure 1.15.

Figure 1.14
The Express group in the
Controls Palette.

Figure 1.15
The buttons and switches
available through the
Express group.

16 Introduction

Figure 1.16
Dragging the toggle switch to the front panel.

3. Click on a toggle switch icon and drag it onto the front panel, as illustrated
in Figure 1.16.

By default, the switch is labeled “Boolean” but the label is selected (white
letters on black background) so that it can be changed easily.We’ll rename the
control “Power Switch” and move the label below the switch.

Step 3. Add an LED Indicator to the front panel
Drag a round LED Indicator from the Controls Palette to the front panel. To
find the round LED indicator, start with the Controls Palette, select the
Express group, then select the LED’s group, and finally drag the round LED
Indicator to the front panel as illustrated in Figure 1.17. This is summarized in
the following command sequence:

Controls Palette / Express Group / LED’s Group / Round LED

Again, the indicator is initially labeled “Boolean” and selected so that it can be
renamed. We will change the label to “On When Lit” and center the label over
the LED.

Step 4. Wire the toggle switch output to the LED indicator input
When controls and indicators are placed on the front panel, a node for each
is automatically placed on the block diagram. A node is an icon that

Section 1.6 Creating a VI 17

describes the control (or indicator, or function) and holds the terminals for
the node’s inputs and outputs.

In this example, the LED indicator node has to be connected (wired) to
the switch node to function correctly. Wiring is done on the block diagram,
which is illustrated in Figure 1.18. Specifically, the Power Switch control output
terminal needs to be wired to the LED indicator input terminal.

Figure 1.17
Adding a Round LED indicator to the front panel.

Figure 1.18
The Power Switch output
needs to be wired to the
LED input.

Wiring the two terminals together can be done in two ways. You can use
whichever seems to work best; the dragging method is used in these examples.

18 Introduction

Figure 1.19
Drag the “spool” mouse
icon from the output termi-
nal to the input terminal.

Figure 1.20
The LED indicator is bright
when Automatic Tool
Selection is active.

• Drag the mouse from the output terminal on the Power Switch control
node to the input terminal on the LED indicator node.

• Click on the output terminal on the Power Switch to begin wiring, and
then click on the input terminal on the LED indicator to complete the
connection.

As you move the mouse over the Power Switch output terminal, the mouse
icon changes from the usual arrow to something that looks like a spool
(supposedly a spool of wire) as illustrated in Figure 1.19.

Note: The changing mouse icon assumes that LabVIEW is operating in
Automatic Tool Selection mode, which is the default. If the mouse icon does
not change when moved over a terminal on the block diagram, you need to
activate either Automatic Tool Selection mode or Connect Wire mode. The
mode is selected on the Tools Palette, shown in Figure 1.20. Click the top
button on the Tools Palette to toggle Automatic Tool Selection mode.

Note: To display the Tools Palette, use menu options View / Tools Palette from
either the front panel or the block diagram.

To complete the wiring, drag the “spool” from the Power Switch output
terminal to the input terminal on the LED indicator and release the mouse
button. The completed wire is shown in Figure 1.21.

Note: The mouse icon changes to a spool when the mouse is over a terminal so
that you can wire the terminal. The mouse icon also changes to a spool when
the mouse is near (but not over) a wire so that you can connect from a wire to
another indicator, or a function.

When all required terminals have been wired, the VI is ready to run.
LabVIEW indicates whether or not the VI is ready to run by the icon on the
Run button, as illustrated in Figure 1.22.

Figure 1.21
The Power Switch has been
wired to the LED indicator.

Section 1.6 Creating a VI 19

The VI shown in Figure 1.21 would run, but it would only evaluate the posi-
tion of the power switch once and, if the switch is closed, illuminate the LED
indicator momentarily before the program stops executing. To allow time to
flip the switch a few times to see what happens to the LED, we want the
program to continue running until we give the command to stop it. To
accomplish this, we will use the Run Continuously button, just to the right of
the Run button (see Figure 1.23). The Run Continuously button causes the

VI to restart over and over again, until the Abort Execution button is
clicked.

Step 5. Save the VI
You will want to save your VIs with a descriptive name so that you can find
them again later, if needed. The first time you save a VI you will be given
the opportunity to assign a descriptive name to the VI. In this example, we
have saved the VI with the name “Example 1 Power Indicator”. The “.vi”
file extension is added automatically.

Note: When you save your VI from either the front panel or the block dia-
gram, both the front panel and the block diagram are saved—you don’t need
to save them separately.

Step 6. Test the VI
Return to the front panel and click the Run Continuously button (indicated
in Figure 1.23.). Once the VI is running, you can click on the toggle switch to
flip the switch and turn the LED indicator on and off. In Figure 1.23 the

Figure 1.22
The Run button icon
changes to indicate the
VI status.

Figure 1.23
Running the VI continuously.

20 Introduction

switch is in the up position and the LED is illuminated. Use the Abort
Execution button to stop the VI.

When a toggle switch is thrown, it stays in the new position. Officially, its
mechanical action is termed “Switch When Pressed”. There are a variety of
mechanical actions for switches:

• Switch When Pressed—toggle switches
• Switch When Released—mouse buttons, usually
• Switch Until Released—doorbell buzzer

There are also three latch actions.

• Latch When Pressed—like a starting pistol
• Latch When Released
• Latch Until Released—behaves like the doorbell buzzer

The “Latch When Pressed” action causes a momentary switch signal (latch
signal), and then the signal reverts to the default value and stays at the default
value for the duration of the VI’s execution.

The “Latch When Released” action is similar except that the starting pis-
tol would be fired when the trigger was released. After the momentary latch
signal, the switch reverts to the default value and stays at the default value for
the duration of the VI’s execution.

You can change the mechanical action of a toggle switch by right-clicking
on the switch and selecting Mechanical Action from the pop-up menu as shown
in Figure 1.24.

Figure 1.24
Changing the mechanical
action of a switch.

Section 1.7 LabVIEW Menus 21

PRACTICE: USING A MOMENTARY “ON” SWITCH

Replace the toggle switch with a pushbutton and set the mechanical action to
“Switch Until Released”. Run the VI continuously to observe how the pushbutton
now lights the LED only when it is being pressed.

• Pushbutton Control: Controls Palette / Express Group / Buttons Group /
Pushbutton

• Change Mechanical Action: Right-click on pushbutton (see Figure 1.21), then
select Mechanical Action / Switch Until Released

Solution: Once the mechanical action has been changed to “Switch Until
Released”, the LED will light only while the pushbutton is pressed (as illustrated in
Figure 1.25).

Figure 1.25
Using a pushbutton with the
action set to “Switch Until
Released”.

1.7 LABVIEW MENUS

We conclude this chapter with a brief look at the LabVIEW menus to begin to
develop a sense of how to accomplish particular tasks and to see what LabVIEW
can do. The following is not a complete list of LabVIEW menu options, but a
selected list of useful features.

1.7.1 File Menu

The File menu contains options that will look very familiar to most people, plus a
few LabVIEW-specific options.

• New VI Opens a new, blank VI.
• Open . . . Opens the Select a File to Open dialog to allow you to find an existing

VI for editing or running.
• Close Closes the VI being edited. If the VI has not been saved, you will be asked

if you want to save the file before closing (see Figure 1.26).

Figure 1.26
LabVIEW will prompt to
save a VI before closing
the file.

• Close All Closes all open VIs. If any VIs have been changed, LabVIEW will
prompt you to save the file(s) before closing.

• Save Saves the current VI. The first time a VI is saved, you will be asked to give
it a file name.

22 Introduction

• Save As . . . Opens the Save As dialog that gives several save options.
• Save All Saves all open VIs.
• Save for Previous Version . . . Opens the Save for Previous Version dialog that

allows you to select the desired version of LabVIEW (e.g., 2009, 8.6, 8.5, . . .).
• Revert . . . Discards all changes made since the VI was last saved.
• New Project Creates a new LabVIEW project (collection of related VIs and

associated files).
• Print . . . Opens the Print dialog.
• VI Properties Opens the VI Properties dialog (see Figure 1.27) to allow you to

observe and set a variety of property values.

Figure 1.27
VI Properties dialog,
General category.

• Recent Files Opens a menu listing the most recently edited VIs.
• Exit Shuts down LabVIEW. If there are unsaved VIs, you will be prompted to

save them before exiting.

1.7.2 Edit Menu

The Edit menu collects menu options related to making various changes to the VI.

• Undo Reverses the last editing action. You can use the option repeatedly to
back out of a series of edit steps.

• Redo Reapplies an edit step that was undone.
• Cut Copies an object to the Windows clipboard and removes the object from the VI.
• Copy Copies an object to the Windows clipboard and leaves the object in the VI.
• Paste Pastes an object previously copied to the Windows clipboard into

the VI.
• Select All Selects all objects. Useful for moving all existing objects to make

space for something new.
• Make Current Values Default Any values that are entered into controls in an

edit session will be lost when the VI is saved and reloaded unless the values are
made the default values for the control. This menu option is used to make all val-
ues currently in controls the default values for the controls.

• Reinitialize Values to Defaults Resets values in controls back to the default
values.

• Remove Broken Wires Removes all broken wires on the block diagram. Ctrl-B
is the keyboard shortcut.

Section 1.7 LabVIEW Menus 23

• Create VI Snippet from Selection A snippet is a piece of program code that you
want to reuse. This menu option allows you to select a section of a VI and save it
for reuse in the future.

• Create SubVI A SubVI is a VI that will be used within another VI. It is easy to cre-
ate a SubVI by selecting a group of program elements and using this menu option.

1.7.3 View Menu

The View menu provides access to various palettes and windows.

• Controls Palette Toggles the display of the Controls Palette. Only active from
the front panel.

• Functions Palette Toggles the display of the Functions Palette. Only active from
the block diagram.

• Tools Palette Toggles the display of the Tools Palette.
• Quick Drop Opens the Quick Drop dialog, which is used to quickly locate func-

tions and controls by name.
• Breakpoint Manager Opens the Breakpoint Manager dialog to allow you to

enable, disable, and delete breakpoints.
• Probe Watch Window Opens the Probe Watch Window, which can be used to

monitor the values of all probes on a block diagram.
• Error List Opens the Error List window, which lists all errors that are prevent-

ing the VI from running. The Error List is also displayed when you click the
Broken Run button.

• Getting Started Window Opens the Getting Started Window.

1.7.4 Project Menu

The Project menu is used to manage LabVIEW projects.A LabVIEW project is a col-
lection of related VIs and associated files.Keeping related files collected makes creating
a complex program easier, and simplifies creating a run-time version of the program.

• New Project Creates a new (empty) LabVIEW project.
• Open Project . . . Opens an existing LabVIEW project selected using a dialog.
• Save Project Saves the current LabVIEW project.
• Close Project Closes the current LabVIEW project.
• Add to Project > Allows you to add a file to an open project.

1.7.5 Operate Menu

The Operate menu allows you to control how a VI runs.

• Run Starts the VI. Equivalent to clicking the Run button on the front panel or
block diagram window.

• Stop Stops a running VI. Equivalent to clicking the Abort Execution button on
the front panel or block diagram window.

• Step Into Starts the VI, but runs only the first step of the VI. Use Step Over to
continue step by step and Step Out to finish program execution.

1.7.6 Tools Menu

The Tools menu offers some fairly advanced options, only a few are mentioned here.

• Measurement & Automation Explorer The Measurement & Automation
Explorer is used to keep track of the various data acquisition devices on a com-
puter, and to create data acquisition tasks.

24 Introduction

• Build Application (EXE) from VI . . . Used to create a standalone application
that can run outside of LabVIEW.

• Options . . . Provides access to the default options used by LabVIEW.

1.7.7 Window Menu

The Window menu is used to control the way the LabVIEW windows are dis-
played. The bottom section of the Window menu shows a menu of all currently
open LabVIEW windows. This allows you to access any open LabVIEW window
from any other.

• Show Block Diagram Available from the Front Panel, the Show Block Diagram
option displays the block diagram associated with the current front panel.

• Show Front Panel Available from the Block Diagram, the Show Front Panel
option displays the front panel associated with the current block diagram.

• Show Project Displays the project window associated with the current VI (if any).
• Tile Left and Right Fills the screen with the front panel and block diagram side

by side.
• Tile Up and Down Fills the screen with the front panel and block diagram one

over the other.
• Full Size Expands the current window to the full screen size.

1.7.8 Help Menu

The Help menu provides access to the LabVIEW Help system.

• Show Context Help Opens a small Context Help window (see Figure 1.28),
which provides a brief description for any object that the mouse hovers over.
Most descriptions include a link to more detailed Help information.

• Search the LabVIEW Help . . . Opens the full LabVIEW Help system.

KEY TERMS Automatic Tool Selection
Automatic Tool

Selection mode
Block Diagram
Connector pane
Control
Controls Palette
Express VIs

Front Panel
Function
Functions Palette
LabVIEW
LabVIEW program
Latch
Mechanical Action

Node
Project
Setpoint
Snippet
SubVIs
Tools Palette
Virtual instrument (VI)

Figure 1.28
Context Help shows brief
descriptions and a link to
additional information.

Self-Assessment 25

LabVIEW—software for data acquisition and analysis
VI—a LabVIEW computer program
Front Panel—the graphical user interface—holds controls
Block Diagram—the graphical program—holds functions

Controls Palette
The Controls Palette contains the switches, knobs, dials, and indicators that are used
to set and display values on the front panel.

Functions Palette
The Functions Palette contains:

• Functions (pale yellow background)
• VIs (pale yellow strip across the top of the icon, or yellow border when expanded

and “.vi” in the name)
• Express VIs (a blue strip across the top of the icon, or blue border when

expanded)

S U M M A RY

1. What is LabVIEW designed to accomplish?
ANS: LabVIEW may originally have been designed to make data acquisition
with National instruments hardware easier, but LabVIEW is a full-fledged
programming language and math application in its own right.

2. The user (as opposed to the programmer) of a virtual instrument primarily
uses which part of the virtual instrument?

a. Front Panel
b. Block Diagram

ANS: The front panel is the graphical interface used by the user.

3. If you wanted to add a virtual on–off switch to a virtual instrument, the
switches would be found on which palette?

a. Functions Palette
b. Controls Palette

ANS: Switches are controls that are found on the Controls Palette and placed
on the front panel.

4. If you wanted to add a virtual on–off switch to a virtual instrument, where
would the control be placed?

a. Front Panel
b. Block Diagram

ANS: Switches are controls that are found on the Controls Palette and placed
on the front panel.

5. If you had developed a LabVIEW program that created a data set, and you
wanted to create a graph, where would the graph be placed?

a. Front Panel
b. Block Diagram

ANS: On the front panel.

S E L F - A S S E S S M E N T

LabVIEW Basics

2.1 OPENING A VI

There are two ways to open a VI for editing in LabVIEW:

• Double-click on a VI file in a file browser such as Windows Explorer or My
Computer to start LabVIEW and open the VI front panel. The VI block
diagram does not open by default, but can be opened from the front panel
using menu options: Window / Show Block Diagram.

• Start LabVIEW (Start / All Programs > / National Instruments LabVIEW)
and open the VI file for editing from the LabVIEW environment.

When you start LabVIEW, the Getting Started window is opened
(Figure 2.1). The Open panel provides a list of recently edited VIs and a
Browse . . . option to find previously created VIs on your computer. To open
one of the VIs in the recent files list, simply click on the file name in the list.

Once a VI is open for editing, the Getting Started window is hidden. You
can open additional VIs from an open VI (either front panel or block diagram)
using the menu options File / Open. You can see a list of recently edited files
using the menu options File / Recent Files.

When you open an existing VI, LabVIEW opens the front panel only.
You can open the block diagram from the front panel using the menu options
Window / Show Block Diagram.

2.2 BASIC MATH IN LABVIEW—USING FUNCTIONS

Most of this text focuses on using LabVIEW for engineering data analysis, so we
need to know how to do math in LabVIEW. Math is very straightforward in Lab-
VIEW, but it is all based on functions—there are no math operators in LabVIEW.

A LabVIEW function is a piece of program code that works as a unit.
There are many math functions in LabVIEW, including

• Basic Math Functions
• Add, Subtract, Multiply, Divide
• Increment, Decrement

O b j e c t i v e s
After reading this chapter,
you will know:

two ways to open a VI in
LabVIEW for editing
how to use LabVIEW
functions to perform basic
math operations
how to use a While Loop
to keep a VI running
continuously

what dataflow programming
is, and how it works
several of the data types
used for LabVIEW
variables, and how to
use them
how to document VIs to
make them easier to
understand
how to print and save
your VIs

2C H A P T E R

Section 2.2 Basic Math in LabVIEW—Using Functions 27

Figure 2.1
LabVIEW’s Getting Started window.

• Absolute Value
• Square, Square Root
• Reciprocal

• Trig and Hyperbolic Trig Functions
• Log and Exponential Functions
• Matrix Functions
• Optimization Functions
• Differential Equations Functions

Functions typically accept one or more values as inputs and return a result.
Because LabVIEW is a graphical programming language, the functions are

placed on the block diagram as nodes. For example, the node for the Add function is
illustrated in Figure 2.2. The Add function requires two inputs (the values to be
added) and has one output (the sum).

Figure 2.3
Subtraction VI developed as
Example 2.

28 LabVIEW Basics

+
input

output

Figure 2.2
The Add function node
showing terminals.

The nodes for math functions have terminals for inputs (required values) and
outputs (results).The function nodes are wired to control nodes and indicator nodes
to create the LabVIEW program. This is easiest to see by means of an example.

2.2.1 Example: Using a LabVIEW Math Function

In this example we will subtract one number from another. The process can be
described as subtracting the subtrahend from the minuend to compute the difference.

While these math terms are rarely used nowadays, they will work fine as labels
on the front panel as illustrated in Figure 2.3.

Minuend - Subtrahend = Difference

We need to understand the difference between controls and indicators in
LabVIEW:

• A control is used to set a value.
• An indicator is used to display a value.

Note: The term control is actually used two ways in LabVIEW.

• Control is used in a generic sense to mean any object that can be placed on the
front panel. The Controls Palette uses the term in this way.

• Control is also used in a more specific sense to indicate an object on the front
panel that is used to set a value. This is contrasted with the term indicator, which
is an object used to display a value.

We will use controls to set input values, and indicators to display results. In
Figure 2.3 the Minuend and Subtrahend boxes are controls and, when the program
is running, values can be typed into the boxes (technically, they’re called input
fields).The Difference box is an indicator that is being used to display the calculated
result. Notice in Figure 2.3 that the background of the indicator is shown in gray.
This is a visual clue to the user that they should not be typing a value into that box.
(LabVIEW will not allow a value to be typed into an indicator.)

Section 2.2 Basic Math in LabVIEW—Using Functions 29

The steps required to create the Subtraction VI include the following:

1. Create a blank VI.
On the front panel . . .

2. Add two numeric controls (input fields for Minuend and Subtrahend), and set
their properties.

3. Add one numeric indicator (Difference box), and set its properties.
4. Add two labels to show the subtraction operator and equal sign.

On the block diagram . . .
5. Add a Subtract function.
6. Wire the Subtract function to the controls and indicator:

a. The Minuend and Subtrahend output terminals to the Subtract Function inputs.
b. The Subtract Function output terminal to the input terminal on the Difference

indicator.
7. Save the VI.
8. Run and test the VI.

Step 1. Create a blank VI
To create a blank VI, use one of these two approaches:

• From the LabVIEW Getting Started window, click on the Blank VI link
shown in Figure 2.1. This causes a new, blank VI front panel and block
diagram to be displayed.

• From another VI, use the menu options File / New VI.

Either way, a new front panel and block diagram will be displayed.

Step 2. Add two numeric controls to the front panel, and set their properties
Find the Numeric Control icon (labeled “Num Ctrl” in Figure 2.4) using the
following commands:

Num Ctrl
Controls Palette / Express Group / Numeric Controls Group /

Figure 2.4
Adding two numeric controls to the front panel.

30 LabVIEW Basics

Figure 2.5
Hiding the Increment /
Decrement controls on a
Numeric Control.

Drag the icon to the front panel to create the control labeled “Numeric”
as illustrated in Figure 2.4. Repeat the process to create the control labeled
“Numeric 2”.

Note: When multiple instances of the same control are placed on the front
panel, LabVIEW automatically adds numbers to the control labels so that
each control is uniquely identified.

The numeric controls on the front panel are now fully functional, but we
will change a few of the controls’ properties to better suit our needs. Specifically,
we will

• Rename the controls to call them Minuend (instead of “Numeric”) and
Subtrahend (instead of “Numeric 2”).

• Hide the increment/decrement controls at the left side of each input field.

Renaming the controls
The control’s name is called the label. To change the text displayed in a
control’s label, you simply double-click on the label to select the label and
enter text edit mode. The label text will be highlighted (white letters on
black background). Once the text is highlighted, simply type in the desired
name for the control. The result of renaming the numeric controls is shown
in Figure 2.5.

Hiding the increment/decrement controls
The increment/decrement controls allow the value displayed in the numeric
control’s input field to be increased or decreased using the mouse. If you hide
the increment/decrement controls, the user must type a value into the input
field.

To hide the increment/decrement controls, right-click on the Minuend
numeric control, then select Visible Items from the pop-up menu. Click on
Increment / Decrement to clear the check mark indicating that the increment/
decrement controls are visible. Items that are unchecked are hidden, so clearing

Section 2.2 Basic Math in LabVIEW—Using Functions 31

the check mark in front of the Increment / Decrement menu option causes the
increment/decrement controls to be hidden (as shown in Figure 2.5).

Repeat the process to hide the increment/decrement controls on the
Subtrahend control.

• Right-click on the Subtrahend numeric control (opens the pop-up menu).
• Select Visible Items (opens the submenu).
• Click on Increment / Decrement (clears the check mark).
• Click on the gray grid on the front panel to close the menus.

Step 3. Add a numeric indicator to the front panel, and set its properties
Find the Numeric Control icon (labeled “Num Ind” in Figure 2.6) using the
following commands:

Controls Palette / Express Group / Numeric Controls Group / Num Ctrl

Figure 2.6
Add a numeric indicator
to the front panel.

Drag the icon to the front panel to create the control labeled “Numeric”
as illustrated in Figure 2.6.

The control’s label is (by default) selected (white letters on black back-
ground) right after it is placed on the front panel.

• If the label is selected, just type in the control’s new name, “Difference”.
• If the label is not selected, double-click on the label to select it, and then

type in the new name.

The front panel with all of the required controls is shown in Figure 2.7.

Step 4. Add two labels to show the subtraction operator and equal sign
To make it clear what the VI is designed to do, we want to add a subtraction
operator and an equal sign as shown in Figure 2.8.

Adding labels to the front panel (or the block diagram) is easy in
LabVIEW; just double-click where you want the label to be placed.
LabVIEW will place an empty label at that location and leave the label in
edit mode so that you can type in the text that the label should display. In
Figure 2.8 the text size in the labels containing the subtraction operator and

32 LabVIEW Basics

Figure 2.7
The front panel with all
required controls.

Figure 2.8
The front panel after adding
the subtraction operator and
equal sign labels.

Figure 2.9
The block diagram after
completing the front panel.

the equal sign has been increased. To change the displayed text size, select
the label and then press

• [Ctrl –] to decrease the text size
• [Ctrl �] to increase the text size

Note: The notation [Ctrl –] means that you must hold down the [Ctrl] key
while you press the [–] key.

Alternatively, you can change the text size using the Text Settings button
(labeled “13pt Application Font” in Figure 2.8).

The front panel is now complete, and the VI will run—but it won’t actually
calculate the difference between the values in the Minuend and Subtrahend
fields until we finish the VI by placing a Subtract function on the block diagram
and wiring the controls to the function, and the function to the indicator.

Step 5. Place a Subtract function on the block diagram
Before we make any changes, let’s take a look at what LabVIEW was doing to
the block diagram as we were adding controls and indicators to the front
panel. The block diagram created by LabVIEW is shown in Figure 2.9.

Section 2.2 Basic Math in LabVIEW—Using Functions 33

Notice that the labels that were defined on the front panel controls and
indicator are shown on the block diagram too.This makes it easy to identify each
control and indicator. Also, notice that each control has an output terminal and
the indicator has an input terminal. We will use those terminals later when we
wire up the VI.

First, we are going to rearrange the existing controls to stack the
Minuend and Subtrahend numeric controls, and place the Difference indi-
cator to the right and in between—leaving some space for the Subtract
function, which will be placed on the block diagram later. The blocks (called
nodes) representing the controls can be moved by dragging the icons with
the mouse. After rearranging the existing controls, the updated block
diagram is shown in Figure 2.10.

Note: Rearranging the blocks on the block diagram does not move the controls
on the front panel.

Next, add a Subtract function to the block diagram from the Functions
Palette using the following commands:

Functions Palette / Mathematics Group / Numeric Group / Subtract
Function

This process is illustrated in Figure 2.11.
Step 6. Wire the Subtract function to the controls and indicator
The next step is to wire the block diagram as follows:

• Connect the Minuend and Subtrahend outputs to the Subtract function
inputs.

• Connect the Subtract function output to the Difference indicator
input.

If you position the mouse over the Subtract function icon, the terminals
are displayed, as shown in Figure 2.12.

Since order matters in subtraction, we have to wire the correct input
value to each input terminal on the Subtract node. LabVIEW provides context
sensitive help, which is very useful for figuring out how the various functions
need to be wired.

Figure 2.10
The block diagram after
rearranging the controls.

34 LabVIEW Basics

Figure 2.11
Adding a Subtract function to the block diagram.

Figure 2.12
When the mouse is over the
Subtract function, the
terminals are displayed.

To activate context sensitive help, use the following menu options:

Once the Context Help window is displayed, click on the function of
interest to learn about the inputs and outputs for that function. Figure 2.13
shows the context help for the Subtract function.

Help / Show Context Help (or, press [Ctrl H])

Figure 2.13
Context Help for the
Subtract function.

Section 2.2 Basic Math in LabVIEW—Using Functions 35

From the context help, we see that the top input terminal on the left is
called “x” and the bottom input terminal on the left is called “y”. The output is
labeled “x-y”, which tells us how we need to wire the terminals.

Note: When order is important, we have to be careful to write the vari-
ables in the correct order from left to right. For example, for subtraction,
writing x-y implies that the y value is to be subtracted from the x value.
LabVIEW uses the same variable order with input terminals on math
functions, but they are arranged from top to bottom. In LabVIEW, the
bottom input value will always be subtracted from the top input value.

We want Minuend � Subtrahend � Difference, so

• The Minuend output needs to be wired to the “x” input on the Subtract
function.

• The Subtrahend output needs to be wired to the “y” input on the Subtract
function.

• The Subtract function output needs to be wired to the input on the
Difference indicator.

The wired block diagram is shown in Figure 2.14.

Figure 2.14
The wired block diagram.

The VI will now run (once), but we need it to keep running so that we can
enter values into the Minuend and Subtrahend fields. To keep the VI running,
use the Run Continuously button on the front panel. To stop the VI, use the
Abort Execution button. These buttons are indicated in Figure 2.15.

Figure 2.15
The Subtraction VI with the
Run Continuously and Abort
Execution buttons indicated.

Step 7. Save the VI
Be sure to save the VI occasionally to protect your work. To save the VI, use the
following menu commands from either the front panel or the block diagram:

File / Save

36 LabVIEW Basics

Figure 2.16
Change input values to
solve multiple problems.

Figure 2.17
Division VI.

The first time you save the VI you will have the opportunity to assign a
name and select a folder location.

Step 8. Run and test the VI
The VI is ready to run. Return to the front panel and click the Run Continu-
ously button (see Figure 2.15).

While the VI is running, the grid on the front panel is not displayed, the
Run button (now inactive) changes to an arrow with a vapor trail, and the
Abort Execution button is active as shown in Figure 2.15.

While the VI is running, you can change the values in the Minuend and
Subtrahend fields, and the difference will be displayed in the Difference field (see
Figure 2.16).You can continue to change input values as long as the VI is running,
and LabVIEW will continue to calculate and display the difference.

PRACTICE

Create the Division VI shown in Figure 2.17. What does LabVIEW do if you try to
divide by zero?

The required front panel items can be found in the following locations:

• Numeric controls (for numerator and denominator): Controls Palette / Express
Group / Numeric Controls Group / Num Ctrl

• Numeric Indicator (for result): Controls Palette / Express Group / Numeric
Indicators Group / Num Ind

• Thick Line: Controls Palette / Modern Group / Decorations Group / Thick Line

Section 2.3 Programming Preview: While Loops 37

The block diagram is wired as shown in Figure 2.18.

If you divide by zero, LabVIEW displays “Inf” (infinity) in the Result indicator.

2.3 PROGRAMMING PREVIEW: WHILE LOOPS

Most of the programming features of LabVIEW will be covered much later in the
book, but occasionally some useful programming features will be previewed. Here,
we look at an alternative to using the Run Continuously button: building a While
Loop into our LabVIEW program.

A While Loop is a programming structure that causes some program elements to
be evaluated repeatedly until some condition is satisfied. Since LabVIEW is a graphical
programming language, a While Loop looks like a container (see Figure 2.19) and the
program elements within the container are evaluated each time the While Loop cycles.

Figure 2.18
Block diagram for
Division VI.

Figure 2.19
Adding a While Loop
to the Subtraction VI.

To add a While Loop to the Subtraction VI, select a While Loop from the
Functions Palette, and then draw a box around all of the nodes on the block dia-
gram, as illustrated in Figure 2.19.

While Loops can be found in two locations on the Functions Palette:

The two options are not identical. When the While Loop from the
Express Group is used, a STOP button is automatically connected to the While

While Loop
Functions Palette / Express Group / Execution Control Group /

While Loop
Functions Palette / Programming Group / Structures Group /

38 LabVIEW Basics

Loop Condition (bottom-right corner of the While Loop). When the While Loop
from the Programming Group is used, you must wire a switch to the While
Loop Condition manually. In Figure 2.19 the While Loop from the Express
Group is used.

In this example, the While Loop causes the following actions to be performed
each time the loop cycles:

• The value of the Minuend control is evaluated.
• The value of the Subtrahend control is evaluated.
• The Minuend and Subtrahend values are subtracted.
• The Difference indicator value is updated.
• The position of the STOP button is evaluated.
• The While Loop Condition is evaluated.

By default, as long as the While Loop Condition is set to False, the loop contin-
ues to cycle. When the STOP button is clicked, the While Loop Condition is set to
True and the loop stops.

Note: The While Loop stop condition can be changed to “Continue if True”. To
change the stop condition, right-click on the While Loop Condition icon and select
“Continue if True” from the pop-up menu.

While Loops are very commonly used to create VIs in which part or all of
the VI loops until a STOP button is pressed. While it appears that the Run Con-
tinuously button does the same thing as a While Loop around the entire pro-
gram, there are subtle differences. In the next section, we will look at an example
that shows how the extra control available using a While Loop can be useful.

2.4 DATAFLOW PROGRAMMING

Sometimes you want something to happen when the While Loop ends. For exam-
ple, if you use a loop to build values into an array, you might want to wait until the
loop ends to compute the average of the values in the array. This can be accom-
plished by placing the calculations that are dependent on the loop results outside
of the loop.

The word “dependent” is the key, because LabVIEW is a dataflow pro-
gramming language. Dataflow programming means that a node (or block) on
a block diagram executes as soon as all of the inputs have values. Placing a
calculation outside of the While Loop does not guarantee that it will wait
until the loop finishes before executing; the calculation will only wait until the
While Loop has completed if the calculation is dependent on the While Loop
results.

To demonstrate this, we will add a couple of calculations outside of the While
Loop in the Subtract VI, as shown in Figure 2.20.

Note: The Extended Subtract VI shown in Figure 2.20 sends output values across
the While Loop using two tunnels (the markers on the right While Loop bound-
aries). Tunnels can have indexing enabled or disabled—in this example indexing is
disabled.

• Indexing Disabled—When the loop stops cycling, the value in the wire going
through the tunnel is available for subsequent calculations.This is how the tunnels
in Figure 2.20 are set up.

Section 2.4 Dataflow Programming 39

• Indexing Enabled—The values in the wire going through the tunnel are built into
an indexed array (one element is added to the array each time the loop cycles),
and the entire array is available for subsequent calculations after the loop stops
cycling. (Building arrays using tunnels with indexing enabled is covered in a later
chapter.)

With dataflow programming, as soon as a node (a block on the block diagram)
has values for all inputs, the programming code for that node executes.

• The Add function at the top-right corner of Figure 2.20 has all of the information
it needs as soon as the VI is run, so the result of that calculation should appear
virtually instantly after starting the VI.

• The Multiply function on the right side of Figure 2.20 depends on the results of
the While Loop, so the Multiply function will not execute until the While Loop
has stopped.

• The While Loop Done LED indicator gets its Boolean input from inside the
While Loop, so that input will not be available until the While Loop stops. As
soon as the STOP button is clicked, the While Loop will stop and a True is sent to
the LED, causing it to light up. So the LED is an indicator that the While Loop
has stopped.

When the Subtract VI is run, the “6 � 2” indicator immediately shows the calcu-
lated result (see Figure 2.21), because all inputs on the Add function were specified.

Figure 2.20
Extended Subtract VI, calculations outside While Loop.

Figure 2.21
Front panel immediately after starting the Subtract VI.

40 LabVIEW Basics

Figure 2.22
Front panel while the While Loop is running.

Figure 2.23
Front panel after stopping
the While Loop.

The While Loop is running and the inputs to the While Loop Done LED and Multiply
function have not been assigned values.

When the user changes the Minuend and/or Subtrahend values, the calcula-
tions inside the While Loop are performed (see Figure 2.22), but no values are sent
out of the While Loop until the loop stops.

When the user clicks the STOP button, the While Loop stops, and the results
from inside the While Loop flow to the Multiply function and the LED outside the
loop. The “Diff x 10” indicator receives a value, and the “While Loop Done” LED
lights up, as shown in Figure 2.23. Then, since there are no other nodes to evaluate,
the VI terminates.

This example has illustrated how LabVIEW decides when to perform various
calculations (when all of the inputs are specified). Dataflow programming is very
convenient, and most people are (possibly unknowingly) familiar with it from using
spreadsheet programs, but it may still take a little practice to become comfortable
with its use.

2.5 DATA TYPES AND CONVERSIONS

You cannot work with LabVIEW for very long without learning about data types
because the functions and controls in LabVIEW require data in certain forms.

So far we have actually used two data types:

• DBL—double-precision real values
• TF—True/False or Boolean values

You can see how LabVIEW indicates data type by looking at the block dia-
gram for the Subtraction VI, shown in Figure 2.24.

Section 2.5 Data Types and Conversions 41

What you cannot tell in the figures in this text is that LabVIEW uses color
coding to indicate data type. The most commonly used data types in LabVIEW are
listed in Table 2.1.

Figure 2.24
The required data type is
indicated on the control
blocks.

Table 2.1 Common LabVIEW data types

Symbol Data type Color Range Default value Comment

-1DBL Double-precision
floating point
numeric

Orange 4.94e–324 to
1.79e+308

0.0 Default data type for floating
point numeric values

I32 32-bit signed
integer numeric

Blue –2,147,483,648 to
2,147,483,647

0 Default data type for integer
numeric values

TF Boolean Green True or False False

[DBL] Matrix of double-
precision numbers

Brackets indicate array or
matrix. Color indicates data
type of matrix elements. Wires
carrying matrices are displayed
with thick lines.

abc String Magenta Empty string
Path Gray Empty path Holds a file path
128-bit (64.64)
Time stamp

Brown 01/01/1600.00:00:00
to
01/01/3001.00:00:00

12:00:00.000 AM
1/1/1904

Format is Date.Time.

Cluster Pink or Brown
(see comment)

Clusters are collections of
(potentially) multiple data types.
Clusters are shown in pink if
all elements are of the same
data type, and brown if multiple
data types are clustered.

Waveform Brown Holds the start time, time step,
and data of a waveform. Wires
carrying waveforms are
displayed with thick lines.

Table 2.1 shows only the most commonly used data types in LabVIEW. For
example, there are single- (SGL), double- (DBL), and extended-precision (EXT)
data types for floating point numbers, plus several data types for complex numbers.

42 LabVIEW Basics

Figure 2.26
A numeric control can be
connected to a numeric
indicator.

There are also 8-, 16-, 32-, and 64-bit signed integer types, plus four more unsigned
(positive only) integer data types.

If you try to wire together two different data types (not allowed), you will see
two wires from two different colored blocks coming together with an “X” in the
middle, as illustrated in Figure 2.25.

Those “X” marks indicate programming errors (called broken wires) and
they must be fixed before the VI will run. Sometimes you can change the data type
of the control or indicator. For example, you can change a control from the default
DBL (double-precision) data type to an integer data type. But you cannot change
a string data type (such as the Text String control shown in Figure 2.25) to a
numeric data type. The solution for the error indicated in Figure 2.25 is to delete
the Text String control and replace it with a Numeric Control and rewire the con-
nections (see Figure 2.26).

Figure 2.27
Front panel showing the
Numeric Control and the
Indicator Gauge.

Figure 2.25
Connecting a String (abc)
output to a Double (DBL)
input is not allowed.

The absence of an “X” in the wire in Figure 2.26 shows that there is no pro-
gramming error in that connection. The VI is ready to run and the value entered in
the Numeric Control will be displayed on the Indicator Gauge. The front panel is
shown in Figure 2.27.

Note: LabVIEW will allow you to display a digital indicator next to many of the
more graphical indicators, such as the Indicator Gauge in Figure 2.27. To show
the digital indicator, right-click on the indicator and select Visible Items / Digital
Display from the pop-up menu.

An alternative to replacing the Text String control with a Numeric Control is
to specifically convert the text string to a numeric value. One way to do this is to use
LabVIEW’s Scan Value function. The Scan Value function receives two inputs:

• The text string that should contain the number (Text String control output).
• A format string (“%#g” tells LabVIEW to use a general numeric format).

Section 2.5 Data Types and Conversions 43

The output from the Scan Value function is the numeric value (DBL data
type) read from the string. This output can be connected to the Indicator Gauge
input as shown in Figure 2.28.

While getting a numeric value from a text string using the Scan Value function
does work, in most cases it is a lot simpler just to use a Numeric control instead of a
String control.

Figure 2.28
Reading a numeric value
from a text string.

Figure 2.29
Modified front panel using
a Text String control.

The front panel associated with the block diagram shown in Figure 2.28 is
shown in Figure 2.29.

A P P L I C AT I O N
Vol tage Div ider

A voltage divider (see Figure 2.30) is a very simple DC circuit that is often used to gen-
erate a desired voltage (Vout) when another voltage (Vin) is available.With the proper
choice of resistors, Vout can be generated at any voltage between Vin and ground (0 V).

Vin

Vout

R1

R2

Figure 2.30
Voltage divider.

The math behind a voltage divider is simple:

Vout = Vin c R2

R1 + R2
d

44 LabVIEW Basics

Figure 2.31
Voltage Divider VI.

Figure 2.31 shows a VI that calculates Vout given Vin, R1, and R2.

2.6 DOCUMENTING VIS

All computer programs in any language should be well documented. Documenta-
tion is intended to indicate the purpose of the program (or program element, such
as a subVI) as well as the author of the program. LabVIEW’s graphical structure
makes the information flow more obvious than in test-based computer languages,

Figure 2.32
Voltage Divider VI used
to determine the resistances
needed to generate
8 V Vout.

This VI can be used to determine what resistances are needed to generate a
Vout of 8 V as shown in Figure 2.32. Of course, this is “a” solution, not “the” solution
since other resistor combinations could also be used.

Section 2.6 Documenting VIs 45

Compare the undocumented VI with the documented VI in Figure 2.34. Now
it’s obvious what this VI is designed to do.

Figure 2.33
Undocumented block diagram.

Figure 2.34
Documented block diagram.

The differences between Figures 2.33 and 2.34 are as follows:

• The block diagram has a title.
• Controls and indicators have been shown as icons with labels.
• Labels have been added to streams to make it clear what is being calculated.
• The CDB data type converter has been labeled to show why it is needed.

but a few comments on the block diagram can still go a long way toward making a
complex program easier to understand.

LabVIEW provides several mechanisms that make it easy to document VIs.
We begin with the simplest: labeling the block diagram and front panel.

2.6.1 Labeling VIs

As a terrible example, consider the completely undocumented VI shown in
Figure 2.33. This VI performs a very common calculation, but that wouldn’t be
obvious to most of us.

46 LabVIEW Basics

Figure 2.36
Minimally labeled front
panel.

Figure 2.37
Thoroughly labeled front
panel.

Labeling a block diagram doesn’t take much time, but it makes the VI much
easier to comprehend.To add a label to the block diagram, simply double-click in an
open area and start typing. The labels can then be moved if needed.

Similarly, the front panel should be labeled to make it clear what the user
needs to do. First, the unlabeled front panel is shown in Figure 2.35.

A few labels help a lot, as shown in Figure 2.36.

A little more information can help the user know which values are inputs and
how A, B, and C relate to the coefficients of a quadratic equation. The more thor-
oughly labeled front panel is shown in Figure 2.37. This version is over-the-top for a

VI created to solve a single problem, but this degree of labeling is appropriate if the
VI will be used routinely, especially if it will be used by someone other than the
programmer.

2.6.2 Descriptive Information

Labeling the front panel and block diagram is an important part of documenting a
VI, but another level of documentation involves providing a name and description
for every VI. LabVIEW makes this easy by providing a VI Properties item on the
File menu.

Selecting File / VI Properties opens the VI Properties dialog, shown in
Figure 2.38. There are a dozen categories of information about every VI, but we
want to use the Documentation category, shown in Figure 2.39.

In Figure 2.39 a description has been added that includes the following:

• VI Title
• Author and date

Figure 2.35
Unlabeled front panel.

Section 2.6 Documenting VIs 47

• statement of what the VI is intended to do
• information about the data type of the solutions, and why complex double

was used

Notice that parts of the description were surrounded by and ; this
will cause them to be shown in bold characters when the description is displayed.

Two fields were not used in this example:

• Help tag—used to enter an index term for a help system tied to the VI.
• Help path—you can enter a path to an HTML help file in this field. If you include

a Help path, the link to Detailed Help is included in the Context Help window.

This description is saved with the VI and is displayed in LabVIEW’s Context
Help window if the mouse is moved over the VI’s icon at the top-right corner of the
front panel and block diagram (and Context Help is active). The Context Help
window for this VI is shown in Figure 2.40. The file name and icon are shown first,
then the VI description.

Note: Use Ctrl-H or the menu options Help / Context Help to open the Context
Help window.

Figure 2.38
VI Properties dialog.

Figure 2.39
Adding a description
to the VI.

48 LabVIEW Basics

Figure 2.40
VI description shown in the
Context Help window.

Figure 2.41
The calculations used to find
the quadratic roots have
been saved as a subVI
called Quad Solve subVI.

2.6.3 Descriptions with SubVIs

A quadratic equation solver is a fairly generic piece of computer code, and it is a
good candidate for a subVI that can be used in other VIs. In Figure 2.41, the calcula-
tions required to compute the roots of the quadratic have been turned into the
Quad Solve subVI (creating subVIs is presented in a later chapter).

The description used in Figure 2.39 was also saved with the Quad Solve subVI.
Now, when the Quad Solve subVI is used on any block diagram, any time the
programmer moves the mouse over the Quad Solve icon, the Context Help window
shows the description of the subVI. This is shown in Figure 2.42.

Figure 2.42
Context Help for the Quad
Solve subVI.

Section 2.8 Saving Your Work 49

When VIs are used within other VIs, the descriptions shown in the Context
Help window are very useful.

2.7 PRINTING A VI

In a classical programming language, printing the program meant printing a listing
of the programming statements. Because LabVIEW is a graphical programming
environment, printing the program is a little different, and generally it involves
printing some combination of the following:

• the front panel
• the block diagram
• information about the controls on the block diagram
• names of any sub-VI is (none have been used in any examples yet)

If you just want a printout of the current window (either the front panel or the
block diagram), use the menu options File / Print Window . . . This approach does
not allow you to select options, but it is the quickest way to get a picture of your
block diagram or front panel to a printer.

Opening the Print dialog by selecting Print . . . from the File menu (from either
the front panel or the block diagram) gives you a lot of control over:

• what is printed
• in what format
• to what destination

For most situations the File / Print Window . . . approach is adequate. If you
need more control over printing, additional details are available in the Appendix:
Printing VIs.

2.8 SAVING YOUR WORK

LabVIEW’s File menu provides the usual Save and Save As . . . options, but also
provides Save All and Save for Previous Version . . . options.

• Save Saves the current VI (the VI from which the File / Save action was initiated).
• Save As . . . Opens the Save <VI name> As dialog (described below).
• Save All Saves all open VIs
• Save for Previous Version . . . Saves the current VI for a previous version of

LabVIEW. For example, from LabVIEW 8.5 you can save a VI that will run under
LabVIEW 8.0 or LabVIEW 8.2.

Note: It does not matter whether the File menu is accessed from the front panel or
the block diagram. When a VI is saved, both the front panel and the block diagram
are saved.

2.8.1 Using the Save <VI name> As dialog

LabVIEW’s Save As . . . dialog is a little different from the usual Windows Save
As . . . dialog because it not only allows you to save the current VI with a new name,
but also allows you to choose which version (original name or new name) will
remain open for further editing.

The Save As . . . dialog is opened using the following menu options:

File / Save As Á

50 LabVIEW Basics

Figure 2.43
LabVIEW’s Save As...
dialog.

The Save As . . . dialog includes the name of the current VI in the title bar, as
illustrated in Figure 2.43.

• A new VI (copy of original) is created, stored on the hard drive, and
made available for editing.

• The original file is no longer available for editing, but is still available on
the hard drive.

Option 1 is useful when you want to start with an existing VI and modify it for
a new application.

Option 2: Create unopened disk copy (see Figure 2.45)

Original VI

New VI

Hard Drive

Substitute Copy for Original

New VI

Figure 2.44
Save As: Substitute Copy
for Original.

Original VI

New VI

Hard Drive

Create Unopened Disk Copy

Orig. VI

Figure 2.45
Save As: Create Unopened
Disk Copy.

The Save As . . . dialog allows you to either create a copy of the current VI (with
several options) or simply rename the existing VI file. If you choose to make a copy,
you have three options for how to handle the original VI and the new (copy) VI:

Option 1: Substitute copy for original (see Figure 2.44)

Section 2.9 Closing a VI 51

• A new VI (copy of original) is created and stored on the hard drive; copy
is not opened for editing.

• The original file is still available for editing.

Option 2 is useful when you want to create periodic backups as you develop a
complex VI.

Option 3: Open additional copy (see Figure 2.46)

• A new VI (copy of original) is created, stored on the hard drive, and
made available for editing.

• The original file is still available for editing.

Option 3 is useful when you need to create a new VI that is similar to the
original VI, and will need to continue to edit both.

2.9 CLOSING A VI

You can close the window containing either the front panel or the block diagram by
using the Close button at the top-right corner of the window, or the menu options
File / Close.

• Closing the front panel automatically closes the block diagram as well.
• Closing the block diagram does not cause the front panel to close.

You can close all open LabVIEW files with File / Close All.
LabVIEW will display a warning (Figure 2.47) if you attempt to close a file

that has not been saved, and give you a chance to save the changes before closing.

Original VI

New VI

Hard Drive

Open Additional Copy

Orig. VI

New VI

Figure 2.46
Save As: Create Additional
Copy.

Figure 2.47
LabVIEW warning to save
changes before closing
a file.

This chapter introduced the basics of working with LabVIEW; there will be
many opportunities to practice in the following chapters.

52 LabVIEW Basics

KEY TERMS boolean (TF) data type
context help [ctrl H]
control
Controls Palette
data types
dataflow programming
digital indicator
double-precision (DBL)

data type

Express Group
front panel
function
Functions Palette
Getting Started

window
indicator
integer (I32) data type
LabVIEW

mechanical action
(of a switch)

Run button
Run Continuously button
string (abc) data type
terminal
tunnel
While Loop
wire

S U M M A RY
Starting LabVIEW

• Start Menu/All Programs/National Instruments LabVIEW

Getting Started window

• provides quick access to information about LabVIEW
• allows you to create a new VI or project
• allows you to open a recently used VI or project

LabVIEW Nomenclature

• VI stands for virtual instrument, a LabVIEW program
• front panel—graphical user interface
• block diagram—contains the programming elements
• a project is a collection of related program elements

Creating a VI—Basic Approach

1. create a blank VI
2. add controls and indicators to the front panel
3. wire the nodes on the block diagram
4. save the VI with a descriptive name
5. run and test the VI.

LabVIEW Palettes

• Controls Palette—controls and indicators for the front panel
• Functions Palette—functions and programming structures for the block diagram
• Tools Palette—rarely used, allows you to select tools for operating controls,

wiring, etc. Automatic tool selection eliminates the need to select tools in most
cases

Wiring Terminals
The mouse icon changes to a spool of wire when positioned over a terminal (or near
an existing wire) to indicate that wiring is possible.

• Drag the mouse from the output terminal to the input terminal (or vice versa).

Run Button Icons
The Run Button icon shows the status of the VI. The three possible status options
are shown in Figure 2.48.

Summary 53

Figure 2.48
The Run button icon
changes to indicate the
VI status.

Running a VI Continuously
A While Loop from the Express Group on the Functions Palette is often drawn
around all controls on the block diagram. When the VI is run, the While Loop will
keep the VI running until the STOP button is clicked.

Alternatively,you can also use the Run Continuously button, just to the right
of the Run button to keep the VI running.

Saving a VI
Use menu options File / Save, or File / Save As . . .

Save As . . . Options

• Substitute copy for original—when you want to start with an existing VI and
modify it for a new application.

• Create unopened disk copy—when you want to create periodic backups.
• Open additional copy—when you need to create a new VI that is similar to the

original VI, and will need to continue to edit both.

Switch Actions
To set a switch action, right-click on the switch and select Mechanical Action from
the pop-up menu.

• Switch When Pressed—toggle switches
• Switch When Released—mouse buttons, usually
• Switch Until Released—doorbell buzzer
• Latch When Pressed—like a starting pistol
• Latch When Released
• Latch Until Released—behaves like the doorbell buzzer

Printing a VI
Use menu options File / Print . . .

Closing a VI

• Closing the front panel automatically closes the block diagram as well.
• Closing the block diagram does not cause the front panel to close.

Opening a VI

• Double-click on a VI file in a file browser.
• Start LabVIEW (Start / All Programs > / National Instruments LabVIEW) and

open the VI file from the LabVIEW environment.

The VI block diagram does not open by default, but can be opened from the front
panel using the menu options Window / Show Block Diagram.

54 LabVIEW Basics

Lists of recently edited VIs are available

• On the Getting Started menu
• From the File menu: File / Recent Files

LabVIEW Math Functions (partial sample)

• Basic Math Functions
• Add, Subtract, Multiply, Divide
• Increment, Decrement
• Absolute Value
• Square, Square Root
• Reciprocal

• Trig and Hyperbolic Trig Functions
• Log and Exponential Functions
• Matrix Functions
• Optimization Functions
• Differential Equations Functions

Dataflow Programming
A node (or block) on a block diagram executes as soon as all of the inputs have
values

Data Types

Symbol Data type Color Range Default value Comment

DBL Double-precision
floating point
numeric

Orange 4.94e–324 to
1.79e1308

0.0 Default data type for
floating point numeric
values.

I32 32-bit signed
integer numeric

Blue –2,147,483,648 to
2,147,483,647

0 Default data type for
integer numeric values.

TF Boolean Green True or False False

[DBL] Matrix of double-
precision numbers

Brackets indicate array
or matrix. Color indicates
data type of matrix
elements. Wires carrying
matrices are displayed
with thick lines.

abc String Magenta Empty string

Path Gray Empty path Holds a file path.

128-bit (64.64)
Time stamp

Brown 01/01/1600.00:00:00 to
01/01/3001.00:00:00

12:00:00.000 AM
1/1/1904

Format is Date.Time.

Cluster Clusters are collections
of multiple data types.

Waveform Brown Holds the start time, time
step, and data of a waveform.
Wires carrying waveforms
are displayed with thick lines.

Self-Assessment 55

S E L F - A S S E S S M E N T

1. The Getting Started window is designed to provide quick access to useful
things. What “things” can you access from the Getting Started window?
ANS: A new (blank) VI, a new project, access to available VI templates, access
to recently edited VIs, and access to LabVIEW resource information and
examples.

2. If you wanted to place a toggle switch on the front panel, would you look in
the Controls Palette or the Functions Palette?
ANS: A toggle switch is a control, so look in the Controls Palette.

3. An LED indicator is available on the Controls Palette. Which group contains
the LED indicator?
ANS: Modern / Boolean, or Classic / Classic Boolean, or Express / LEDs

4. The mouse icon looks like a spool while wiring terminals together on the block
diagram. How do you get the mouse icon to look like a spool? (i.e., how do you
get LabVIEW into “wiring” mode?)
ANS: If Automatic Tool Selection is active, just move the mouse over a
terminal or near (but not over) a wire. Otherwise, select the Connect Wire tool
(the spool) from the Tools Palette.

5. In some of the examples in this chapter, a While Loop was placed around all
of the controls on the block diagram. What was the purpose of the While
Loop? How can you accomplish the same result without the While Loop?
ANS: The While Loop keeps the VI running until the STOP button is pressed.
This allows the controls to be changed (e.g., switches clicked multiple times)
and allows the VI’s response to changing controls to be observed.

ANS: The Run Continuously button on the front panel can also be used to
keep a VI running.

6. What are the two ways that LabVIEW provides to see a list of recently
edited VIs?
ANS: (1) On the Getting Started window, and (2) on the File menu: File /
Recent Files.

7. When numeric controls are placed on the front panel, the increment/decrement
buttons are displayed by default. How do you hide the increment/decrement
buttons?
ANS: Right-click on the control, and select Visible Items / Increment /
Decrement.

8. The Subtract function must be wired carefully to ensure that the subtraction
takes place correctly. How can you learn how the Subtract function terminals
are laid out?
ANS: When you hover the mouse over the terminals, the labels are displayed.
This helps, but using the context help is a better way. (Help / Show Context
Help, or press [Ctrl H].)

9. With dataflow programming, when is a function evaluated and the function’s
result calculated?
ANS: When all of the inputs to the function have data.

10. What data type is associated with toggle switches and LEDs?
ANS: Boolean data type.

56 LabVIEW Basics

P R O B L E M S
1. Use LabVIEW’s Square and Square Root functions to create a VI (similar to

the VI shown in Figure 2.49) that will accept a value, compute the square of the

value and the square root of the value, and display the results. What happens
when X � 0 and X < 0?

Functions Palette / Mathematics Group / Numerics Group / Square
Function
Functions Palette / Mathematics Group / Numerics Group / Square
Root Function

2. Use LabVIEW’s Natural Log and Base-10Log functions to create a VI (similar
to the VI shown in Figure 2.50) that will accept a value, compute the logarithms,
and display the results. What happens when X � 0 and X < 0?

Figure 2.49
Calculating square and
square root of a value.

Figure 2.50
Calculating natural and
base-10 logarithms.

Functions Palette / Mathematics Group / Elementary and Special
Functions Group / Exponential Functions Group / Natural Logarithm
Functions Palette / Mathematics Group / Elementary and Special
Functions Group / Exponential Functions Group / Logarithm Base 10

3. Create a VI that has four numeric controls and displays the sum of the four
values. The front panel should look something like Figure 2.51.

Figure 2.51
Adding four values.

Problems 57

Figure 2.52
Solving quadratic
equations.

a. Use several Add functions to compute the sum.

b. Use LabVIEW’s Compound Arithmetic function (only one is needed) to
compute the sum. The Compound Arithmetic function icon expands (drag
the bottom border) to accept any number of input values.

Functions Palette / Mathematics Group / Numeric Group /
Compound Arithmetic

4. Write a quadratic equation solver that will accept values for A, B, and C,
defined by

and then compute both quadratic solutions (one solution using the plus
symbol, the other using the minus symbol in the following equation).

Test your VI with the coefficients shown in Figure 2.52. When it is working,
solve the following quadratic equations:

a.

b. x2 - 1.7x - 4.8 = 0

2x2 - 2x - 4 = 0

x =
-B ; 2B2 - 4AC

2A

Ax2 + Bx + C = 0

Functions Palette / Mathematics Group / Numeric Group / Add

c. When 4AC > B2, there is a negative number inside the square root operator.
This is the case for equations such as

What does LabVIEW show as the solutions to this equation?
5. LabVIEW provides a function that converts a Boolean (True, False) value into

a 1 or 0. The function is available in the Mathematics Group:

Functions Palette / Mathematics Group / Numeric Group /
Conversion Group / Boolean to (0,1)

That function can be used to convert a switch position to a zero or one, which
makes it possible to calculate the digital value of a set of three switches (see
Figure 2.53) used to set a three-bit binary value (101 in Figure 2.53).

2 + x + 2x2 = 0

58 LabVIEW Basics

The math is simpler than the explanation:

Where A, B, and C each have values of 0 or 1 depending on whether the switch
is open or closed.

a. Create a VI similar to the front panel shown in Figure 2.53, and use it to
determine the decimal value equivalent to the following binary numbers:

a. 001 (C is off, B is off, A is on)

b. 010

c. 101
b. Modify your VI to handle four-bit binary numbers by adding another

switch.

6. The hypotenuse of a right triangle (C in Figure 2.55) can be calculated from
the lengths of the other sides as

C2 = A2 + B2

Result = C * 22 + B * 21 + A * 20

Figure 2.53
Converting binary switch
settings to a decimal value.

A

B

C

Figure 2.55
Right triangle.

Create a VI that will accept values for A and B as inputs and then calculate
and display the C value.

Test your VI with these values: A � 3, B � 4, C � 5. Then, solve the following
problems:

a. A � 3.3, B � 4.1
b. A � 7, B � 2

7. Given the lengths of each of the sides of the right triangle shown in Figure 2.56,
create a VI that calculates the sine, cosine, and tangent of angle A.

The following trigonometric definitions can be used:

tan(A) =
Opposite
Adjacent

Cos(A) =
Adjacent

Hypotenuse

Sin(A) =
Opposite

Hypotenuse

Problems 59

2.25 m

1.5 m
2.7 m

A

Figure 2.56
Right triangle with specified
side lengths.

LabVIEW Math
Functions

3.1 INTRODUCTION

In this chapter we will present LabVIEW’s math functions and show how Lab-
VIEW can be used to solve basic math problems. Most of the problems in this
chapter could be more easily solved with a calculator, but this chapter forms a
basis for more substantial calculations in later chapters.

Note: The Functions Palette contains functions, VIs, and Express VIs. In this
text we use the term function loosely, applying the term to most of the pro-
gramming elements on the Functions Palette.

We will build the controls and math functions into a While Loop on the
block diagram in order to create VIs that allow the user to change the input
values and see the calculated results. Alternatively, the Run Continuously
button can be used to keep the VI running until the STOP button is pressed.

The basic structure of several of the VIs in this chapter is shown in
Figure 3.1, and will include the following elements inside of an overall
While Loop:

• one or more controls to set the math input values
• one or more math functions (the Add function is used as an example in

Figure 3.1)
• an indicator to display the calculated result

The front panel for the Basic Math VI is shown in Figure 3.2.

Notes:

1. The dial controls have been used to illustrate one of the styles of
controls available in LabVIEW. We will vary the style of control
throughout this chapter just to show the variety available. Simple
numeric controls are probably more functional than the dials in most
cases. You can easily change the appearance of the controls on the
front panel by right-clicking on the control to be changed and select-
ing Replace from the pop-up menu. Then select the style of control
that you want to use.

O b j e c t i v e s
After reading this chapter,
you will know:

how to use LabVIEW
functions for

basic mathematics
trigonometry
exponentials and
logarithms

how to work with
LabVIEW’s Boolean and
comparison functions
several techniques for
debugging LabVIEW VIs

C H A P T E R 3

2. The box (called a Flat Frame in LabVIEW) is used to provide a visual clue to
the user that the Inputs and Result are inside of a loop that will continue until
the STOP button is pressed.

The Basic Math VI can be created with the following steps:

1. Create a blank VI. There are two ways to do this:
• From LabVIEW Getting Started window: New Panel / Blank VI
• From an open VI: File / New VI

On the front panel . . .
2. Add a Dial Numeric Control for the first input:

Controls Palette / Express Group / Numeric Controls Group / Dial
Control

Section 3.1 Introduction 61

Figure 3.1
Basic block diagram
for simple math VIs.

Figure 3.2
Front panel for Basic
Math VI.

a. Change the label from “Numeric” to “Input 1”.
b. Double-click on the dial’s maximum value and change it to 100.
c. Show a digital display next to the dial.

i. Right-click on the dial to open the pop-up menu.
ii. Select Visible Items / Digital Display.

3. Add a Dial Numeric Control for the second input:

Controls Palette / Express Group / Numeric Controls Group /
Dial Control

a. Change the label from “Numeric” to “Input 2”.
b. Double-click on the dial’s maximum value and change it to 100.
c. Show a digital display next to the dial.

i. Right-click on the dial to open the pop-up menu.
ii. Select Visible Items / Digital Display.

4. Add a Numeric Indicator for the Result:

Controls Palette / Express Group / Numeric Indicators Group /
Num Ind

a. Change the label from “Numeric” to “Result”.
5. Add a Flat Frame around the controls and indicator (indicates the controls

that will be inside the While Loop).

Controls Palette / Modern Group / Decorations Group / Flat Frame

On the block diagram . . .
6. Add the math function (the Add function has been used as an example):

Functions Palette / Mathematics Group / Numeric Group / Add
Function

7. Wire the Dial control outputs (Input 1 and Input 2) to the Add function
inputs.

8. Wire the Add function output to the Result indicator input.
9. Draw a While Loop around all of the components on the block diagram:

Functions Palette / Express Group / Execution Control Group /
While Loop

Back on the front panel . . .
10. Move the While Loop STOP button (added by LabVIEW when the While

Loop was added to the block diagram) near the bottom-right corner of the
Flat Frame.

3.2 BASIC MATH FUNCTIONS

LabVIEW mathematics functions are accessed via the block diagram and the Functions
Palette.

Notes:

1. When you create a blank VI both the front panel and block diagram are
displayed. But when you open an existing VI only the front panel is displayed.To
open the block diagram, use the menu options Window / Show Block Diagram.

62 LabVIEW Math Functions

Section 3.2 Basic Math Functions 63

2. When the block diagram is displayed, the Functions Palette is normally
displayed as well—but the palette can be closed. If the palette has been closed,
you can open it with the following menu options (from the block diagram):
View / Functions Palette.

The mathematics functions that we will use in this chapter are all in the Function
Palette’s Mathematics Group, shown in Figure 3.3.

Figure 3.3
The Functions Palette with
the Mathematics Group
expanded.

We begin with the very basic math functions, which are in the Numeric Group
within the Mathematics Group, as shown in Figure 3.4.

Figure 3.4
The Numeric Group (inside
the Mathematics Group on
the Functions Palette).

E X A M P L E 3 . 1

64 LabVIEW Math Functions

Table 3.1 Basic math
functions

Function

Add
Subtract
Multiply
Divide
Quotient and Remainder
Increment
Decrement
Absolute Value
Round to Nearest
Round Towards Infinity+
Round Towards Infinity-
Square Root
Square
Negate
Reciprocal
Numeric Constant
Random Number

Adding Two Numbers

We’ll start simple and determine the results of the addition problem: 6.13 � 4.78
The Basic Math VI was set up using LabVIEW’s Add function, so these

problems can be solved with the Basic Math VI without changes. The result is
shown in Figure 3.5.

Figure 3.5
Using the Basic Math VI
to add two numbers.

3.2.1 Basic Math Functions

LabVIEW provides the basic math functions in the Numeric Group:

Functions Palette / Mathematics Group / Numeric Group

The commonly used basic math functions are listed in Table 3.1.
Additionally, LabVIEW provides a number of predefined constants, including

• π
• e (base of natural logarithm)
• h (Planck’s constant)
• c (speed of light in a vacuum)
• G (gravitational constant)
• R (molar gas constant)

We will demonstrate the use of some of these in the examples in this chapter.

It is nearly impossible to enter exactly 6.13 and 4.78 using the dial controls
(but they are great for setting approximate values); typing directly into the input
fields is a much more efficient way to set the input values.

E X A M P L E 3 . 2

Section 3.2 Basic Math Functions 65

Div id ing Two Numbers

Find the result of dividing 144 by 12.
The result (12) is probably obvious, but solving a problem with a known

answer is a great way to test a VI.
To modify the Basic Math VI to divide two numbers, we need to replace

the Add function with the Divide function. LabVIEW makes this easy. Start with
the block diagram and right-click on the Add function to open the pop-up menu
(see Figure 3.6). Select Replace / Numeric Palette / Divide function as illustrated
in Figure 3.6. The result is shown in Figure 3.7.

Figure 3.6
Replacing the Add function
with the Divide function.

Since order matters in division, we can use the Context Help system to see how
the Divide function should be wired.

1. Show context help with block diagram menu options: Help / Show ContextHelp.
2. Click on the Divide function to see context help for that function (shown in

Figure 3.8).

Figure 3.7
The block diagram modified
to handle division.

A P P L I C AT I O N

66 LabVIEW Math Functions

From Figure 3.8 we see that the top input on the left side of the Divide function is
the numerator, and the bottom input is the denominator.To make this clear to the user,
we have renamed “Input 1” to “Numerator” and “Input 2” is now “Denominator”.

The result of the division is shown in Figure 3.9. The dial controls have been
replaced by Pointer Slide controls.

Body Mass Index Calcu lator

Adding and dividing a couple of numbers is a little boring, so let’s create a VI that uses
simple math to compute a number that people actually care about: their Body Mass
Index, or BMI. With obesity on the rise, the BMI is an increasingly useful number.

Figure 3.8
Context help for the Divide
function.

Figure 3.9
Solving the division
problem.

Section 3.2 Basic Math Functions 67

A BMI is used to tell people if they are:

• Underweight (BMI < 18.5)
• Normal weight (BMI � 18.5–25)
• Overweight (BMI � 25–30)
• Obese (BMI > 30)

The formulas for BMI are very simple:

The “4.88” is effectively a unit converter.
We’ll create a VI that will allow people to enter their height in feet and inches and
their weight in pounds, and then calculate their BMI and report the results. The
front panel is shown in Figure 3.10 and the block diagram in Figure 3.11.

 English Units: BMI =
weight (lb)

(height (ft))2 * 4.88

 Metric Units: BMI =
weight (kg)

(height (m))2

Figure 3.10
Body Mass Index VI,
front panel.

Figure 3.11
Body Mass Index VI,
block diagram.

E X A M P L E 3 . 3

68 LabVIEW Math Functions

Calcu lat ing In teger Mul t ip les of π

Find the values of π, 2π, 3π, and 4π.
The intent of this example is to learn to work with integer values and LabVIEW’s

predefined constant for π.
For this example, we will use a control to set the multiplier, but we will use a

LabVIEW constant to set the value of π.

1. Create a blank VI.
On the front panel (see Figure 3.12) . . .

Figure 3.12
Front panel for the Integer
Multiples of Pi VI.

The vertical pointer scale has the scale set to range from 10 to 40. The scale
markers and text labels are lines and labels placed in the correct spots on the front
panel. When you are editing the front panel, you can drag the scale pointer with the
mouse and the value is reported on the indicator, so it is easy to locate the lines at
BMI values of 18.5, 25, and 30.

2. Add a Knob Numeric Control:

Controls Palette / Express Group / Numeric Controls Group / Knob
Control

a. Change the label to “Multiplier”. (Double-click on the “Knob” label and
change to “Multiplier”.)

b. Change the maximum value to “4”. (Double-click on the maximum value,
then enter the new value.)

c. Change the data type to 32-bit Integer:

i. Right-click on the Knob control (opens the pop-up menu).
ii. Select: Representation / I32.

Note: Changing the control’s data type to integer will restrict the values that
can be selected (by turning the knob) to integer values.

3. Add a Meter Numeric Indicator:

Controls Palette / Express Group / Numeric Indicators Group / Meter
Indicator

Section 3.2 Basic Math Functions 69

a. Change the label to “Result”. (Double-click on the “Meter” label and
change to “Result”.)

b. Change the maximum value to “20”. (Double-click on the maximum value,
then enter the new value.)

c. Make the Digital Display visible. (Right-click on the meter indicator, select
Visible Items / Digital Display from the pop-up menu.)

On the block diagram (see Figure 3.13) . . .

Figure 3.13
Wired block diagram for
Integer Multiples of Pi VI.

4. Add the π constant using the following commands:

Functions Palette / Mathematics Group / Numeric Group / Math &
Sci. Constants / π

5. Add the Multiply function using the following commands:

Functions Palette / Mathematics Group / Numeric Group / Multiply
Function

6. Wire the block diagram as shown in Figure 3.13.
7. Add a While Loop around the control, constant, and indicator:

Functions Palette / Express Group / Execution Control Group /
While Loop

Now, when the VI is running (see Figure 3.14), turning the Multiplier knob
causes the control to output values 0, 1, 2, 3, and 4.These integer values are multiplied
by the value of π (from LabVIEW), and the result is displayed by the Result indicator.

Figure 3.14
Solving for 2π.

70 LabVIEW Math Functions

3.2.2 Less Commonly Used Numeric Functions

In this section we will take a look at two less commonly used functions:

• Quotient and Remainder function
• Random Number function
• Formula function

We will build the Quotient and Remainder function into a VI to investigate
how this function works, and to present an efficient way to create a VI for math
functions. Then we’ll look at an example that uses the Random Number function to
simulate rolling dice. Finally, we will use LabVIEW’s Formula function, which is a
very flexible function that operates much like a scientific calculator.

Quotient and Remainder Function
The Quotient and Remainder function is an interesting function that receives two
inputs (numerator and denominator) and returns two results:

• the integer number of times that denominator can divide into numerator (integer
quotient)

• the remainder of that division

To test this function the block diagram shown in Figure 3.15 was created.

Note: The “floor” used as floor(x/y) in Figure 3.15 is a mathematical operation that
returns the integer smaller than or equal to the result of (x/y). For example, 26/5 � 5.2
so floor(26/5) � 5. This is also called the integer quotient.

Figure 3.15
Block diagram of Quotient
and Remainder VI.

This VI was created almost entirely from the block diagram, which can save a
lot of steps for VIs designed to solve math problems. To create the Quotient and
Remainder VI, use the following steps:

1. Create a blank VI.
2. Add the Quotient and Remainder function to the block diagram:

Functions Palette / Mathematics Group / Numeric Group / Quotient
and Remainder Function

3. Add needed controls and indicators; label and wire them.

The Quotient and Remainder function has two inputs and two outputs. If you
right-click on an input or an output, a pop-up menu will be displayed, and one of the
menu options is Create / Control (for an input) or Create / Indicator (for an output).
By right-clicking on each input and output on the Quotient and Remainder function

Section 3.2 Basic Math Functions 71

block, you can quickly add the needed controls and indicators to the block diagram—
and they will automatically be:

• the correct data type
• labeled as shown in Figure 3.16
• wired to the function

The labels on the outputs seemed a little vague, so all of the labels were modi-
fied to add more descriptive names:

• “x” became “Numerator: x”
• “y” became “Denominator: y”
• “x-y*floor(x/y)” became “Remainder: x-y*floor(x/y)”
• “floor(x/y)” became “Integer Quotient: floor(x/y)”

At this point the VI is complete and will run. For appearance, the controls on
the front panel may need to be rearranged a little.

Note: The VI will solve for the integer quotient and remainder only once, because
the controls were not built into a While Loop to keep the VI running. The While
Loop has been omitted here to demonstrate that you can solve problems in Lab-
VIEW without the While Loop—you just have to remember to run the VI after
entering all of the input values (or use the Run Continuously button).

In Figure 3.17, the value 26 was divided by 5.We expect that the integer quotient
will be 5 with a remainder of 1, and that is the LabVIEW result.

Figure 3.16
Block diagram showing
default labeling.

Figure 3.17
Using the Quotient and
Remainder VI.

Random Number Function
The icon for LabVIEW’s Random Number function looks like a pair of dice (see
Figure 3.18), but it does not return an integer between 1 and 6. Instead it returns a

72 LabVIEW Math Functions

double-precision floating point value greater than or equal to 0 and less than 1. The
distribution of returned values is uniform (all values in the range are equally likely
to occur).

To simulate rolling a die (one of a pair of dice), we need to

• multiply the random number by 6 (values will range from 0.00 to 5.99)
• round down to the next lower integer (values will range from 0 to 5)—this

requires the Round Towards – Infinity function:

Functions Palette / Mathematics Group / Numeric Group / Round
Towards – Infinity function

• add 1 (values will range from 1 to 6)

A block diagram that accomplishes this task is shown in Figure 3.18.
The front panel is shown in Figure 3.19.

Each time the VI is run, a value between 1 and 6 is displayed in the Result
indicator.

Once you have written a VI, you can use that VI on the block diagram of
another VI. For example, the VI in Figure 3.20 calls the Roll One Die.vi three times
to simulate rolling three dice.

Figure 3.18
Block diagram for simulated
roll of one die.

Figure 3.19
Simulated Die Roll VI.

Figure 3.20
A VI simulating rolling
three dice.

Formula Express VI
LabVIEW provides an interesting Express VI, called the Formula Express VI, that
provides a lot of problem-solving power.

Section 3.2 Basic Math Functions 73

The Formula Express VI functions, in many ways, like a scientific calculator. It
is located in the Script and Formulas Group:

Functions Palette / Mathematics Group / Script and Formulas Group /
Formula

When you move the Formula Express VI to a block diagram, the icon for the
Formula (see Figure 3.21) is displayed on the block diagram, and the Configure
Formula dialog (Figure 3.22) is opened.

Express VI—an Express VI is a more sophisticated VI that can be configured
using a dialog box.The dialog box automatically opens when the Express VI is
placed on the block diagram. Double-click the VI’s icon to re-open the dialog
when needed. Express VIs appear on the Functions Palette with a blue strip
across the top of the icon (or blue border when expanded).

Figure 3.21
Icon for Formula Express VI.

Figure 3.22
Configure Formula dialog.

74 LabVIEW Math Functions

Your formula can accept up to eight inputs, and you can build those input val-
ues into a formula that can include a wide range of mathematical functions. In this
example, three inputs (X1, X2, and X3) have been used to build the formula

X1 � 3 * X2 � 5 * sqrt(X3)

Clicking OK closes the Configure Formula dialog, and the Formula icon on
the block diagram is modified to reflect the actual number of inputs as shown in
Figure 3.23.The necessary controls and indicator have been created in the block dia-
gram to allow values for X1, X2, and X3 to be set, and to display the computed
result.

Figure 3.23
Block diagram for solving
a formula (incomplete).

Figure 3.24
Using the Formula Express
VI in Formula Solver VI.

When the VI is run, the solution to 2 + 3 * 4 - 5 * sqrt(6) is found to be 1.753,
as shown in Figure 3.24.

3.3 TRIGONOMETRIC AND HYPERBOLIC TRIGONOMETRIC FUNCTIONS

LabVIEW provides a wide range of trigonometric functions:

• Trigonometric functions
• Inverse Trigonometric functions
• Hyperbolic Trigonometric functions
• Inverse Hyperbolic Trigonometric functions

E X A M P L E 3 . 4

Section 3.3 Trigonometric and Hyperbolic Trigonometric Functions 75

The functions are available in the following groups on the Functions Palette:

• Functions Palette/Mathematics Group/Elementary & Special Functions Group/
Trigonometric Functions Group

• Functions Palette/Mathematics Group/Elementary & Special Functions Group/
Hyperbolic Functions Group

These functions are also available in the Express Group:

• Functions Palette/Express Group/Arithmetic & Comparison Group/Express
Math Group/Express Trigonometric Functions

• Functions Palette/Express Group/Arithmetic & Comparison Group/Express
Math Group/Express Hyperbolic Functions

The available functions are listed in Table 3.2.
All angles in these functions are in radians. The use of the functions is demon-

strated in the following examples.

Table 3.2 LabVIEW Trigonometric Functions

Trigonometric Functions Hyperbolic Trigonometric Functions

Sine Hyperbolic Sine
Inverse Sine Inverse Hyperbolic Sine

Cosine Hyperbolic Cosine

Inverse Cosine Inverse Hyperbolic Cosine

Sine & Cosine

Tangent Hyperbolic Tangent

Inverse Tangent Inverse Hyperbolic Tangent

Inverse Tangent (2 Input)
Secant Hyperbolic Secant

Inverse Secant Inverse Hyperbolic Secant

Cosecant Hyperbolic Cosecant

Inverse Cosecant Inverse Hyperbolic Cosecant

Cotangent Hyperbolic Cotangent

Inverse Cotangent Inverse Hyperbolic Cotangent

Sinc

Bui ld a VI that Conver ts Degrees to Radians

Because LabVIEW angles are always in radians, having a VI that converts degrees
to radians might be handy. The relationship between degrees and radians is

360 degrees � 2π radians

so

A block diagram that performs this conversion is shown in Figure 3.25,
and the corresponding front panel is shown in Figure 3.26.

Angle in radians = Angle in degrees # 2p radians
360 degrees

E X A M P L E 3 . 5

76 LabVIEW Math Functions

Figure 3.25
Block diagram for
Deg2Rad VI.

Figure 3.26
Front panel for
Deg2Rad VI.

Figure 3.27
Block diagram for taking
a cosine.

Figure 3.28
Finding the cosine of 45°.

F ind the Cos ine of 45° .

The cosine of 45° should be 0.7071; we will see if we get that value using LabVIEW’s
Cosine function.

LabVIEW’s Cosine function requires that the angle be specified in radians,
but from the previous example we know that 45° � 0.7854 radians (see Figure 3.26).

The block diagram using LabVIEW’s cosine function is shown in Figure 3.27.The
calculated result is shown in Figure 3.28, and is indeed the expected value of 0.7071.

We can combine the block diagram elements from examples 4 and 5 to create
a VI that accepts an angle in degrees and returns the cosine. The block diagram is
shown in Figure 3.29 and front panel in Figure 3.30.

E X A M P L E 3 . 6

Section 3.3 Trigonometric and Hyperbolic Trigonometric Functions 77

3.4 EXPONENTIAL AND LOGARITHM FUNCTIONS

LabVIEW provides the exponential functions and logarithm functions listed in Table 3.3.

Figure 3.29
Converting angle in degrees
to radians before taking the
cosine.

Figure 3.30
Front panel: Converting
degrees to radians before
taking cosine.

Table 3.3 Exponential and Logarithm Functions

Function name

Exponential exp(x)
Exponential (Arg) � 1 exp(x) � 1
Natural Logarithm ln(x)
Natural Logarithm (Arg �1) ln(x � 1)
Logarithm Base 2 log2(x)

Logarithm Base 10 log10(x)

Logarithm Base X logX(x)

Power Of 2 2x

Power Of 10 10x

Power Of X Xx

Y-th Root of X y
2X

F i rs t -Order Response

A first-order response is described by the equation

where

yorig is the initial (original) value of y at time t � 0
yult is the ultimate value of y at time t �

is the time constantt

q

y(t) = (yult - yorig)[1 - e
- t
t]

78 LabVIEW Math Functions

Figure 3.31
Block diagram for First
Order VI.

Figure 3.32
Front panel for First
Order VI.

Create a VI that will solve for the value of y for a specified time, given

yorig � 0

yult � 100

� 10 minutes

Our equation becomes

The block diagram and front panel of the First Order VI are shown in Figure 3.31 and
Figure 3.32, respectively.

y = (100 - 0)[1 - e
- t
10]

t

The result indicates that after 30 minutes, the value of y will be 95. This result
will not surprise a lot of engineers because it is fairly common knowledge that a
first-order process will be 95% of the way to the ultimate value after a time
period equal to three time constants. Three time constants equals 30 minutes in this
example, and the value of y is changing from 0 to 100. In this example, after a time
period of 30 minutes we would expect y to equal 95.

The block diagram is fairly complicated,so it might help to look at it piece by piece:

t

-t

uses Negate function
-t

t

e
-t

t

[1 - e
- t
t]

(yult - yorig)

(yult - yorig) # [1 - e
- t
t]

80 LabVIEW Math Functions

You should also add comments to the block diagram to help people under-
stand what is being calculated, as illustrated in Figure 3.33. To add a comment to the
block diagram, double-click on the background area. LabVIEW will insert a text
field and leave it in edit mode so that you can enter the desired text. Click outside
the comment area to finish entering text.

Figure 3.33
Block diagram for First
Order VI with added
comments.

3.5 BOOLEAN AND COMPARISON FUNCTIONS

Some fields within engineering rarely use the Boolean functions and comparison
functions, but others use them frequently. Boolean and comparison functions are
both used for making decisions, but there is a difference in the expected data type of
the inputs to each type of function:

• Boolean functions take Boolean values (TRUE, FALSE) as inputs and return
Boolean outputs.

• Comparison functions take numeric values as inputs and return Boolean
outputs.

LabVIEW provides access to the following Boolean and comparison functions
in two locations: in both the Programming and Express groups:

• Functions Palette/Programming Group/Boolean Group
• Functions Palette/Programming Group/Comparison Group
• Functions Palette/Express Group/Arithmetic & Comparison Group/Express

Boolean Group
• Functions Palette/Express Group/Arithmetic & Comparison Group/Express

Comparison Group

LabVIEW’s Boolean functions are listed in Table 3.4, and the comparison
functions are listed in Table 3.5.

E X A M P L E 3 . 7

Section 3.5 Boolean and Comparison Functions 81

Table 3.4 Boolean functions

Function Comment

And AND
Boolean To (0,1) Converts FALSE, TRUE to 0, 1 and TF data type to 116
Compound Arithmetic Performs certain math operations (Add, Multiply, AND, OR,

or XOR) on more than two values
Exclusive Or XOR
False Constant Returns FALSE
Not And NAND
Not Exclusive Or NOT XOR
Not Or NOR
Not NOT
Or OR
True Constant Returns TRUE

Table 3.5 Comparison functions

Function Comment (from LabVIEW help system)

Equal To 0? 0� Returns TRUE if x is equal to 0. Otherwise, this function returns FALSE.

Equal? � Returns TRUE if x is equal to y. Otherwise, this function returns FALSE.

Greater Or
Equal To 0?

0» Returns TRUE if x is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Or Equal? » Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE.

Greater Than 0? 0> Returns TRUE if x is greater than 0. Otherwise, this function returns FALSE.

Greater? > Returns TRUE if x is greater than y. Otherwise, this function returns FALSE.

Less Or Equal To 0? 0◊ Returns TRUE if x is less than or equal to 0. Otherwise, this function returns FALSE.

Less Or Equal? ◊ Returns TRUE if x is less than or equal to y. Otherwise, this function returns FALSE.

Less Than 0? 0< Returns TRUE if x is less than 0. Otherwise, this function returns FALSE.

Less? < Returns TRUE if x is less than y. Otherwise, this function returns FALSE.

Max & Min Compares x and y and returns the larger value at the top output terminal and the smaller
value at the bottom output terminal. This function accepts time stamp values if all inputs are
time stamp values. If the inputs are time stamp values, the function returns the later time at
the top and the earlier time at the bottom. The wire is broken if the inputs are not the same
data type.

Not Equal To 0? 0� Returns TRUE if x is not equal to 0. Otherwise, this function returns FALSE.
Not Equal? � Returns TRUE if x is not equal to y. Otherwise, this function returns FALSE.
Select Returns the value wired to the t input or f input, depending on the value of s. If s is TRUE, this

function returns the value wired to t. If s is FALSE, this function returns the value wired to f.

Check S tatus of Safe ty In ter lock Swi tches
before Ac t ivat ing Machinery

One example of the use of Boolean functions is checking the status of two safety
switches that both must be in the ON position before a piece of machinery can
be started. In this example, if either switch A or switch B is in the OFF position

82 LabVIEW Math Functions

Figure 3.34
Safety Interlock: Equipment
will not start unless both
switches are ON.

Figure 3.35
When both switches are
ON, it is OK to start
equipment.

The block diagram for this VI is shown in Figure 3.36.

Figure 3.36
Block diagram for the safety
interlock (uses an AND
function).

(as in Figure 3.34), then the equipment cannot be started. But, if switch A and
switch B are both ON (as in Figure 3.35), an LED indicator will be illuminated
indicating that it is OK to start the equipment.

Section 3.5 Boolean and Comparison Functions 83

PRACTICE

Using Boolean values

LabVIEW provides a Select function that will perform one of two actions depending
on Boolean value. The function is available in either of two groups on the Functions
Palette:

Functions Palette / Express Group / Arithmetic & Comparison Group /
Express Comparison Group / Select
Functions Palette / Programming Group / Comparison Group / Select

For practice using the Select function, create a VI that will display either the
natural logarithm of a value, or the base 10 logarithm depending on the position of
a toggle switch. The front panel is shown in Figure 3.37.

Solution

The block diagram for this problem is shown in Figure 3.38. Notice that both log-
arithms are calculated, the Select function is used to determine which value is
displayed. The toggle switch sends a Boolean value into the Select function.

Figure 3.37
Front panel of a VI that
allows the user to select type
of logarithm.

Figure 3.38
Block diagram of a VI that
allows the user to select type
of logarithm.

• When the switch sends a True, the upper path of the Select function is used and
the natural logarithm is passed to the Result indicator.

• When the switch sends a False, the lower path of the Select function is used and
the base 10 logarithm is passed to the Result indicator.

A P P L I C AT I O N

84 LabVIEW Math Functions

The block diagram is shown without annotations in Figure 3.42 for those who
like to figure things out on their own, and with annotations in Figure 3.43.

To determine how much gasoline is left in the tank, someone will lower a
measuring rod into the tank and see how much of the rod comes out wet; this is the
liquid level, LL. Measuring the liquid level is easy, but determining the liquid
volume is not quite so simple. If this is a task that needs to be done routinely, you
can write a LabVIEW VI to easily compute liquid volume from liquid level. The
front panel is shown in Figure 3.40.

R = 2.5 m

L = 15 m
Figure 3.39
Underground storage tank.

Volume in a cy l indr i ca l tank

Gasoline is often stored in underground cylindrical tanks (see Figure 3.39).

The math involved is reasonably straightforward. With variables defined as
shown in Figure 3.41, the equation for liquid volume is

where

u = 2 Acos ¢R - LL
R

≤

V =
1
2

 LR2[u - sin(u)]

Figure 3.40
Front panel of a VI to
compute liquid volume
in a cylindrical tank.

LL

R q

Figure 3.41
Variables used to determine
liquid volume.

A P P L I C AT I O N

Section 3.5 Boolean and Comparison Functions 85

Figure 3.43
Cylindrical tank volume
block diagram, annotated.

Figure 3.44
When level is below 80%
the pump stays on.

Figure 3.42
Cylindrical tank volume
block diagram, without
annotations.

Using compar ison func t ions to check tank s tatus

An overflowing tank can be an environmental disaster. In this example comparison
functions and Boolean functions are used to deactivate a tank fill pump when the
liquid level in a tank exceeds a specified Alarm Level. Figures 3.44 and 3.45
illustrate how the front panel looks before and after the High Level Warning.

86 LabVIEW Math Functions

Figure 3.46
The block diagram for the
high level warning system.

Figure 3.45
When level rises above 80%
the high level warning shuts
down the pump.

The block diagram for this VI is shown in Figure 3.46.
In Figure 3.46 the Greater Than comparison function tests to see if the actual

tank level is greater than the alarm level. If it is, a TRUE is sent to the High Level
Warning LED, illuminating that LED.

The NOT in the Boolean wire downstream of the Greater Than turns any TRUE
generated by the Greater Than into a FALSE. The AND will send a TRUE to the
Pump On When Lit LED (and, presumably, power to the pump) only when the pump
power switch is on AND the actual tank level is NOT greater than the alarm level.

The goal of this chapter was to introduce some of the commonly used Lab-
VIEW functions and show how they can be combined into VIs.There are many, many
more functions available than have been covered here. LabVIEW’s help system can
assist you in becoming familiar with the functions that you might need in the future.

Section 3.6 Programming Preview: Debugging 87

3.6 PROGRAMMING PREVIEW: DEBUGGING

LabVIEW’s graphical programs mean that the process of debugging will be highly
visual as well. While that makes things easier, LabVIEW is such a different
approach to programming for most new users, it is not difficult to generate errors
that can occasionally be hard to find and fix

LabVIEW provides several tools to help get your VIs running, and running
correctly.

• Broken wires—an early warning that something is not working correctly
• Broken Run Button—indicates that the VI will not run, but if you click the broken

Run button you will see a list of error messages
• Execution Highlighting—you can watch the flow of information through your

block diagram
• Single-Step Execution—you can run the VI step by step to see where something

goes wrong
• Probe Tool—you can test to see what any wire contains
• Breakpoints—you can set a breakpoint to stop the program at a point of interest

3.6.1 Fixing Broken Wires

The first error checking is done at the point of wiring the nodes on the block diagram.
If a connection is not allowed, LabVIEW will show a broken wire. Broken wires must
be fixed before the VI will run.

If you move your mouse over the broken wire, LabVIEW will display a message
indicating the problem with the attempted connection.This is illustrated in Figure 3.47.

The most common problem with broken wires is mismatched data types.There
are two solutions:

• Determine why the data type is mismatched and change the incorrect item.
• Convert from one data type to another.

The latter approach often seems reasonable to people new to LabVIEW; it
usually leads to trouble eventually. Unless you know why you need to use a data
type conversion function, it’s probably a good idea to try to fix the problem
instead.

3.6.2 Using the Broken Run Button

The broken Run button, shown in Figure 3.48 is an indicator that the VI will
not run in its current form. You commonly see the broken Run button when
you are in the process of wiring the VI. When that last connection is made and
the broken Run button goes away, you have a lot of hope that the VI will run
successfully.

Figure 3.47
Error messages about
broken wires appear when
you move the mouse over
the break.

88 LabVIEW Math Functions

Figure 3.49
The Error List is displayed
when the broken Run button
is clicked.

But the broken Run button does even more than tell you there’s a problem. If
you click the broken Run button LabVIEW will display the Error List, as shown in
Figure 3.49.

Figure 3.48
The Broken Run Button
indicates a problem with
the VI.

The Error List describes each error and, if you click the Show Error button,
will highlight the problem on the VI itself.

3.6.3 Execution Highlighting

LabVIEW is a dataflow programming language. Dataflow programming means
that a node (or block) on a block diagram executes as soon as all of the inputs
have values. Sometimes seemingly odd results happen because LabVIEW is per-
forming calculations in a different order than you expected. You can use
execution highlighting to determine the order in which tasks are carried out in
your LabVIEW programs.

Section 3.6 Programming Preview: Debugging 89

To highlight execution (from the block diagram):

1. Click the Highlight Execution button (looks like a lightbulb).
2. Click the Run button.

The VI will slowly execute, and LabVIEW will display the progress on the block
diagram by showing the wires containing calculated data values in full color instead of
being grayed out. In Figure 3.50 the Tank High Warning VI is about halfway through.
Notice that the Level and Alarm controls show values. That indicates that they have
already been evaluated. The Boolean controls (e.g., Pump Power switch) show “F”
when they evaluate False.

Figure 3.50
The Tank High Warning VI,
running with highlighted
execution.

Execution highlighting is kind of fun to watch once in a while, but it can also
be very useful in determining how the VI is actually calculating.

3.6.4 Single-Step Execution

Sometimes you need to slow down the execution even further, and you can execute
the VI step by step using the Step Into and Step Over buttons on the block dia-
gram’s toolbar.

• Step Into—Follow the progress into Loop structures.
• Step Over—Follow the progress but skip over Loop structures.

With single-step execution you can pinpoint where a problem is occurring.

3.6.5 Probes

You can use the Probe Tool to determine the contents of any wire while the VI is
running (either at full speed, or with execution highlighting on to slow the speed of
execution) or before running the VI.

To set up a probe on a wire before the VI is running, display the Tools Palette
(View/ Tools Palette) and select the Probe Tool. Then, click on the wire that you

90 LabVIEW Math Functions

want to probe. In Figure 3.51 the probe is being placed on the wire leaving the
Alarm Level control.

Once the probe is in place, when the VI is running, the value in the probed
wire is displayed. This is illustrated in Figure 3.52.

3.6.6 Breakpoints

A breakpoint is a location in a program where the program execution is tem-
porarily halted. This gives the programmer a chance to probe around to see
what’s happening.

• If a program is crashing, breakpoints can be used to see what is happening just
before the VI crashes.

• If a program is calculating strange values, breakpoints can be used to follow the
progress of the program to see where things go awry.

To set a breakpoint, right-click on a node or wire in the block diagram, and
select Set Breakpoint from the pop-up menu. In Figure 3.53 a breakpoint was set
just downstream of the Greater Than function.

When the VI executes, execution will stop at the breakpoint, but the wires will
still have values so you can use the probe tool to see what’s happening.

To clear the breakpoint, right-click on a breakpoint, and select Clear Breakpoint
from the pop-up menu.

Debugging any program is a chore, but LabVIEW provides the tools to let you
know what’s going on inside the program, and that is a big help.

Figure 3.51
Placing a probe on the
wire leading to the A � B
indicator.

Section 3.6 Programming Preview: Debugging 91

Figure 3.52
Probe 4 indicates that the
value in the wire is 80.

Figure 3.53
A breakpoint has been set
just after the Greater Than
function.

KEY TERMS Add function
And function
Body Mass Index

(BMI)
Boolean functions
breakpoint
Broken Run Button
broken wires
comments

comparison functions
Context Help
dataflow programming
debugging
Dial Numeric Control
Divide function
Error List
Exclusive Or function
Execution Highlighting

exponential
Express VI
first-order response
Formula Express VI
Formula function
Function
Hyperbolic Trigonometric

functions
integer quotient

92 LabVIEW Math Functions

Multiply function
Natural Logarithm
Not function
Numeric indicator
Or function
Pointer Slide controls
predefined constants

(e.g., e, π)
Probe Tool

radians
Random Number

function
remainder
Run Continuously

button
Select function
Single-Step Execution
trigonometric functions

Inverse Hyperbolic
Trigonometric
functions

Inverse Trigonometric
functions

Knob control
Logarithm
Logarithm Base 10
Meter indicator

S U M M A RY
Building a VI (General Approach)

1. Create a blank VI:

• From LabVIEW Getting Started window: New Panel/Blank VI
• From an open VI: File/New VI

On the front panel . . .
2. Add needed controls and indicators

On the block diagram . . .
3. Add needed functions
4. Wire the controls, functions, and indicators
5. Draw a While Loop around all items on the block diagram (if VI is to be

run continuously)

Functions Palette / Express Group / Execution Control Group /
While Loop

Basic Math Functions

Functions Palette / Mathematics Group / Numeric Group

Function

Add

.Subtract

Multiply

Divide

Quotient and Remainder

Increment

Decrement

Absolute Value

Round to Nearest

Round Towards Infinity-
Round Towards Infinity+
Square Root

Square

Negate

Reciprocal

Numeric Constant

Random Number

Summary 93

Predefined Constants

• π
• e (base of natural logarithm)
• h (Planck’s constant)
• c (speed of light in a vacuum)
• G (gravitational constant)
• R (molar gas constant)

Context Help
Provides information on how to wire math functions.

Help / Show Context Help

Changing the Data Type Associated with a Control
Example: Change the data type to 32-bit Integer:

1. Right-click on the control (opens the pop-up menu)
2. Select: Representation/132

Automatically Creating Controls and Indicators

Input: Right-click on an input, select Create/Control
Output: Right-click on an output, select Create/Indicator

Benefits:

• correct data type
• labeled
• wired to the function

Quotient and Remainder function
Returns two results:

• the integer number of times that denominator can divide into numerator (integer
quotient)

• the remainder of that division

Random Number function
Returns a double-precision floating point value greater than or equal to 0 and
less than 1.

Express VI

• configured using a dialog box
• dialog box opens when the Express VI is placed on the block diagram.
• double-click to re-open the dialog when needed.

Formula Express VI

• functions like a scientific calculator
• accepts up to eight inputs
• enter formula using a dialog box

94 LabVIEW Math Functions

Trigonometric functions Hyperbolic Trigonometric functions

Sine Hyperbolic Sine

Inverse Sine Inverse Hyperbolic Sine

Cosine Hyperbolic Cosine

Inverse Cosine Inverse Hyperbolic Cosine

Sine & Cosine

Tangent Hyperbolic Tangent

Inverse Tangent Inverse Hyperbolic Tangent

Inverse Tangent (2 Input)

Secant Hyperbolic Secant

Inverse Secant Inverse Hyperbolic Secant

Cosecant Hyperbolic Cosecant

Inverse Cosecant Inverse Hyperbolic Cosecant

Cotangent Hyperbolic Cotangent

Inverse Cotangent Inverse Hyperbolic Cotangent

Sinc

Trigonometric Functions (angles in radians)

Convert degrees to radians

Exponential and Logarithm Functions

Angle in radians = Angle in degrees # 2p radians
360 degrees

Function name

Exponential exp(x)

Exponential (Arg) 1- exp(x) 1-
Natural Logarithm ln(x)

Natural Logarithm (Arg 1)+ ln(x + 1)

Logarithm Base 2 log2(x)

Logarithm Base 10 log10(x)

Logarithm Base X logX(x)

Power Of 2 2x

Power Of 10 10x

Power Of X Xx

Y-th Root of X y
2X

Summary 95

Function Comment

And AND

Boolean To (0,1) Converts FALSE, TRUE to 0, 1 and TF data type to 116
Compound Arithmetic Performs certain math operations (Add, Multiply, AND, OR,

or XOR) on more than two values
Exclusive Or XOR
False Constant Returns FALSE
Not And NAND
Not Exclusive Or NOT XOR
Not Or NOR
Not NOT
Or OR
True Constant Returns TRUE

Function Comment (from LabVIEW help system)

Equal To 0? 0= Returns TRUE if x is equal to 0. Otherwise, this function returns FALSE.
Equal? = Returns TRUE if x is equal to y. Otherwise, this function returns FALSE.

Greater Or
Equal To 0?

0Ú Returns TRUE if x is greater than or equal to 0. Otherwise, this function
returns FALSE.

Greater Or Equal? 0Ú Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE.

Greater Than 0? 07 Returns TRUE if x is greater than 0. Otherwise, this function returns FALSE.

Greater? 7 Returns TRUE if x is greater than y. Otherwise, this function returns FALSE.

First-order response
A first-order response is described by the equation

where
yorig is the initial (original) value of y at time t � 0
yult is the ultimate value of y at time t �

is the time constant

Boolean and Comparison Functions

• Boolean functions take Boolean values (TRUE, FALSE) as inputs and return
Boolean outputs.

• Comparison functions take numeric values as inputs and return Boolean outputs.

Locations

• Functions Palette/Programming Group/Boolean Group
• Functions Palette/Programming Group/Comparison Group
• Functions Palette/Express Group/Arithmetic & Comparison Group/Express

Boolean Group
• Functions Palette/Express Group/Arithmetic & Comparison Group/Express

Comparison Group

Boolean Functions

t

q

y(t) = (yult - yorig)[1 - e
- t
t]

Comparison Functions

96 LabVIEW Math Functions

Debugging
Debugging is the process of analyzing a program for errors, and removing them.

LabVIEW debugging tools

• Broken wires—an early warning that something is not working correctly
• Broken Run Button—indicates that the VI will not run, but if you click the broken

Run button you will see a list of error messages
• Execution Highlighting—you can watch the flow of information through your

block diagram
• Single-Step Execution—you can run the VI step by step to see where something

goes wrong
• Probe Tool—you can test to see what any wire contains
• Breakpoints—you can set a breakpoint to stop the program at a point of interest

S E L F - A S S E S S M E N T

1. How do you add a digital display to a dial control?
ANS: Right-click on the control and select Visible Items/Digital Display from
the pop-up menu.

2. The Controls Palette and the Functions Palette are both commonly used as
LabVIEW VIs are created.

a. Which palette is used when developing the front panel?
b. Which palette is used when developing the block diagram?

ANS: The Controls Palette is used when developing the front panel and the
Functions Palette is used when developing the block diagram.

3. Where are the basic math functions located (which palette and which
group)?
ANS: Functions Palette/Mathematics Group

4. Find the following functions on the Functions Palette:

a. Add
b. Round to Nearest

Less Or Equal To 0? 0… Returns TRUE if x is less than or equal to 0. Otherwise, this function returns FALSE.

Less Or Equal? … Returns TRUE if x is less than or equal to y. Otherwise, this function returns FALSE.

Less Than 0? 06 Returns TRUE if x is less than 0. Otherwise, this function returns FALSE.

Less? 6 Returns TRUE if x is less than y. Otherwise, this function returns FALSE.

Max & Min Compares x and y and returns the larger value at the top output terminal and the smaller value
at the bottom output terminal.This function accepts time stamp values if all inputs are time
stamp values. If the inputs are time stamp values, the function returns the later time at the top
and the earlier time at the bottom.The wire is broken if the inputs are not the same data type.

Not Equal To 0? 0Z Returns TRUE if x is not equal to 0. Otherwise, this function returns FALSE.

Not Equal? Z Returns TRUE if x is not equal to y. Otherwise, this function returns FALSE.

Select Returns the value wired to the t input or f input, depending on the value of s. If s is TRUE,
this function returns the value wired to t. If s is FALSE, this function returns the value
wired to f.

Self-Assessment 97

c. π (constant)
d. Tangent
e. Exponential (ex)

ANS: They are all found in the Functions Palette/Mathematics Group, then

a. Add Numeric Group/Add
b. Round to Nearest Numeric Group/Round to Nearest
c. π (constant) Numeric Group/Math & Scientific Constants/Pi
d. Tangent Elementary & Special Functions/Trig.

Functions/Tangent
e. Exponential (ex) Elem. & Special Functions/Exponential Functions/

Exponential

Note: These functions are also available in the Express Group/Arithmetic &
Comparison Group

5. By default, a numeric control includes increment and decrement buttons.
What are these buttons used for?
ANS: You can click these buttons with the mouse to increase or decrease the
value displayed in the control.

6. Engineers commonly use constants such as π, h (Planck’s constant), and G (gravi-
tational constant).Where can these constants be found on the Functions Palette?
ANS: Functions Palette/Mathematics Group/Numeric Group/Math &
Scientific Constants

7. What steps are required to replace one function with another on the block
diagram?
ANS:

1. Right-click on the function to be replaced.
2. Select Replace on the pop-up menu. Two options will typically be

displayed:

a. The palette (or group) that the current function came from.
b. All palettes.

3. Locate and click on the function to be placed on the block diagram.

8. How do you set up a control to handle integer values?
ANS: Right-click on the control, select Representation/I32 (or another
integer data type) from the pop-up menu.

9. LabVIEW’s random number function returns uniformly distributed values in
what range?
ANS: Greater than or equal to zero, less than one.

10. LabVIEW’s Formula Express VI accepts a number of inputs and allows you to
easily build the input values into a formula. How many inputs will the Formula
Express VI allow?
ANS: Up to eight.

11. Do LabVIEW’s trigonometric functions work with angles in degrees or
radians?
ANS: Only radians.

12. How do wires get broken?
ANS: Wires get broken when nodes are deleted from the block diagram, or
when you attempt to connect two terminals that are incompatible.

98 LabVIEW Math Functions

13. How can you get a list of error messages?
ANS: Click the broken Run button to see a list of errors.

14. What is execution highlighting used for?
ANS: Execution highlighting causes each node on the block diagram to be
highlighted when it is solved; it allows you to watch how LabVIEW solves the
VI. If the VI is not functioning correctly, execution highlighting can help you
find out where something is going wrong.

15. How is the Probe tool used for debugging?
ANS: When a VI stops running the values in the controls, indicators, and wires
are left in their final state. The Probe tool allows you to poke around on the
block diagram and check the values in wires. This can help you to find out why
a VI is malfunctioning.

16. How do you set and clear breakpoints?
ANS: You set a breakpoint by right-clicking on a node or wire on a block
diagram and selecting Set Breakpoint from the pop-up menu. To clear a
break point, right-click on the breakpoint and select Clear Breakpoint from
the pop-up menu.

P R O B L E M S

1. Create a VI that converts an angle value in radians to degrees. Use the following
values to test your VI: 180° is equal to π radians. Then convert the following
values:

a. π/2

b. 3π/2

c. 2π

2. Create a VI that converts temperature values in °F to °C and K.

The following values can be used to test the VI: 32°F � 0°C � 273.15 K; �40°F �
�40°C � �233.15 K. Then convert the following values:

a. 212°F

b. 98.6°F

c. 350°F

d. 1400°F

3. Create a VI that converts temperature values in °C to °F. The following values
can be used to test the VI: 32°F � 0°C; �40°F � �40°C.Then convert the follow-
ing values:

a. 100°C

b. 37°C

c. 85°C

d. 1200°C

 T(K) = T(°C) + 273.15

 T(°C) =
T(°F) - 32

1.8

Problems 99

30°

2 m

Figure 3.54
Determining required ramp
length.

37 steps

40°

Figure 3.55
Determining the height
of an addition.

Figure 3.56
Front panel of a possible
VI configuration.

4. Maintenance needs to get a ramp up to a height of 2 meters, and company
regulations do not allow a ramp to be used with an angle greater than 30°.
Create a VI to determine the required length of the ramp (pictured in
Figure 3.54).

5. Some neighbors just added a particularly ugly addition to their home. You
have a suspicion that the addition is not in compliance with the homeowners’
association limit of 32 feet to the highest point on the home. To surreptitiously
check it out, you wait until mid afternoon and take a photo from the street.
From the photo you determine that the home’s shadow is making an angle of
40° from the ground, as indicated in Figure 3.55. Then you step off the length
of the shadow along the ground (32 steps).

Create a LabVIEW VI to determine if the neighbors are in compliance with
the neighborhood height requirement. A possible VI front panel is shown in
Figure 3.56.

a. Assume your feet are exactly one foot in length and determine the height of
the addition.

b. How far off can the “length of foot” assumption be before the conclusion
(in compliance, or not in compliance) would change?

100 LabVIEW Math Functions

6. Pneumatically controlled valves are operated by changing the air pressure
applied to a diaphragm, as illustrated in Figure 3.57.The pressure, acting on the
area of the diaphragm, generates a force that attempts to move the valve stem.

That force is countered by a spring that pushes on the diaphragm in the other
direction.

where

kspring is the spring constant

x is the extension of the spring

Control valves typically use air pressures ranging between 3 psi (lbf/in
2) and

15 psi. The change in applied force because of the pressure change causes the
valve stem to move approximately 1 inch.

Determine:

a. The force applied to a 10-inch diameter diaphragm by 3 psi air.

b. The force applied to a 10-inch diameter diaphragm by 15 psi air.

c. The change in applied force (ΔF) as the air pressure increases from 3 to 15 psi.

d. The spring constant required to cause the valve stem to move 1 inch in
response to the calculated change in force.

Note: The difference version of the spring equation may be helpful:

7. When fluids have to be transported long distances, pipelines can be an efficient,
safe, and economical alternative to trucking. But, because of fluid friction, the
pressure of the fluid falls over distance, and pumping stations are required at
intervals to re-pressurize the fluid.

¢Fspring = kspring ¢x

Fspring = kspringx

Fair = PA

Air
Pressure

Diaphragm

Spring

Valve Stem

Figure 3.57
Pneumatic control valve.

Problems 101

Figure 3.58
VI for estimating pipeline
pressure drop.

The pressure drop between pumping stations can be predicted (if it is due to
fluid friction only) with the following equation:

where

f is the Moody (or Darcy) friction factor (no units)

ρ is the fluid density (kg/m3)

L is the distance between pumping stations (m)

D is the pipe diameter (m)

Vavg is the average fluid velocity (m/s)

The friction factor depends in a complicated fashion on fluid, flow rate, and
pipe surface conditions. For this problem, assume that f � 0.008.

Create a VI similar to Figure 3.58 that will allow you to enter the required
values, and then calculate and display the pressure drop in Pa (Pa � 1 N/m2))
and bars (1 bar � 105 Pa). Test your VI with these values:

f � 0.008

ρ � 800 kg/m3

L � 15,000 m

D � 0.2 m

Vavg � 1.5 m/s

ΔP � 5.4 bar

¢P =
1
2

 fr
L

D
 Vavg

2

Then, answer the following questions:

a. What will the pressure drop increase to if the distance between piping
stations is increased to 20,000 m?

b. What is the maximum distance between pumping stations that will keep the
pressure drop from exceeding 5 bars?

102 LabVIEW Math Functions

c. To increase throughput, it has been proposed to increase the average fluid
velocity to 2.2 m/s. What is the expected pressure drop at the higher flow
rate? Assume L � 15,000 m.

d. What will happen to the expected pressure drop if a different fluid with
a density of 1100 kg/m3 is transported in the pipeline? Assume Vavg �
1.5 m/s.

8. Three resistances in parallel (shown in Figure 3.59) are subjected to the
same voltage drop. Create a VI similar to the one shown in Figure 3.60 that
will calculate the current through each resistor. Ohm’s law will be used for
each resistor:

V = IR

Test your VI with these values:

• Vin � �10 V

• Vout ��5 V

• R1 � 100 ohms I1 � 0.15 amp

• R2 � 200 ohms I2 � 0.075 amp

• R3 � 400 ohms I3 � 0.1 amp

Then, use your VI to solve for the currents through each resistor in this
problem:

• Vin � +12 V

• Vout � 0 V

• R1 � 2500 ohms

• R2 � 1000 ohms

• R3 � 1200 ohms

R1

R2

R3

Vin Vout

Figure 3.59
Resistors in parallel.

Figure 3.60
VI for finding current
through resistors in parallel.

Matrix Math Using
LabVIEW

4.1 WORKING WITH MATRICES AND ARRAYS IN LABVIEW
Matrices and arrays provide an efficient way to store and manipulate data sets.
LabVIEW provides an extensive set of basic matrix math functions including

• Adding Matrices or Arrays
• Transpose of a Matrix or Array
• Multiplying Matrices or Arrays
• Condition Number
• Matrix Determinant
• Inverse Matrix

LabVIEW also provides more complex functions that can be used directly to
solve matrix problems. For example, LabVIEW provides a function for solving
simultaneous linear equations.

4.1.1 Should You Use Arrays or Matrices?

The term array has a long history in the field of computer programming, and
there are a number of standard array operations, like sorting and finding mini-
mum and maximum values, that are common knowledge to programmers. The
term matrix comes from the field of mathematics, and there are a number of
standard matrix math operations, like transposing and inverting, that are
known to anyone who works with matrices.

LabVIEW supports both arrays and matrices; there are a lot of similari-
ties, but a couple of subtle distinctions. In LabVIEW, both arrays and matrices
are collections of related values, but a matrix is always 2D (two-dimensional),
whereas an array can have any number of dimensions. Some LabVIEW func-
tions (e.g., graphing functions) required 1D arrays, so arrays must be used with
those LabVIEW functions. Since arrays are more flexible in LabVIEW, we
will primarily use arrays in this chapter.

In LabVIEW both array operations and matrix math operations can be
used on either arrays or matrices. We will use the term matrix math when

O b j e c t i v e s
After reading this chapter,
you will know:

how arrays and matrices
are used in LabVIEW
how to extract a
subarray from a larger
array or matrix
how to use LabVIEW
functions for matrix
mathematics

adding arrays
transposing arrays
multiplying an array
by a scalar
matrix multiplication
finding the condition
number for a matrix
calculating the
determinant of a
matrix
matrix inversion

how to solve simultaneous
linear equations using
LabVIEW
how to use For Loops to
create and process array
data

C H A P T E R 4

104 Matrix Math Using LabVIEW

Figure 4.1
Creating an array
of Numeric Controls.

describing matrix operations that are common in the field mathematics, but we will
apply the matrix math operations to LabVIEW arrays.

Actually, LabVIEW provides three ways to collect values:

• Clusters
• Arrays
• Matrices

Clusters
A cluster is a grouping of potentially different data types. One possible use of a
cluster would be to store information about a person, such as

• Birthdate (date.time data)
• Age (integer numeric data)
• Height (floating point numeric data)
• Photograph (image data)

Clusters are used to collect related data (all about the same person, for example)
that require a variety of data types. Clusters are not used for matrix math, so we
won’t mention them again in this chapter.

Arrays
In LabVIEW, an array is a collection of controls or indicators that all hold values
with the same data type. Because of this, building an array is a multi-step process:

1. Put the Array container on the front panel:

Controls Palette / Modern Group / Array, Matrix & Cluster Group /
Array

2. Drop a control or indicator into the Array container (only one array element
will be visible). The Numeric Control (used in this example) can be found in
either of these groups:

Controls Palette / Modern Group / Numeric Group /Numeric Control

Controls Palette / Express Group / Numeric Controls Group / Num Ctrl

3. Resize the array to show the required number of elements.

This is illustrated in Figure 4.1

Section 4.1 Working with Matrices and Arrays in LabVIEW 105

By default, arrays have a single column of elements, called a 1D array. If you
need a 2D array, right-click on the Index Display (on the left side of the Array con-
tainer) and select Add Dimension from the pop-up menu. This is illustrated in
Figure 4.2. An array can have many dimensions, if needed.

The resulting array is shown in Figure 4.3

LabVIEW provides a collection of array functions that are useful for working
with arrays. These array functions are found in the Array Group:

Functions Palette / Programming Group / Array Group

The array functions include the following:

• Array Max & Min
• Array Size
• Array Subset
• Search 1D Array
• Sort 1D Array
• Split 1D Array
• Reverse 1D Array
• Rotate 1D Array
• Delete From Array
• Insert Into Array
• Replace Array Subset
• Reshape Array
• Transpose 2D Array
• Cluster To Array

Figure 4.2
Adding a second dimension
to create a 2D array.

Figure 4.3
The 2D array of Numeric
Controls.

Figure 4.4
Placing a Matrix Control
on the front panel.

106 Matrix Math Using LabVIEW

• Array To Cluster
• Matrix to Array
• Array to Matrix

Matrices
A matrix is a single control that holds a collection of values of the same data type.
A LabVIEW matrix is always 2D, although you can use a single column or row.
A LabVIEW matrix cannot have more than two dimensions. The first element of a
matrix is element 0, not 1.

A matrix can be placed on the front panel in a single step; simply move the
Real Matrix control from the Array, Matrix & Cluster Group onto the front panel.

Controls Palette / Modern Group / Array, Matrix & Cluster Group /
Real Matrix

This is illustrated in Figure 4.4.

Matrices can be placed on the front panel with fewer steps, and a collection of
values (matrix) is a bit simpler to deal with than a collection of controls containing
values (array).

LabVIEW is very flexible when it comes to matrix operations.

• If you need a subset of a matrix, you can use LabVIEW’s array functions on
matrices (or arrays).

• Most of the numeric math functions can be used on matrices as well.

LabVIEW will perform matrix math on both matrices and arrays, but LabVIEW
was originally developed around arrays, and using matrices can cause problems
(admittedly small problems) making downstream operations work correctly. For
example, LabVIEW’s graphing controls generally require 1D arrays as inputs. If you
have used matrices to manipulate data sets, an added conversion step from matrix to
array may be needed prior to graphing.

4.2 EXTRACTING A SUBARRAY FROM A LARGER ARRAY OR MATRIX

When you are working with large arrays or matrices, you will occasionally need to
work with a portion of the entire array or matrix. LabVIEW’s array functions make
this possible.

Table 4.1 Time and Temperature Data

Time (min.) TC1 TC2 TC3 TC4 TC5 TC6 TC7

30 25.0 25.0 25.0 25.0 25.0 25.0 25.0

3 38.0 36.3 35.7 35.2 35.1 35.1 35.0

6 47.6 45.3 44.5 43.7 43.7 43.7 43.7

9 54.7 52.5 51.6 50.9 51.0 51.0 51.1

12 59.9 58.1 57.5 56.9 57.1 57.3 57.5

15 63.8 62.7 62.3 61.9 62.3 62.7 63.0

18 66.7 66.2 66.2 66.1 66.7 67.2 67.7

21 68.9 69.1 69.5 69.7 70.4 71.2 71.8

24 70.5 71.3 72.1 72.6 73.6 74.5 75.3

27 71.6 73.1 74.2 75.1 76.3 77.3 78.3

30 72.5 74.5 76.0 77.2 78.5 79.8 80.9

33 73.2 75.7 77.5 79.0 80.4 81.9 83.2

36 73.6 76.6 78.6 80.4 82.1 83.6 85.1

39 74.0 77.3 79.6 81.6 83.4 85.1 86.8

42 74.3 77.8 80.4 82.7 84.6 86.4 88.2

45 74.4 78.3 81.1 83.5 85.6 87.5 89.4

48 74.6 78.6 81.6 84.3 86.4 88.5 90.5

51 74.7 78.9 82.0 84.9 87.1 89.3 91.4

54 74.8 79.1 82.4 85.4 87.7 90.0 92.2

57 74.8 79.3 82.7 85.8 88.2 90.6 92.8

60 74.9 79.5 82.9 86.2 88.6 91.1 93.4

Note: The large data sets used in this text are available as .txt files at the text’s website:
www.chbe.montana.edu/LabVIEW

Section 4.2 Extracting a Subarray from a Larger Array or Matrix 107

One of the most common matrix tasks is extracting one column or one row
from a larger matrix. For example, we might have collected a data set containing
temperature values from seven thermocouples over a period of time, such as the
data set shown in Table 4.1. It would be convenient to have the time and tempera-
ture values in separate arrays, and perhaps we only need the data from thermo-
couple 1 (TC1). LabVIEW provides the Array Subset function to select a portion of
an array:

Functions Palette / Programming Group / Array Group / Array Subset

Note: When only a single column or row is needed, the Index Array function should
be used. The Index Array function returns a 1D array.

Functions Palette / Programming Group / Array Group / Index Array

The LabVIEW connection pane used for the Array Subset function is shown in
Figure 4.5. LabVIEW’s nomenclature is shown on the left, and a more descriptive
nomenclature, which only applies to 2D arrays, is shown on the right. The two
terminals near the top are the input for the original array and the output for the
selected subarray. The icon expands depending on the number of dimensions in the
original array.

www.chbe.montana.edu/LabVIEW

Figure 4.6
Block diagram of a VI
allowing a subarray to be
selected at run time.

108 Matrix Math Using LabVIEW

The four terminals on the lower left side of the icon (see Figure 4.5) are used
to inform LabVIEW which portion of the original array to use for the subarray.

• Starting Row Index (0)—the index of the first row in the original array that
should be included in the subarray.The default value is (0), which is the top row in
the original matrix.

• Number of Rows (all)—the number of rows from the original array to include in
the subarray. The default is (all) rows (i.e., all rows after the starting row).

• Starting Column Index (0)—the index of the first column in the original array
that should be included in the subarray. The default value is (0), which is the left
column in the original matrix.

• Number of Columns (all)—the number of columns from the original array to include
in the subarray.The default is (all) columns (i.e., all columns after the starting column).

Notice that array indexing starts at 0 (not 1) in LabVIEW. The top element of array
X is called X[0].

Figure 4.6 shows the block diagram of a VI designed to allow any subset of the
data set shown in Table 4.1 to be selected.

array subarray

index (0)

index (0)

length (rest)

length (rest)

array subarray

Starting Row Index (0)

Staring Column Index (0)

Number of Rows (all)

Number of Columns (all)

LabVIEW Nomenclature Descriptive Nomenclature

Figure 4.5
Array Subset function
description.

Functions Palette / Programming Group / Array Group / Array Subset

Note: When only a single column or row is needed, the Index Array function should
be used. The Index Array function returns a 1D array.

Functions Palette / Programming Group / Array Group / Index Array

Section 4.2 Extracting a Subarray from a Larger Array or Matrix 109

The front panel is shown in Figure 4.7. Initially the entire original array has been
selected.

By changing the Number of Columns from 8 to 1, we can select only the time
values for the subarray, as shown in Figure 4.8.

Figure 4.7
The entire original array has been selected as the subarray.

Figure 4.8
Only the time values (left column) have been selected for the subarray.

Figure 4.10
Block diagram for selecting
Time and Temperature
subarrays from original
array.

110 Matrix Math Using LabVIEW

By setting the Start Column Index to 1, and the Number of Columns to 7, we
can select all of the temperature values, as shown in Figure 4.9.

In practice you would rarely use controls to select the subarray. The next VI
uses constants on the block diagram to create two subarrays: one containing the
time values and one containing the temperature values. The block diagram is shown
in Figure 4.10 and the front panel in Figure 4.11.

Figure 4.9
Selecting only the temperature values for the subarray.

Notice in Figure 4.10 that constants (0, 1 and 1, 7) were used to indicate the
desired columns for each subarray, but no constants were sent into the Array
Subset functions for the row terminals. Because we wanted all rows, we accepted
the default values for Starting Row Index and Number of Rows by leaving them
unwired.

Section 4.3 Adding Arrays 111

4.3 ADDING ARRAYS

One of the most fundamental matrix operations is adding two arrays, such as the [A]
and [B] arrays shown here:

In order to add two arrays, they must be the same size (same number of rows and
columns). The process used to add two matrices is to add corresponding elements
from each matrix. For example, when [A] and [B] are added together, the top-left
element of the resulting array will be 1 + 3 = 4. All of the corresponding elements
are similarly added together. LabVIEW’s Add function is used to add arrays and
matrices.

Functions Palette / Mathematics Group / Numeric Group /
Add function

The following steps are used to add two arrays in LabVIEW:
On the front panel (see Figure 4.12) . . .

A = J
1 2 3
2 1 4 K
3 4 7

 B = J
3 5 7
2 4 8
1 3 6

K

Figure 4.11
Result of selecting Time and Temperature subarrays.

Figure 4.12
The A and B arrays
on the front panel.

112 Matrix Math Using LabVIEW

Figure 4.15
The C array defined
on the front panel.

1. Create two array controls on the front panel. The steps required to create an
array are as follows:
• Place the Array container on the front panel.

Controls Palette / Modern Group / Array, Matrix & Cluster
Group / Array

• Place one numeric control (from either location) inside the Array container.

Controls Palette / Modern Group / Numeric Group / Numeric
Control

Controls Palette / Express Group / Numeric Controls Group /
Num Ctrl

• Add a dimension to create a 2D array. Right-click on the Index Display and
select Add Dimension from the pop-up menu.

• Expand the size of the array. Drag the handles at the sides of the array to
change the number of displayed array elements.

2. Enter values into the arrays. Once the right number of rows and columns are
displayed, double-click in each array element to enter the value for the element.

Note: The Index Display for each matrix has been hidden in Figure 4.12. The
Index Display is used to scroll through a large matrix. When the entire matrix
can be seen in the control, the Index Display is not needed. Hiding the Index
Display simplifies the front panel display.

On the block diagram (see Figure 4.13) . . .
3. Place an Add function on the block diagram.

Functions Palette / Mathematics Group / Numeric Group / Add function

4. Wire the matrix output terminals to the Add function input terminals.
5. Right-click on the Add function output terminal and select Create /

Indicator from the pop-up menu. (The created array indicator will be 2D, but
it will need to be resized on the front panel to show three rows and three
columns.)

Run the VI to add the arrays. The solution is shown in Figure 4.14.

4.4 TRANSPOSE ARRAY

When an array is transposed, the rows and columns are interchanged. Any matrix or
array can be transposed. The effect of transposing an array is most apparent when
the array has significantly more rows than columns, or vice versa, so we will use the
following array as an example:

The first step is to create the array on the front panel, as shown in Figure 4.15.

C = c1 2 3 4
5 6 7 8

d

Figure 4.13
Block diagram for adding
arrays A and B.

Figure 4.14
The added arrays, A + B.

Section 4.5 Multiplying an Array by a Scalar 113

Figure 4.16
The results of transposing
using the Transpose Matrix
function and the Transpose
2D Array function.

Figure 4.17
Transposing the C array
using two methods.

In Figure 4.15 the visible portion of the array has been expanded to illustrate
how LabVIEW handles variable array sizes. An array can be as large as needed, but
unused elements are indicated in gray. As values are entered into the array, the
active elements are shown with a white background. With this approach, it is easy to
create arrays of whatever size is needed.

LabVIEW provides two functions for transposing an array:

• Matrix function: Transpose Matrix

Function Palette / Mathematics Group / Linear Algebra Group /
Transpose Matrix

• Array function: Transpose 2D Array

Function Palette / Programming Group / Array Group / Transpose
2D Array

To demonstrate that both functions generate the same result, we used both func-
tions in the Matrix Transpose VI shown in Figure 4.16 (front panel) and Figure 4.17
(block diagram).

Notice that the Transpose Matrix function created a matrix result, whereas the
Transpose 2D Array created an array result. The results are numerically equivalent,
but the values are stored in variables of differing data types.

4.5 MULTIPLYING AN ARRAY BY A SCALAR

The process of multiplying an array or matrix by a scalar (a single value) is termed
scalar multiplication. Each element of the array is multiplied by the scalar value. For
example, if the C array is multiplied by the scalar 10, each element of the C array is
multiplied by 10.

Functions Palette / Mathematics Group / Numeric Group / Multiply
Function

A VI for multiplying an array by a scalar is illustrated in Figure 4.18 (front panel)
and Figure 4.19 (block diagram).

C = c1 2 3 4
5 6 7 8

d

114 Matrix Math Using LabVIEW

4.6 MATRIX MULTIPLICATION

LabVIEW provides a matrix multiplication function called A × B for matrix multi-
plication (works with matrices or arrays).

Matrix multiplication can be performed on two arrays if the number of
columns in the first array equals the number of rows in the second array. For exam-
ple, A × B is allowed because A has two columns and B has two rows.

Notice that B × A is not allowed, because B has four columns and A has three rows.
The resulting array has as many rows as the first array, and as many columns

as the second array, so A3 × 2 × B2 × 4 should generate an array with 3 rows and
4 columns.

As usual, the first step is to define the input arrays on the front panel, as shown
in Figure 4.20.

A3 * 2 = J
2 4
3 2
1 5 K B2 * 4 = c2 1 3 4

4 6 1 3
d

LabVIEW provides the A × B function to perform matrix multiplication:

Function Palette / Mathematics Group / Linear Algebra Group / A × B
Function

The block diagram is shown in Figure 4.21, and the result (of size 3 � 4 (3 rows by
4 columns), as expected) is shown in Figure 4.22.

Notice that the A × B function generated a matrix result, not an array. (The
scrollbars at the right and bottom edges of the matrix indicator in Figure 4.22 are a
visual clue that a matrix result was obtained.) The matrix result is the default for the
A × B function. However, you can send the results to an array if you explicitly create
the array on the front panel, and then wire the A × B output to the array. This result

Figure 4.21
Block diagram for
multiplying two matrices.

Figure 4.22
Result of multiplying A × B,
matrix result.

Figure 4.18
Multiplying an array
by a scalar (front panel).

Figure 4.19
Multiplying an array by
a scalar (block diagram).

Figure 4.20
Defining the arrays
to be multiplied.

Section 4.6 Matrix Multiplication 115

is shown in Figure 4.23. The computed values are the same whether the result is
displayed as a matrix or as an array.

Figure 4.23
Result of multiplying A × B,
array result.

A word of caution: LabVIEW does not automatically display the entire array.
After running the VI, you will need to resize the result array to see all the array
elements.

So, how does matrix multiplication work? Officially, the formula for matrix
multiplication is

where

i is the row number
j is the column number
k is a counter
n is the number of columns in A, or the number of rows in B (they’re equal).

In practice, people think of multiplying across the first matrix and down the second
matrix, adding terms as they go.

Starting with the first row of [A]:

• Element [A � B] 1,1 (top, left) 2 � 2 � 4 � 4 � 20
• Element [A � B] 1,2 2 � 1 � 4 � 6 � 26
• Element [A � B] 1,3 2 � 3 � 4 � 1 � 10
• Element [A � B] 1,4 2 � 4 � 4 � 3 � 20

Then, using the second row of [A]:

• Element [A � B] 2,1 (middle, left) 3 � 2 � 2 � 4 � 14
• Element [A � B] 2,2 3 � 1 � 2 � 6 � 15
• Element [A � B] 2,3 3 � 3 � 2 � 1 = 11
• Element [A � B] 2,4 3 � 4 � 2 � 3 = 18

Finally, using the third row of [A]:

• Element [A � B] 2,1 (bottom, left) 1 � 2 � 5 � 4 = 22
• Element [A � B] 2,2 1 � 1 � 5 � 6 = 31
• Element [A � B] 2,3 1 � 3 � 5 � 1 = 8
• Element [A � B] 2,4 1 � 4 � 5 � 3 = 19

For large arrays, matrix multiplication is straightforward, but tedious.
Nowadays, all spreadsheets and math software packages will perform matrix
multiplication.

[AB]i, j = a
n

k=1
Ai, k Bk, j

116 Matrix Math Using LabVIEW

4.7 ELEMENT BY ELEMENT MULTIPLICATION

You can also multiply arrays and matrices using the standard Multiply function, but
the results may or may not be what you want.

Functions Palette / Mathematics Group / Numeric Group / Multiply
Function

1. If you multiply matrices (not arrays) using the Multiply function, the Multiply
function will perform matrix multiplication (see Figure 4.24, top panel).

2. If you multiply arrays using the Multiply function, the Multiply function will
perform element-by-element multiplication and ignore extraneous elements
(see Figure 4.24, bottom panel).

Figure 4.25
The block diagram showing
how the Multiply function
was used.

Figure 4.24
The Multiply function gives
different results when used
with matrices and arrays.

As you can see in the block diagram (Figure 4.25), the same Multiply function was
used to get these very different results. This is because the Multiply function treats
array inputs and matrix inputs differently.

Section 4.8 Condition Number 117

There are times when element-by-element multiplication is useful.When used,
the arrays (not matrices) should have the same number of rows and columns, and
the Multiply function should be used.

4.8 CONDITION NUMBER

A common use of matrix math is the solution of systems of linear algebraic equations,
such as the following:

In matrix form, this set of equations can be written as a coefficient matrix [C], an
unknown vector [x], and a right-hand-side vector [r] as

The two identical rows in the coefficient matrix [C] are a sure sign that this set of
equations does not have a solution.

The matrix condition number gives an indication of whether or not an error-
free solution is likely with a given coefficient matrix. When a coefficient matrix has
two identical rows, the condition number should be infinity.

A small condition number indicates that a good solution is likely.
LabVIEW provides the Matrix Condition Number function to calculate this

quantity. It is available in the Linear Algebra group.

Function Palette / Mathematics Group / Linear Algebra Group / Matrix
Condition Number

To investigate this, a Matrix Condition Number VI was written. The front panel is
shown in Figure 4.26 and the corresponding block diagram is shown in Figure 4.27.
We didn’t get an infinite condition number, but 1.15 × 1017 is still huge.

C = J
2 3 4
2 3 4
3 5 7

K x = J
x1

x2

x3
K r = J

7
8
4
K

 3x1 + 5x2 + 7x3 = 4
 2x1 + 3x2 + 4x3 = 8
 2x1 + 3x2 + 4x3 = 7

Figure 4.26
Matrix Condition Number
VI front panel.

Figure 4.27
Matrix Condition Number
VI block diagram.

118 Matrix Math Using LabVIEW

Next, a While Loop will be added so that we can make changes in the coefficient
matrix and observe the effect on the matrix condition number without having to keep
hitting the Run button.

If we modify one of the coefficients very slightly, we would expect the
condition number to get smaller, but obtaining a solution when two rows of coef-
ficients are very close should still be difficult. What is the matrix condition number
when the “3” in the second row is changed to “3.01”? We can see the answer in
Figure 4.28.

Figure 4.29
Finding the condition
number when the rows are
clearly distinct.

The matrix condition number has dropped from 1017 to slightly over 2000. This
gives us a clue that a matrix condition number of 2000 is pretty bad and likely to
yield a poor solution.

So, what is the matrix condition number when the rows are all clearly different?
The solution shown in Figure 4.29 can help answer that question.

Figure 4.28
What happens to the
condition number when
one coefficient is changed
slightly?

When the middle coefficient in the second row was changed to “1”, making the
three rows quite distinct, the matrix condition number fell to 50. An ideal matrix
condition number is 1, so 50 still sounds kind of high. We’ll look at the solution of
this set of equations in Section 4.10.

4.9 MATRIX DETERMINANT

The determinant is a commonly calculated quantity when working with square
matrices (matrices with the same number of rows and columns). For example, you
might want to check the value of the determinant of the coefficient matrix before
attempting to solve a set of simultaneous linear equations. If the determinant is 0, no
solution is possible.

Section 4.9 Matrix Determinant 119

We have already seen a system of equations that has no solution, and those
equations are repeated here:

Or, in matrix form:

Because there are two identical rows in the C matrix, we know that this set of equa-
tions has no solution.We would expect that the determinant of C, which is written as
|C|, has a value of 0.We can use LabVIEW’s Determinant function (from the Linear
Algebra Group) to verify this.

Function Palette / Mathematics Group / Linear Algebra Group /
Determinant

Figure 4.30 shows a block diagram for calculating the determinant of an array and
displaying the result. The front panel is shown in Figure 4.31.

C = J
2 3 4
2 3 4
3 5 7

K x = J
x1

x2

x3
K r = J

7
8
4
K

3x1 + 5x2 + 7x3 = 4

2x1 + 3x2 + 4x3 = 8

2x1 + 3x2 + 4x3 = 7

As expected, the determinant of the coefficient array C was 0, indicating that the
array cannot be inverted and there will be no solution to the system of equations.

A modified system of equations (changed second coefficient in second equation)
removes the problem of two identical rows:

Or, in matrix form:

This system of equations should have a solution. Let’s check the determinant of the
new coefficient array to be sure. After modifying the C array in the Determinant VI,

C = J
2 3 4
2 1 4
3 5 7

K x = J
x1

x2

x3
K r = J

7
8
4
K

3x1 + 5x2 + 7x3 = 4

2x1 + 1x2 + 4x3 = 8

2x1 + 3x2 + 4x3 = 7

Figure 4.30
Block diagram of a VI to
calculate the determinant
of an array.

Figure 4.31
Front panel of
Determinant VI.

120 Matrix Math Using LabVIEW

and running the program again, the result can be seen in Figure 4.32.The determinant
is indeed non-zero, so there should be a solution to this set of equations.We will solve
this system of equations in Section 4.9.

4.10 INVERSE MATRIX

One method for solving systems of simultaneous linear equations uses an inverse of
the coefficient matrix [C]-1, as illustrated in the following derivation.

The original system of equations can be written in matrix form as

To “divide out” the [C] matrix (apologies to math teachers), we actually multiply
through by the inverse [C] matrix, which is labeled [C]-1. The matrix product of [C]-1

[C] is the identity matrix [I]. Multiplying the identity matrix [I] by vector [x] is like
multiplying [x] by 1; it leaves [x] unchanged. Since [x] is the vector of unknowns in the
system of equations, we can solve for the unknowns if we can invert the [C] matrix.

LabVIEW provides the Inverse Matrix function to invert a matrix. It can be
found in the Linear Algebra Group:

Function Palette / Mathematics Group / Linear Algebra Group /
Inverse Matrix

Note: Only square matrices (number of rows = number of columns) can be inverted,
and they must be non-singular matrices (i.e., the determinant cannot be zero).

A VI that calculates an inverse matrix is shown in Figure 4.33 (block diagram)
and Figure 4.34 (front panel).

[C][x] = [r]

[x] = [C]-1[r]
[I][x] = [C]-1[r]

[C]-1[C][x] = [C]-1[r]
[C][x] = [r]

Figure 4.33
Matrix Inverse VI, block
diagram.

Figure 4.34
Matrix Inverse VI, front
panel.

Figure 4.32
Calculating the determinant
of the modified coefficient
array.

The matrix condition number and determinant are both good checks to perform
on the coefficient matrix. Another check is to multiply the [C]-1 and [C] to see if the
result really is an identity matrix. The VI shown in Figure 4.35 (block diagram) and
Figure 4.36 (front panel) performs these tests.

Section 4.11 Solving Simultaneous Linear Equations 121

As a test, we can modify the coefficient array to cause the first two rows to
be identical. This should make inverting the array impossible, so we can see how
LabVIEW responds to a singular array. The result is shown in Figure 4.37.

Figure 4.35
Array Inverse with Checks
VI, block diagram.

Figure 4.36
Array Inverse with Checks
VI, front panel.

Figure 4.37
Observing LabVIEW’s
response to a singular matrix.

In Figure 4.37 we can see that LabVIEW shows that the matrix condition number
is huge, and the determinant is 0. No matrix inversion is possible. The failed inverse
array is shown with a gray background—that’s what an array indicator looks like
when it received no values. The array inversion failed and no information (no result
values) flowed to the Inverted Array indicator, or the Identity Array indicator.

4.11 SOLVING SIMULTANEOUS LINEAR EQUATIONS

As an example of solving a system of simultaneous linear equations, we will solve
the “modified” system of equations that has been presented earlier:

3x1 + 5x2 + 7x3 = 4
2x1 + 1x2 + 4x3 = 8
2x1 + 3x2 + 4x3 = 7

122 Matrix Math Using LabVIEW

Or, in matrix form

The short derivation in the previous section showed one way to solve for the x values
(called vector [x]). The result was

A VI using this approach is shown in Figure 4.38 (block diagram) and Figure 4.39
(front panel).

[x] = [C]-1[r]

C = J
2 3 4
2 1 4
3 5 7

K x = J
x1

x2

x3
K r = J

7
8
4
K

While the method used in Figure 4.38 works, there are methods that don’t require a
complete matrix inversion that takes less computer time and creates less round-off error.
In addition, LabVIEW provides the Solve Linear Equations function (in the Linear
Algebra Group), which allows you to get a solution in one step.

Function Palette / Mathematics Group / Linear Algebra Group / Solve
Linear Equations

A VI using the Solve Linear Equations function to solve the same problem is shown
in Figure 4.40 (block diagram) and Figure 4.41 (front panel).

Figure 4.39
Front panel for solving
simultaneous linear
equations by matrix
inversion.

Figure 4.40
Block diagram for solving
simultaneous linear equa-
tions using Solve Linear
Equations function.

Figure 4.38
Block diagram for solving
simultaneous linear equa-
tions by matrix inversion.

APPL ICAT ION

Section 4.11 Solving Simultaneous Linear Equations 123

Circuit Analysis

When you see a complex resistor network such as the one shown in Figure 4.42, the
immediate response is to wonder how you can ever solve for all of the currents in all of
the circuit segments. But, applying a few basic laws allows the circuit to be analyzed.

The laws include

Ohm’s Law—applies to any resistor in the network

Resistors in Series—applies whenever multiple resistors are connected in series

Kirchhoff’s Voltage Law—applies to any loop through the circuit
For a closed loop, the algebraic sum of all changes in voltage must be 0.
Kirchhoff’s Current Law—applies at any junction in the circuit

Rtotal = a
Nresistors

i=1
Ri

V = IR

At any junction, the sum of the input currents must equal the sum of the
output currents.

In this problem, all of the resistance values (RA, RB, etc.) are known, as well as the
battery voltage (12 volts).We are trying to find the currents in each segment of the circuit.

First, we look for resistors in series and combine them. The result is shown in
Figure 4.43.

Next, we look for the unique current flow paths through the network; there are
13 of them as indicated by heavy arrows in Figure 4.44.The arrows for the crossover
connections (labeled Top, Mid, and Bot) might be drawn in the wrong direction, but
if they are, the calculated currents in those segments will have a negative sign.

Figure 4.41
Front panel for solving
simultaneous linear
equations using Solve
Linear Equations function.

A B C D

E F G H

J K L M

N O P Q

Figure 4.42
Resistor network.

124 Matrix Math Using LabVIEW

We can apply Kirchhoff’s voltage law to any path through the network. That
generates the following equations (VBat represents the voltage increase from the battery):

Next, we use Ohm’s Law to relate the voltages to resistances and currents:

VBat - INORNO - IPQ RPQ = 0

VBat - IJKRJK - IPQ RPQ = 0

VBat - IJKRJK - IL RL - IMRM = 0

VBat - IERE - IFG RFG - IMRM = 0

VBat - IARA - IFG RFG - IMRM = 0

VBat - IARA - IFG RFG - IHRH = 0

VBat - IARA - IBCD RBCD = 0

VBat - VNO - VPQ = 0

VBat - VJK - VPQ = 0

VBat - VJK - VL - VM = 0

VBat - VE - VFG - VM = 0

VBat - VA - VFG - VM = 0

VBat - VA - VFG - VH = 0

VBat - VA - VBCD = 0

A BCD

E FG H

JK L M

NO PQ

Top

Mid

Bot

Figure 4.44
Resistor network, current
paths.

A BCD

E FG H

JK L M

NO PQ

Figure 4.43
Resistor network, resistors
in series combined.

Section 4.11 Solving Simultaneous Linear Equations 125

Resistor Resistance

RA 100

RBCD 350

RE 50

RFG 125

RH 75

RJK 150

RL 100

RM 200

RNO 250

RPQ 175

Finally, we apply Kirchhoff’s current law to each of the junctions (black dots) in the
circuit, yielding the following equations:

We now have 13 equations and 13 unknown currents. The known resistance values
are as follows:

INO + IBot = +IPQ

IL + IMid = +IM

IE + ITop = +IFG

IJK = IBot + IL

IFG = IMid + IH

IA = ITop + IBCD

In matrix form, leaving out zeros for clarity, we can write the equations in terms of a
coefficient matrix and a right-hand-side (RHS) vector.

Coefficient Matrix (all empty cells must contain zeros before any matrix math)

Right-Hand-Side Vector

A VI to solve this set matrix problem is shown in Figure 4.45.The condition number
for the coefficient matrix is far from ideal, but the determinant is at least non-zero.
The solution indicates the current values in amperes.

100 350
100 125 75
100 125 200

50 125 200
150 100 200
150 175

250 175
1 -1 -1

1 -1 -1
1 -1 -1

1 -1 1
1 -1 1

1 -1 1

12
12
12
12
12
12
12
0
0
0
0
0
0

126 Matrix Math Using LabVIEW

The block diagram for this problem is shown in Figure 4.46.

The solution, with labels, is shown below. Note that the units are in milliamps
in the following table.

Figure 4.45
VI for solving the resistor
network for current values.

Figure 4.46
Block diagram for solving
the resistor network for
current values.

Variable Current (mA)

IA 24.37

IBCD 27.32

IE 48.73

IFG 45.77

IH 51.23

IJK 37.94

IL 24.66

IM 19.21

INO 22.77

IPQ 36.05

ITOP �2.96
IMID �5.45
IBOT 13.28

Section 4.12 Programming Preview: For Loops 127

Figure 4.47
A simple For Loop VI.

Figure 4.48
The front panel shows the
current loop index.

Figure 4.49
Using the number of
elements in an array to set
the number of For Loop
iterations.

4.12 PROGRAMMING PREVIEW: FOR LOOPS

Most of the programming features of LabVIEW will be covered in a later chapter,
but there is one programming structure that is commonly used to build arrays: the
For Loop.

A For Loop is a programming structure that is designed to loop through a set
of programming instructions a specified number of times. A very simple VI that
demonstrates some features of a For Loop is shown in Figure 4.47.

1. The constant wired to the N input (called the count terminal) tells the For
Loop to cycle 10 times.

2. The i is the loop index (called the iteration terminal). The loop index is incre-
mented each time the For Loop cycles. Indexing starts at 0, so the index will
take on values of 0–9 in this VI.

3. The index value is displayed in an indicator on the front panel.When the VI is
running, the values 0–9 are displayed one after another (see Figure 4.48).

4. The Wait function wired to a constant of 500 makes the For Loop wait half a
second (500 ms) between cycles. This gives the user time to see the numbers
change on the front panel.

Whereas While Loops are used when you want the loop to cycle until some condition
is met (like the STOP button being clicked), For Loops are typically used when you
know how many times the loop should cycle.

Some useful features of For Loops in LabVIEW:

• If you wire an array control to an edge of a For Loop, the loop will cycle once
for every element in the array (this is termed auto-indexing). For example, in
Figure 4.49, Array contains five elements. When Array is connected to the
For Loop, the loop will cycle five times and the index will take on values from
0 to 4.

• The connection to the left edge of the For Loop is called a tunnel (indicated in
Figure 4.50). Tunnels allow values to pass through, into the loop. When you wire
an Array control to an input tunnel, the values of the array are passed into the
loop and can be used inside the loop. In Figure 4.51 the array values are now
being displayed one after another as the loop cycles. (The block diagram is
shown in Figure 4.52.)

128 Matrix Math Using LabVIEW

Note: Input tunnels are typically placed on the left side of the loop for readability,
but actually an input tunnel can be on any For Loop boundary. LabVIEW knows
values are coming into the loop because the values are being sent from a control
output.

• Tunnels can pass information into the loop in two ways: with indexing enabled (as
used here) and with indexing disabled. The “indexing” being referred to is array
indexing. When indexing is enabled, one element of the array is passed into the
loop with each iteration.When indexing is disabled, the entire array is passed into
the loop when the loop initializes. Right-click on the tunnel to enable or disable
indexing.

• When values are passed out of a loop through a tunnel (with indexing enabled),
an array of values is created. The For Loop shown in Figure 4.53 cycles six times,
and the index takes on values of 0–5. Those values are passed outside the loop

Figure 4.50
The block diagram showing
how Array is wired to the
left edge of the For Loop.

Figure 4.51
Displaying Array values
one after another using
a For Loop.

Figure 4.52
Using Array values inside
the For Loop.

Section 4.12 Programming Preview: For Loops 129

as an array when the loop terminates. The resulting output array is shown in
Figure 4.54.

Note: Again, an output tunnel can be placed on any loop boundary. It is common
to place them on the right boundary because information flow in LabVIEW
programs tends to be from left to write.

Note: If indexing is disabled on an output tunnel, only the final element of the
array is passed through the tunnel.

• A For Loop is an easy way to create an array of calculated values. In the VI shown
in Figure 4.55, the loop index is used to create two arrays: x and sin(x). These are
then plotted using an XY Graph as shown in Figure 4.56.

Figure 4.53
Creating an array using
a For Loop.

Figure 4.54
The output array created
using the For Loop.

Figure 4.55
For Loop used to create
two calculated arrays
for graphing.

Figure 4.56
The calculated arrays
and XY graph.

130 Matrix Math Using LabVIEW

PRACTICE

Using Probes

The creator of the VI shown in Figure 4.57 was attempting to graph a sine wave (one
cycle). It didn’t work out that way.

When you look at their block diagram, you notice that the For Loop
runs from 0 to 628. The creator of the VI intended to divide “i” by 100 to create
x values ranging from 0 to 2π, but he or she forgot to include the Divide
function.

Use the Probe tool to position a probe on the wire leaving the “i”. Then run
the VI to demonstrate that the value being sent out of the For Loop as X is ranging
from 0 to 627 instead of 0 to 6.27.

The value in the wire under the “20” probe (627) is shown in the probe window in
Figure 4.58.

Figure 4.57
Failed attempt to plot one
sine wave.

Figure 4.58
The VI with the probe in
place (marked “20”).

PROGRAMMING APPL ICAT ION

Section 4.12 Programming Preview: For Loops 131

Figure 4.59
VI for creating an array
(subVI elements in dashed
box).

Figure 4.60
Front panel showing
successful array creation.

Figure 4.61
After creating the subVI.

Figure 4.62
The subVI block diagram.

Automatic Array Maker

A common programming task is creating an array of Nvalues values spread over a
specified range (Xmin to Xmax).We will develop a VI that is capable of creating the
array, and then create a subVI that can be used whenever such an array is required.

For development purposes, assume Nvalues = 5, Xmin = -20, Xmax = 20. With
these values it is easy to predict that the final array will contain the values [-20, -10,
0, 10, 20]. We can use these values to test the VI.

The Nvalues output will be wired to the loop count terminal (the “N”) of the
For Loop. The step size, DeltaX, is calculated as

The VI is shown in Figure 4.59, and we can see on the front panel in Figure 4.60 that
it is generating the desired array values.

Next, we select the elements in the dashed box shown in Figure 4.59, and
create a subVI using menu options: Edit / Create subVI. The result is shown in
Figure 4.61. The subVI has been assigned a default icon and default number (“5” in
this example, but it is arbitrary).

Double-click on the subVI icon to open the subVI for editing. The subVI
(Figure 4.62) looks a lot like the original VI, except that the constants on the left
side of Figure 4.59 have been replaced by controls in Figure 4.62.

The front panel of the subVI is shown in Figure 4.63. Double-click the icon in
the upper right corner to open the icon editor.

DeltaX -
Xmax - Xmin
Nvalues - 1

132 Matrix Math Using LabVIEW

Figure 4.63
The front panel of the new
subVI.

Figure 4.64
LabVIEW 2009 Icon Editor.

The LabVIEW 2009 Icon Editor is shown in Figure 4.64; the default icon
image has been replaced with one of the many glyphs now available in the Icon
Editor. Click OK to close the Icon Editor and return to editing the subVI. The new
icon is now used for the subVI.

Be sure to save the subVI from the LabVIEW editor (File / Save). The name
you use to save the subVI will be used to identify the subVI whenever it is used. In
this example it has been named Make Array.vi.

Now, if we want to create two arrays for plotting: an X array containing
20 elements ranging from �80 to �40, and a Y array 20 with elements ranging
from 240 to 360, we can call the Make Array subVI to create them as shown in
Figure 4.65 (block diagram) and Figure 4.66 (front panel).

Summary 133

Matrix Mathematics

• Adding Matrices or Arrays
• Transpose a Matrix or Array
• Multiplying Matrices or Arrays
• Condition Number
• Matrix Determinant
• Inverse Matrix

KEY TERMS array
Array container
array functions
array operations
auto-indexing
cluster
column
condition number
count terminal (N)
determinant
element by element

multiplication

For Loop
Icon Editor
Index Display
indexing disabled

(tunnel)
indexing enabled (tunnel)
inverse matrix
iteration terminal (i)
matrix
matrix math operations
matrix multiplication

(A×B function)

non-singular matrix
row
scalar
scalar multiplication
simultaneous linear

equations
square matrix
subarray
transpose
tunnel

Figure 4.66
The results of using the
subVI to create two arrays.

SUMMARY

Figure 4.65
Creating two arrays for
plotting using subVI calls.

134 Matrix Math Using LabVIEW

Arrays or Matrices?
In LabVIEW, both arrays and matrices are collections of related values, but a matrix
is always 2D, whereas an array can have any number of dimensions. Some Lab-
VIEW functions (e.g., graphing functions) required 1D arrays, so arrays must be
used with those LabVIEW functions.

Array Index Origin
Array (and matrix) indexing begins at zero

Creating an Array (front panel)

1. Put the Array container on the front panel:

Controls Palette / Modern Group / Array, Matrix & Cluster Group /
Array

2. Drop a control or indicator into the Array container (only one array element
will be visible):

Controls Palette / Modern Group / Numeric Group / Numeric
Control
Controls Palette / Express Group / Numeric Controls Group /
Num Ctrl

3. Resize the array to show the required number of elements
4. Hide the Index Display (optional): Right-click, Visible Items /

Index Display

Placing a Matrix on Front Panel
Move the Real Matrix control from the Array, Matrix & Cluster Group onto the
front panel.

Controls Palette / Modern Group / Array, Matrix & Cluster Group /
Real Matrix

Array Functions

• Array Max & Min
• Array Size
• Array Subset
• Search 1D Array
• Sort 1D Array
• Split 1D Array
• Reverse 1D Array
• Rotate 1D Array
• Delete From Array
• Insert Into Array
• Replace Array Subset
• Reshape Array
• Transpose 2D Array
• Cluster To Array
• Array To Cluster
• Matrix to Array
• Array to Matrix

Summary 135

Extracting a Subarray
Subsets of various size: Functions Palette / Programming Group / Array Group /

Array Subset

• Starting Row Index (0)—the index of the first row in the original array
that should be included in the subarray. The default value is (0) which is
the top row in the original matrix.

• Number of Rows (all)—the number of rows from the original array to
include in the subarray. The default is (all) rows (i.e., all rows after the
starting row).

• Starting Column Index (0)—the index of the first column in the original
array that should be included in the subarray. The default value is (0)
which is the left column in the original matrix.

• Number of Columns (all)—the number of columns from the original
array to include in the subarray. The default is (all) columns (i.e., all
columns after the starting column).

Single rows or columns: Functions Palette / Programming Group / Array Group /
Index Array

• Row Index (0)—the index of the row in the original array that should be
extracted.

• Column Index (0)—the index of the column in the original array that
should be extracted.

Note: Wire only the Row Index or Column Index, not both.

Adding Arrays
Requirement: Arrays must be same size
Process: Add element by element

Functions Palette / Mathematics Group / Numeric Group /
Add function

Transpose Array
Requirement: Any array can be transposed
Process: Interchange rows and columns

• Matrix function: Transpose Matrix

Function Palette / Mathematics Group / Linear Algebra Group /
Transpose Matrix

• Array function: Transpose 2D Array

Function Palette / Programming Group / Array Group /
Transpose 2D Array

Multiply an Array by a Scalar
Definition: scalar—single value (a number)
Requirement: Any array can be multiplied by a scalar
Process: multiply each element in array by scalar

Functions Palette / Mathematics Group / Numeric Group /
Multiply Function

136 Matrix Math Using LabVIEW

Matrix Multiplication
Requirement: Number of columns in the first array must equal the number of

rows in the second array. Product array will have as many rows as first array,
as many columns as second array.

Process: Multiply across the first matrix and down the second matrix, adding
terms.

Function Palette / Mathematics Group / Linear Algebra Group /
A × B Function

Element by Element Multiplication
Requirement: Arrays must be same size
Process: Multiply element by element

Functions Palette / Mathematics Group / Numeric Group / Multiply
Function

Note: The Multiply function performs element by element multiplication on arrays,
but matrix multiplication on matrices.

Condition Number
Requirement: Array must be square
Result: A small condition number indicates that a good solution is likely

Function Palette / Mathematics Group / Linear Algebra Group / Matrix
Condition Number

Determinant
Requirement: Array must be square
Result:A zero determinant indicates that matrix is singular (cannot be inverted)

Function Palette / Mathematics Group / Linear Algebra Group /
Determinant

Inverse Matrix
Requirement: Array must be square and non-singular
Result: matrix inverse

Function Palette / Mathematics Group / Linear Algebra Group /
Inverse Matrix

Solving Simultaneous Linear Equations
Requirement: Number of columns in the coefficient array must equal the

number of rows in the right-hand-side.
Process:

Function Palette / Mathematics Group / Linear Algebra Group / Solve
Linear Equations

For Loops
Commonly used to create arrays of calculated values.

• The constant wired to the N input (called the count terminal) instructs the For
Loop how many times to cycle.

[x] = [C]-1[r]

Self-Assessment 137

1. What LabVIEW function is used to extract a subarray from an array?
ANS: Array Subset function:

Functions Palette / Programming Group / Array Group / Array Subset

2. Can the following arrays be added? Why, or why not?
• A and C
• B and D
• C and E

ANS: Arrays must be the same size if they are to be added

• A and C—NO
• B and D—NO
• C and E—YES

A = J
1 2 3
2 1 4
3 4 7

K B = J
3 5 7
2 4 8
1 3 6

 K C = c2 3
5 7

d D = J
1
3
4
 K E = c1 5

8 3
d

SELF -ASSESSMENT

• The i is the loop index (called the iteration terminal.) The loop index is incremented
each time the For Loop cycles. Indexing starts at zero.

• If you wire an array control to an edge of a For Loop, the loop will cycle once for
every element in the array (this is termed auto-indexing).

• A wire connection to the boundary of a For Loop is called a tunnel.
• Tunnels can pass information into a loop in two ways:

• indexing enabled—one element of the array is passed into the loop with each
iteration

• indexing disabled—entire array is passed into the loop when the loop initializes
• Tunnels can pass information out of a loop in two ways:

• indexing enabled—an array of values is created
• indexing disabled—only the final value is sent out of the loop

Creating a subVI

1. Create a working VI containing the programming elements that will become
the subVI.

2. Select the programming elements that will become the subVI.

Note: The wires entering and leaving the selection will become the subVI
inputs and outputs.

3. Use menu options: Edit / Create subVI to create the subVI.
4. Double-click on the subVI icon to open the subVI for editing.
5. Double-click the icon in the upper right corner of the subVI to open the icon

editor.
6. Edit the icon, as desired.
7. Click OK to close the Icon Editor and return to editing the subVI.
8. Save the subVI from the LabVIEW editor (File / Save).

3. Can the following arrays be multiplied? If so, what will be the size of the product
array?
• A and C
• B and D
• C and B

ANS: In order to multiply, the number columns in the first array must
equal the number of rows in the second. The size of the result is equal to
the number of rows in the first array by the number of columns in the
second.

• [A] [C]—YES, result will be 3 × 2
• [B] [D]—NO
• [C] [B]—YES, result will be 2 × 4

4. Which LabVIEW function should be used to multiply arrays?
ANS: A × B function, located at

Function Palette / Mathematics Group / Linear Algebra Group /
A × B Function

5. When trying to solve simultaneous equations, is a large condition number a
good thing or a bad thing?
ANS: A bad thing—a large condition number suggests the solution may be
subject to round-off and truncation errors. A condition number near 1 is
ideal.

6. When trying to solve simultaneous equations, what does a determinant of zero
on the coefficient matrix tell you?
ANS: The coefficient matrix is singular; no solution is possible.

A3*2 = J
2 4
3 2
1 5

 K B2*4 = c2 1 3 4
4 6 1 3

d C2*2 = c2 3
5 7

 d D3*1 = J
1
3
4
K

138 Matrix Math Using LabVIEW

PROBLEMS
1. Create a VI that adds the following arrays, if array addition is possible.

a.

b.

c. E = J
2 7 1
3 5 2
1 4 9

 K F = J
6 - 2 4
- 1 3 6
0 2 7

K

C = J
2 7 1
3 5 2
1 4 9

 K D = J
3
5
1 K

A = c3.1 2.4
4.8 6.5

d B = c2.2 4.9
5.3 8.1

d

Problems 139

2. Create a VI that multiplies the following arrays, if multiplication is possible.

a. [A][B]

b. [C][D]

c. [D][C]

3. Create a VI that multiplies the following arrays, if multiplication is possible.

a. [E][F]

b. [G][H]

4. Check the determinant to see if the following arrays can be inverted. If inversion
is possible, create a VI that inverts the arrays.

a.

b.

c. F = J
2 4 1 7 8 9
1 3 1 9 2 6
8 2 4 1 3 5

K

G = J
2 7 1
2 7 1
1 4 9

K

E = J
2 7 1
3 5 2
1 4 9

K

G = J
2 7 1
2 7 1
1 4 9

K H = J
1 4 2 5
2 4 1 2
7 2 4 3

K

E = J
2 7 1
2 7 1
1 4 9

K F = J
2 4 1 7 8 9
1 3 1 9 2 6
8 2 4 1 3 5

K

C = J
2 7 1
3 5 2
1 4 9

 K D = J
3
5
1
K

C = J
2 7 1
3 5 2
1 4 9

 K D = J
3
5
1
K

A = c3.1 2.4
4.8 6.5

 d B = c2.2 4.9
5.3 8.1

d

140 Matrix Math Using LabVIEW

5. Check the condition number of the following arrays.

a.

b.

c.

6. The following matrix systems represent sets of simultaneous linear equa-
tions written in matrix form. Check the condition number and determinant
of the coefficient matrix, then, if a solution is possible, create a VI to solve
the equations.

a.

b.

c.

7. Solve the following sets of simultaneous linear equations, if possible. Check
the determinant of the coefficient matrix to see if a solution is possible.

a.

b.

c.

5a - 2b - 3c + 4d = 2

 a + 4b + 9c - 2d = 3

3a + 8b - 2c + 2d = 1

7a + 2b + c + d = 4

-x1 + 2x2 - x3 = 1

3x1 + 5x2 + 2x3 = 5

2x1 + 7x2 + 1x3 = 3

1x1 + 4x2 + 9x3 = 1

3x1 + 5x2 + 2x3 = 5

2x1 + 7x2 + 1x3 = 3

C = ≥ -2 4 1 3
1 -4 6 2
8 3 3 1
3 7 -3 2

 ¥ rhs = ≥-2
-4
-1
-5

¥
C = J

2 7 1
2 7 1
1 4 9

 K rhs = J
3
5
1
K

C = J
2 7 1
3 5 2
1 4 9

 K rhs = J
3
5
1
K

F = J
2 4 1 7 8 9
1 3 1 9 2 6
8 2 4 1 3 5

K

G = J
2 7 1
2 7 1
1 4 9

K

E = J
2 7 1
3 5 2
1 4 9

K

Problems 141

R1 R2

R3

I1 I2

I3

E

Figure 4.67
Series-parallel circuit.

8. LabVIEW provides two ways to solve sets of simultaneous linear equations:
inverting the coefficient matrix and multiplying by the right-hand-side vector,
and using the Solve Linear Equations function (actually a VI). Use both methods
to solve the following set of equations and compare the results. Do both
methods yield the same result?

9. Use Kirchhoff’s Laws to develop three equations to solve for the three cur-
rents (I1, I2, I3) indicated in Figure 4.67. The known quantities are as follows:
• E = 20 V
• R1 = 120 ohms
• R2 = 150 ohms
• R3 = 30 ohms

1x1 + 4x2 + 9x3 = 1

3x1 + 5x2 + 2x3 = 5

2x1 + 7x2 + 1x3 = 3

Data Acquisition with
LabVIEW

5.1 OVERVIEW OF DATA ACQUISITION

The ability to pull in data from an outside source, process the data, and send
signals back out to control devices is what sets LabVIEW apart from numerous
other software products that can be used to analyze data. In this chapter we
take a look at acquiring data with LabVIEW.

From the viewpoint of a researcher in a laboratory, the goal of data
acquisition is to capture data from one or more laboratory instruments on a
computer so that it can be analyzed and stored. If you design data acquisition
systems for a living, the term data acquisition refers to the process of automat-
ically importing data from one or more sensors or transducers directly into a
computer system. Some nomenclature will help:

• A sensor is a device that responds to a physical change and outputs an
electrical signal.

• A transducer is a device that converts energy from one form to another.

For example, a thermocouple is a sensor that generates an electromotive force
(emf) due to two dissimilar metals joined at the thermocouple junction. The
emf generated is a low-level voltage (typically millivolts), which, when sent
down a wire, becomes a voltage signal.A transducer can be used to convert the
low-level voltage to a higher voltage. Modern measurement devices routinely
bundle sensors and transducers together to generate and transform the output
signal to a useful form.

A simple system (see Figure 5.1) requires a transducer that outputs a signal,
data acquisition hardware (DAQ), and a computer. It sounds simple, and some-
times it can be—but there are lots of things that can make the process non-trivial.

First, not all laboratory instruments generate a signal that can be transmit-
ted over a wire. A thermometer, for example, is a simple device for measuring
temperature, but the temperature is measured visually by looking at the level
of fluid in the thermometer capillary. Reading the level with your eye is a great
way to get the temperature value into your brain, but visual readings are hard
to get into computer systems.

O b j e c t i v e s
After reading this chapter,
you will know:

how LabVIEW can be
used for automated data
acquisition
why signal conditioning is
often needed with data
acquisition systems
how data acquisition
hardware functions
how to write two types of
LabVIEW VIs for data
acquisition

acquiring data sets
acquiring data point-
by-point

5C H A P T E R

Fortunately, there are commonly available temperature sensors:

• Thermocouples output a low-level voltage signal that is related to the temperature
of the thermocouple junction.

• Resistance temperature devices (RTDs) have a varying resistance that depends on
the temperature of the device’s sensor. Running a known current through the
varying resistance generates a varying voltage that can be related to the temperature
of the RTD sensor.

Once the sensor is outputting a signal that can be sent through a wire to a computer,
there still may be a mismatch between the type or range of the signal, and the type
and range of signal the data acquisition system has been designed to handle. For
example,

• Some industrial transducers have been designed to output current signals in the
4–20 mA range. If the data acquisition system has been designed to accept voltage
signals, there is a signal type mismatch between the current signal from the trans-
ducer and the voltage signal required by the data acquisition system.

• If a transducer’s output is in the range 50–100 mV and the data acquisition system
has been designed to accept voltage signals in the range 0–10 V, there is a mismatch
between the transducer output signal range and the allowable input signal range of
the data acquisition system.

Signal conditioning may be required to adjust the signal type and range of the output
signal to align with the requirements of the data acquisition system (see Figure 5.2).

Section 5.1 Overview of Data Acquisition 143

Sensor/
Transducer

DAQ

Computer
Figure 5.1
Simple data acquisition
system.

ComputerTransducer

DAQ
Signal

Conditioning

Figure 5.2
Data acquisition system with
external signal conditioning.

Once the output signal from the instrument has been adjusted to align with the
requirements of the data acquisition system, data can be collected. The computer
driving the data acquisition system will need to know

• what signal(s) to measure
• how often to take readings
• how many readings to collect, or how long to continue reading the signal(s)

You configure the data acquisition process by providing this required information
prior to collecting data. The LabVIEW approach is to create a data acquisition task
that contains this information.

The collected data (termed a waveform in LabVIEW) is available to the
computer system and can be displayed, modified (e.g., digitally filtered), analyzed, or
simply stored.

The sections in this chapter provide additional detail on the steps commonly
involved in using a data acquisition system.

5.2 SENSORS, SIGNALS, AND SIGNAL CONDITIONING

The bottom line when it comes to measuring a variable of interest is identifying
some physical phenomenon that changes when the variable of interest changes. For
example, the volume of a fluid expands as its temperature increases, and that physi-
cal phenomenon has been utilized to create thermometers. While lots of physical
phenomena have been used for measurements, phenomena that can be related to an
electrical property are more useful for automated data acquisition systems.

A sensor is a device that converts a physical property change into an electrical
signal. Sensors are available for the following common measurements (and many
others):

• Temperature (thermocouple, RTD)
• Force or Pressure (strain gauge, load cell)
• Position (potentiometer)
• Light (phototransistor)
• Sound (microphone)

The basic output of a sensor is rarely ready to be connected directly to a data
acquisition system. Data acquisition systems are typically designed to measure
voltage, and have predefined input ranges. The ranges 0–10 V and �5 to �5 V are
common.

Note: We are assuming here that the signal from the sensor is an analog signal. Ana-
log simply implies that the signal level (e.g., voltage level) can vary continuously
(smoothly), as opposed to a digital signal which can take only finite values. Many
data acquisition systems have separate channels for analog and digital signals. The
majority of this chapter focuses on analog signals, although digital signals are
mentioned briefly.

5.2.1 Signal Conditioning

The process of modifying the output of a sensor is called signal conditioning.
Signal conditioning is often needed to make the output from a sensor compatible
with data acquisition systems. In the past, signal conditioning was routinely needed
and often a source of problems when collecting data using computers.Today, many
sensors output a signal that is compatible with common data acquisition systems.
Effectively, the engineers designing the sensors have built the signal condition-
ing right into the sensors so that the users of the sensors don’t have to do it
themselves.

Common reasons to condition signals include the following:

• dealing with noisy signals (Filtering)
• aligning a sensor output to a data acquisition system input constraint (amplification

and offset)

Dealing with Noisy Signals
While taking a measurement, a gauge needle bounces around if the signal is noisy.
Signal noise is very common, sometimes it comes from the system being measured,

144 Data Acquisition with LabVIEW

Section 5.2 Sensors, Signals, and Signal Conditioning 145

and sometimes it comes from the electronics in the sensor itself. There are several
ways to try to deal with a noisy signal:

• Ignore it.
• Try to modify the system.
• Get higher quality sensors.
• Use multiple measurements so that the measured results can be averaged.
• Filter the signal before it gets to the data acquisition system.
• Filter the signal after it has gone through the data acquisition system.

Determin ing Leve l in a Tank

One way to determine the height of fluid in a tank is to use sonar. A sonar system
(see Figure 5.3) bounces a sound wave off the surface and measures the time
between generating the sound pulse and detecting the echo. Using the speed of
sound, you can calculate the distance between the sonar unit and the liquid surface.
If the fluid in the tank is moving or bubbling, the signal from the sonar detector will
be very noisy.

emitter detector

output
signal

Time

L
ev

el

Figure 5.3
Sonar detector for level
measurement.

If the purpose for measuring the liquid level is simply to prevent the level from
rising higher than 80% of the tank height, a noisy signal may not matter. However, if
the goal is to report the level in the tank to the exact millimeter, the moving fluid
that is generating a noisy signal is a serious problem.

One approach to fixing the problem would be to modify the process to try to
reduce the fluid movement. Here are a couple of options:

• If the fluid entering the tank is being dropped onto the surface, the inlet pipe
might be extended so that the fluid enters below the liquid level.

• A baffle might be added to separate the level measurement area from the inlet
flow.

Trying to get better sensors won’t help because the noise is coming from the
physical process. (Actually, there could be a noisy sensor too, but you’d never know
it because of the bouncing fluid level.You can’t tell if you need to replace the sensor
until the moving fluid problem has been fixed.)

E X A M P L E 5 . 1

146 Data Acquisition with LabVIEW

Signal Filtering
Taking multiple measurements and averaging is a common way to try to reduce
signal noise.Averaging is a type of signal filtering. In this example averaging multiple
readings of liquid level can work as long as the average liquid level changes slowly
compared to the time required to take the multiple measurements; that is, the rate at
which the level fluctuates because of bouncing fluid must be fast compared with the
rate at which the tank level rises and falls. Other ways to say this include

• The frequency of the noise component of the signal must be significantly higher
than the frequency of the desired signal component (the average tank level).

• The signal-to-noise ratio must be significantly greater than one.

Other Types of Filters
Filtering the signal can be done before or after data acquisition. Modern filters
are designed to eliminate certain portions of a frequency spectrum. Figure 5.5 is an
example of a sine wave with a varying frequency from low frequency (left) to high
frequency (right).

Low-pass filters are commonly used to filter data signals. (This assumes that
the noise signal is at a higher frequency than the signal of interest.) A low-pass filter
allows low-frequency signals to pass through, but stops high-frequency signals. A
low-pass filter applied to the wave shown in Figure 5.5 might produce the results
shown in Figure 5.6.The cut-off frequency is an adjustable filter parameter. In practice,
you want the cut-off frequency set so that the filter leaves all of the desired signal
and removes all of the high-frequency noise. (Real filters generate a less perfect cut
off than the result shown in Figure 5.6.)

Time

L
ev

el

Figure 5.4
Averaging measurements
to deal with noisy signal.

Figure 5.5
Low frequency (left) and
high frequency (right)
oscillations.

Figure 5.6
Waveform after ideal
low-pass filtering.

If noise in the sonar detector’s signal is at a much higher frequency than the
level signal, a low-pass filter could be used to remove the noise.

High-pass filters allow the high-frequency signal components to pass, and filter
out the low-frequency components, as illustrated in Figure 5.7. High-pass filters are

Figure 5.7
Waveform after ideal
high-pass filtering.

E X A M P L E 5 . 2

Section 5.2 Sensors, Signals, and Signal Conditioning 147

less commonly used for signal conditioning than low-pass filters, but they are some-
times used to deal with low-frequency baseline drift on a signal.

Band-pass filters allow a specified frequency range to pass. Low and high cut-off
frequencies are set with band-pass filters.

Signal filtering can be done before or after the signal passes through the data
acquisition system. There are pros and cons for each approach:

Filtering after acquiring the signal (in the computer)
• PRO: No external filter is needed.
• PRO: Digital filters can be used (they are available in LabVIEW, and

easy to use).
• CON: Aliasing the signal is a possibility (aliasing is described below).

Filtering before data acquisition
• CON: An external filter is required (another expense, cut-off frequency

may be harder to adjust).
• PRO: Aliasing the signal is not a concern.

If you do not filter out high-frequency noise before sampling your data with a
data acquisition system, you could have a problem with aliasing. Aliasing is best
described by example.

Al ias ing

Ideally, you want to sample your signal fast enough that a smooth curve through the
sampled values faithfully reproduces the original signal. Another way to say this is
that you should always sample at a rate that is at least twice the frequency of the
highest frequency component in the signal. This ensures that there are at least two
data points on every bump in the original signal. If you sample at too low a frequency,
the sampled data can show artifacts that can mislead. This is called aliasing.

To demonstrate aliasing, we will create a noisy signal by combining a slow sine
wave (amplitude = 3, frequency = 1/2 π sec�1) and a fast cosine wave (amplitude = 1,
frequency of π sec�1).The individual components are shown in Figure 5.8 and the
combined noisy signal is shown in Figure 5.9.

1/0.2

Figure 5.8
The components of the noisy
signal.

148 Data Acquisition with LabVIEW

Note: In this example we are creating an artificial noisy signal with a signal-to-noise
ratio of 3:1.

To avoid aliasing, the data acquisition system should sample at a rate at least
twice the frequency of the fast cosine, or at least π sec�1 (3.18 sec�1) in this example.
To demonstrate the effect of aliasing, we will sample at a lower rate of 1.59 sec�1,
which is equal to the frequency of the fast cosine curve. The result is shown in
Figure 5.10. The dots represent the values recorded by the data acquisition system.
At this sampling rate, the recorded data look like a sine wave, but the range is wrong
(�2 to 4 rather than �3 to 3). This offset is due to aliasing.

1/0.1

Figure 5.9
The noisy signal sent to the
data acquisition system.

Figure 5.10
The sampled data values
taken every 0.63 seconds
superimposed on the noisy
signal.

But it gets worse. What happens if you sample at a slightly quicker rate, say a
frequency of 1.67 sec�1? Now, you start taking samples from different points on the
high-frequency cosine wave and the result is that the sampled data no longer even
look like a sine wave (see Figure 5.11).

Aliasing can ruin a data set. There are a couple of ways to avoid aliasing:

• Sample at a rate at least twice the frequency of the highest frequency component
in your signal.

• Filter out the high-frequency noise before sampling the data.
• Oversample and use digital filters after sampling the data.

Section 5.2 Sensors, Signals, and Signal Conditioning 149

With the fast data acquisition systems available today, oversampling is often
an option.With oversampling, you sample at a rate significantly faster than the highest
frequency component in your signal so that the acquired data still faithfully repre-
sent the signal, noise and all. Then you can use digital filters on the sampled data to
reduce the noise.

Figure 5.11
The sampled data values
taken every 0.60 seconds
superimposed on the noisy
signal.

Figure 5.12
Simulated ECG waveform.

In this application we will apply a high-pass filter to the ECG data to demonstrate
how such a filter can be used to reduce baseline drift.The effect of the filter is shown
in Figure 5.13, in which the baseline drift has been dramatically reduced after filtering.

A P P L I C AT I O N
High-Pass F i l ter ing to Remove Base l ine Dr i f t

Measurements on human patients are often subject to baseline drift (DC offset).
One common measurement is the electrocardiogram, or ECG. The ECG is a meas-
urement of heart electrical activity taken at the surface of the chest wall. There are
several inches of tissue between the signal source and the measurement site, and any
movement of those tissues can show up in the signal.

The ECG waveform shown in Figure 5.12 is a simulated waveform created
using the ECGSYN program developed by Patrick McSharry from the Department
of Engineering Science, University of Oxford, and by Gari Clifford of the Laboratory
for Computational Physiology at MIT.The program is available at www.physionet.org/
physiotools/ecgsyn/. Baseline drift is so common with ECG waveforms that it is
included in the simulation.The dashed line in Figure 5.12 is illustrating the extent of
baseline drift in this data set.

www.physionet.org/physiotools/ecgsyn/
www.physionet.org/physiotools/ecgsyn/

150 Data Acquisition with LabVIEW

The block diagram for the ECG Filtering VI is shown in Figure 5.14.

Figure 5.13
ECG Filtering VI, front panel.

Figure 5.14
ECG Filtering VI, block
diagram.

A Butterworth filter was used. It was configured as a high-pass filter with the
cut-off frequency set at 0.5 Hz.The sample rate of 256 Hz was set based on the sample
rate used to generate the simulated waveform.

Functions Palette / Signal Process Group / Filters Group / Butterworth
Filter.vi

You have to be careful when applying filters because they can radically change the
characteristics of the signal. But, when used judiciously, filtering can help make the
most significant characteristics of a signal easier to identify.

Section 5.2 Sensors, Signals, and Signal Conditioning 151

Note: Low-pass filtering is not the preferred way to eliminate baseline drift in ECG
signals. Instead, peak detection with spline fitting is used to define a curve through
the baseline, and this curve is subtracted from the entire ECG waveform. LabVIEW
can be used to perform this task as well.

Aligning Sensor Output to a Data Acquisition System Input
When the range of a sensor’s signal is different than the input range of the data
acquisition system, signal conditioning can be used to rescale the signal from the
sensor. Common changes include amplification and offset. Amplification causes
the span to increase whereas adjusting the offset causes all values in the span to be
increased or decreased by the same amount.

Consider the sensor signal range illustrated in Figure 5.15. The sensor outputs
voltages between 2 and 6 V.

• The range of the sensor output is 2–6 V
• The span is 4 V.

We will assume that the data acquisition system (DAQ) is designed to accept
values in the range 0–10 V.

If we amplify the sensor signal by a factor of 2, the span will increase from
4 to 8 V, as shown in Figure 5.16.

0 5 10

DAQ Range

volts

Sensor Range

2 6 Figure 5.15
Original sensor range,
before signal conditioning.

0 5 10

DAQ Range

volts

Sensor Range

4 12 Figure 5.16
After amplification of the
sensor output.

Now, the span (8 V) is closer to the span that the DAQ accepts (10 V), but the
ranges don’t line up. Any sensor values greater than 10 V would be misread by
the data acquisition system. We can align the signals by including a �3 V offset to
the amplified sensor signal. The result is shown in Figure 5.17.

0 5 10

DAQ Range

volts

Sensor Range

1 9 Figure 5.17
Sensor output after amplifi-
cation and offset.

Note: In this example the sensor signal was amplified first, and then offset to demon-
strate that amplifying a signal multiplies output values in the entire range by the
amplification factor. In practice, electronic systems may saturate at 12 V (this is
common, but not universal) so you must keep the amplified values within the working
range of the electronic equipment. We could have avoided sensor output values

E X A M P L E 5 . 3

152 Data Acquisition with LabVIEW

approaching 12 V by first applying an offset (of �1.5 V) and then amplifying by a
factor of 2. The resulting sensor range would still be 1–9 V.

Electronic equipment that has built in signal conditioning typically has controls
labeled zero and span. The zero control is used to adjust the offset, and the span
control is used to adjust the amplification.

Thermocouple S ignal Condi t ion ing

A very common type of signal that often requires signal conditioning is the voltage
output from a thermocouple. A thermocouple is made by connecting two dissimilar
metal wires by means of a welded junction. When two different metals are connected
they generate an emf and that emf signal changes as the temperature of the junction
changes. For a common Type K (Ni–Cr/Ni–Al) thermocouple, a temperature change
from 300 to 500°C causes the output voltage (referenced to 0°C) to change from 12.2 to
20.6 mV.1 The span of 8.4 mV is much smaller than the 10 V span common on many
data acquisition systems, so signal conditioning is commonly used for thermocouples.

If the signal conditioning system has a variable gain, you could increase the
span clear to 10 V by amplifying the thermocouple output signal by a factor of 1190.
More likely, the signal conditioning equipment will have present scale factors, such
as a factor of 1000. If a scale factor of 1000 is applied to the 8.4 mV signal, the
conditioned signal will have a span of 8.4 V, which would work nicely with a 0–10 V
data acquisition system, except that when the 12.2–20.6 mV signal is amplified by a
factor of 1000, the result is a signal ranging from 12.2 to 20.6 V.The span is appropriate,
but the actual voltage values are outside the working range of the data acquisition
system.We need to not only amplify the signal (change the span) but apply an offset
to the values as well (change the zero).

The signal conditioning for this thermocouple application includes the
following:

1. Adjusting the zero to slide the output signal from 12.2 to 20.6 mV, to change
the signal range to 0–8.4 mV.

2. Amplifying the signal by a factor of 1000 to generate a signal ranging from
0 to 8.4 V.

3. (Optional) Adjust the zero by 0.8 V to center the signal in the 0–10 V range.

The last step is optional and may not even be desirable, depending on your
application.

• If you want to maximize resolution, use the entire span available on the data
acquisition system (0–10 V in these examples).

• When the sensor output range is slightly smaller than the data acquisition system
range, values that are outside the expected sensor range can be detected. These
values might indicate, for example, that the sensor calibration has changed and
should be checked. If the sensor output range is set to be exactly the same as the
data acquisition system input range, there is no way to detect sensor values out-
side the expected range.

1G. W. Burns, M. G. (Scroger) Kaeser, G. F. Strouse, M. C. Croarkin, and W. F. Guthrie, Temperature-
Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types
Based on the ITS-90. National Institute of Standards and Technology Monograph 175; 1993.

Section 5.3 Data Acquisition Hardware 153

Sensor Calibration
Sometimes there is an equation relating a sensor’s output to the measured variable.
For example, the temperature at the junction of a thermocouple can be calculated if
the emf voltage (and thermocouple type) is known. If you use signal conditioning
to adjust the range of the sensor output signal, you must account for the offset and
amplification values to determine the measured value from the sensor output. This
is extremely important when the sensor output signal must be related to an external
standard, such as an NIST (National Institutes of Standards and Technology) refer-
ence. Signal conditioning that breaks the connection between an NIST reference
and the sensor’s output can turn a $20,000 instrument into a $200 instrument and
leave your data suspect.

In many cases, the offset and amplification values used in signal conditioning
are not precisely known. In other cases, there may be no equation linking the sensor
output to the desired measurement at all.The solution in either case is the same: you
must calibrate the sensor to determine the relationship between sensor output and
measured variable.

Calibration involves determining the sensor output for several known values of
the quantity to be measured. For example, ice water and boiling water are commonly
used to calibrate temperature sensors, and they work well when the desired measure-
ment range is close to 0–100°C. Ice water and boiling water would be totally inadequate
for calibrating a temperature sensor intended to measure values between 250 and
3000°C. And, using two points to create a calibration curve is only appropriate when
you know that the equation relating the measured value to the sensor output is linear—
this is rare. In general, calibration requires finding the sensor output for a set of known
values that cover the range of the desired measurements. Additionally, since sensor
performance can change over time, the sensor’s calibration should be checked peri-
odically by determining the sensor output while measuring a known quantity.

Note: A sensor must be recalibrated any time the zero or span settings are
changed.

5.3 DATA ACQUISITION HARDWARE

Data acquisition devices are designed to provide a communication bridge between
a laboratory instrument or sensor and a computer system.

When considering which data acquisition system to use, there are several
things to consider:

1. What types of signals will the data acquisition system need to handle?

• How many AI channels (analog inputs) are required
• How many AO channels (analog outputs) are required
• How many DI channels (digital inputs) are required
• How many DO channels (digital outputs) are required

2. Will your AI channels be wired as differential inputs or single-ended?
3. What level of precision is required in the analog-to-digital converter?
4. How fast will you need to take samples?

5.3.1 Types of Signals

Analog Input
The heart of most data acquisition systems is an analog-to-digital converter (ADC)
that can receive an analog signal and convert it to a digital form that can be used

154 Data Acquisition with LabVIEW

and stored on a computer system. The sensor’s analog signals are connected to an
analog input (AI). Many data acquisition systems provide several AIs (called
channels) that share a single ADC by means of a multiplexer.

Analog Output
Common data acquisition systems also provide analog output (AO) channels
which use a digital-to-analog converter (DAC) to convert a digital value specified
in the computer system (entered by the user or set programmatically) into a
voltage at a terminal on the data acquisition system’s connector panel. That
voltage can be sent to an instrument to cause it to take an action. For example, a
7 V output might be used to instruct an automatic valve to move the valve stem to
70% open. Or, the output voltage might set the rotation rate on a robotic vehicle’s
driveshaft.

Digital Input and Output
A digital input (DI) receives a signal that can have only two values, one representing
“high” and the other “low”. A digital output (DO) on the data acquisition system’s
connector panel will have either a high- or low-voltage value. The actual voltage
values are established by conventions such as TTL (transistor–transistor logic) and
CMOS (complementary metal-oxide-semiconductor). For TTL devices, a voltage
between 0.0 and 0.8 V is “low”, and a voltage between 2.0 and 5.0 V is “high”.

Note: The gap between 0.8 and 2.0 V offers protection against a noisy signal. If the
signal sent to a DI is approximately 0.7 V, but there is noise of �0.15 V, the signal will
still read as “low” even though the signal level sometimes exceeds the 0.8 V thresh-
old. It reads as “low” because the voltage never crosses the 2.0 V threshold for a
“high” level at the DI.

Digital signals are used for Boolean applications, and “low” and “high” voltage
levels typically have meanings like 0 or 1, true or false, open or closed, or start or
stop.

5.3.2 Differential or Single-Ended Inputs

AIs can be wired in several ways:

• Differential Inputs
• Single-Ended, Ground Referenced Inputs
• Single-Ended, Non-referenced Inputs

Differential Inputs
When AIs are wired as differential inputs, the two signal wires are connected to
two AI channels that are configured to work together to measure the voltage
difference between the two wires. Because two AI channels are needed for each
measurement, using differential inputs cuts the number of potential measurement
channels in half. There is a good reason for using them when possible: differential
inputs reject ground loop errors. Ground loops occur when the signal source and
the measurement system are both referenced to ground, but the grounds are at
different potentials. Grounds at differing potentials are actually pretty common.
When two instruments, each referenced to a different ground potential, are connected,
current will flow because of the voltage difference between the grounds. This is
called a ground loop, and it interferes with the signals you are trying to measure.
Differential inputs reject ground loop errors and are they way to go whenever
possible.

Section 5.3 Data Acquisition Hardware 155

Single-Ended Inputs
Single-ended inputs only require one AI channel per measurement and can work
under the right conditions. The requirements listed here are from National Instru-
ments’ document entitled Ground Loops and Returns.2

Requirements for Single-Ended Inputs

• Input signals are high level (greater than 1 V as a rule of thumb).
• Signal cabling is short and travels through a noise-free environment or is properly

shielded.
• All input signals can share a common reference signal at the source.

High input signal level means that even if there is some signal degradation due to
ground loops, there will still be a signal strong enough to measure. Keeping the
signal source and measurement system close together helps reduce the difference
between the ground potentials and reduces signal transmission noise. Having all
input signals share a common reference at the signal source keeps from creating
additional ground loops between the various input signals.

Single-ended inputs still have two signal wires connected to the data acquisition
system, but only one connects to an AI port. The other wire connects to AIGND
(measurement system ground) or AISENSE, which is not automatically connected
to measurement system ground.These wiring configurations are termed Single-Ended,
Ground Referenced (connected to AIGND) and Single-Ended, Non-referenced
(connected to AISENSE).

• When your signal source is not referenced to building ground (termed floating),
which is common with battery powered devices, you should connect to AIGND to
reference the AI signal to the measurement system ground.

• When your signal source is connected to building ground (grounded), which is
common with electrical devices using three-prong plugs, you should connect to
AISENSE to reference the AI signal to the source ground.

Finding and fixing ground loop problems can be a challenge. Using differential
inputs can help avoid the problem.

5.3.3 Analog to Digital Converters

Once the signal passes through the AI port, it must be converted to a digital value
corresponding to the signal voltage. An ADC performs this action.

One of the characteristics of an ADC is the number of bits used to describe the
voltage level.The higher the bit count, the greater the resolution of the ADC. Common
ADCs are 12–22 bit devices, but to describe how ADCs work, we will begin with a
much simpler ADC.

Consider a two-bit ADC. Each bit can be either on or off, so there are four
possible combinations (00, 01, 10, 11). These four combinations correspond to digital
values 0 through 3. The ADC will determine where the signal voltage falls in the AI
channel’s allowable signal range and assign a digital value based on the input voltage.

If the AI channels are designed with an allowable signal range of 0–10 V,
spreading 10 V over the four possible digital values means the signal voltages

2Ground Loops and Returns, National instruments NI Developer Zone document, http://zone.ni.com/
devzone/cda/tut/p/id/3394,retrieved 6/4/2009.

http://zone.ni.com/devzone/cda/tut/p/id/3394
http://zone.ni.com/devzone/cda/tut/p/id/3394

156 Data Acquisition with LabVIEW

between 0 and 2.5 V would be assigned the digital value 0, signal voltages between
2.5 and 5 V would be assigned the digital value 1, and so on.

For example, if an input signal was 6.5 V as shown in Figure 5.18, that value
falls between 5 and 7.5 V, and so would be assigned a digital value of 2 by a two-bit
ADC, but the voltage would be reported as the average voltage assigned to that bit,
6.25 V as shown in Figure 5.18.

0 0

0 1

1 0

1 1

0 V

10 V

input signal , 6 .5 V
Digital value, 1 0
in binary, or 2 in
decimal

Reported as 6 .25 V

Figure 5.18
Analog to digital
conversion.

Similarly, an input voltage of 2.6 V (Figure 5.19, upper panel) would be assigned
a digital value of 1 by a two-bit ADC and reported as 3.75 V. But so would an input
voltage of 4.5 V (Figure 5.19, lower panel).A two-bit ADC cannot tell the difference
between 2.6 and 4.5 V, and would record both as 3.75 V. To get better resolution, we
need more bits.

0 0

0 1

1 0

1 1

0 V

10 V

input signal, 2.6 V Reported as 3 .75 V

0 0

0 1

1 0

1 1

0 V

10 V

input signal, 4.5 V
Digital value , 0 1
in binary, or 1 in
decimal

Digital value , 0 1
in binary, or 1 in
decimal

Reported as 3 .75 V

Figure 5.19
Analog to digital
conversion, resolution.

More bits allow an ADC to more precisely describe the signal value. For
example, 7 bits can take on 128 values (0–127). The 10 V allowable signal span can
now be divided into 128 parts, so a 7-bit ADC can provide a resolution of better than
0.1 V (actually 0.078 V � 10 V / 128).

An ADC’s resolution is related to the number of bits and the allowable input
voltage range (expressed in terms of the DAQ’s allowable span) as follows:

For the example used here, the SpanDAQ = 10 V, and Nbits = 7, so RADC = 0.078 V.
A 12-bit ADC can provide a resolution of 2.4 mV (assuming a 10 V allow-

able signal span). With 14 bits, the resolution becomes 0.61 mV. Fourteen bits are
considered the minimum number of bits that will allow a thermocouple to be
sampled without amplification. Twenty-two bits are available and can resolve
0.0024 mV differences, but you must have a very clean signal to make the extra
resolution useful.

RADC =
SpanDAQ

2Nbits

Section 5.3 Data Acquisition Hardware 157

ADCs with more bits carry higher prices; how do you know what you need?
Consider the characteristics of your input signal. For example, a signal of 4.523 ± 0.042 V
is uncertain at the 10 mV level. A 12-bit ADC that can tell the difference between a
4.522 V signal and a 4.525 V signal is adequate.

5.3.4 Sample Rate

Another consideration when selecting a data acquisition system is the required
sampling rate. The analog-to-digital conversion process takes a finite amount of
time. If you want to take one sample a second, any data acquisition system will work
fine. If you need to sample each of 32 AI channels at 1000 samples a second (total of
32,000 samples/second), that is a tougher challenge but there are data acquisition
systems that can handle it.

Most data acquisition systems use a multiplexer (MUX) between the AI ports
and the ADC so that one ADC is used to handle all of the AI channels. This is illus-
trated in Figure 5.20.

MUX ADC
AI-0

AI-1

AI-2

AI-3

Figure 5.20
A multiplexer (MUX) allows
one DAC to convert multiple
input signals.

Whenever one ADC is used for all AIs (a very common situation), the total
number of samples on all AI channels per second must be considered, not just the
sample rate on one channel.

5.3.5 Installing a Data Acquisition System

A data acquisition system is a hardware extension of a computer system and must
be installed like other hardware components like printers and hard drives. The
process involves physical installation of the device and the installation of appropriate
drivers. There are a variety of ways to connect a computer to a DAQ system:

• PCI
• PCI Express
• USB
• PCMCIA
• Ethernet
• Wireless Ethernet
• PXI, PXI Express
• Firewire

Some of the methods are geared toward ease of use (e.g., USB), some are for speed
(e.g., PCI Express), and some are designed to meet the rugged demands of industrial
electronic systems (e.g., PXI, PXI Express).

Multiple data acquisition devices can be installed on a single computer system.
During the installation and configuration process, each data acquisition device is
assigned a unique device number.

158 Data Acquisition with LabVIEW

5.4 USING LABVIEW TO COLLECT DATA

Operating a data acquisition system requires software, and that’s where LabVIEW
comes into play; LabVIEW was designed to work with National Instruments data
acquisition systems.

Before you can collect data you need to decide the following:

• Which data acquisition device will be used?
• Which AI channel(s) will be used?
• How often will each channel be sampled?
• How many samples should be collected?

In LabVIEW, a request for a data acquisition device to collect one or more
data values is called a task.When you define a data acquisition task, you provide the
answers to the questions listed above.

A task can be defined from inside LabVIEW using the DAQ Assistant VI or from
outside of LabVIEW using National Instruments Measurement and Automation
Explorer. Either way, you can test the tasks as you define them, which helps get the
tasks configured correctly.

5.4.1 Configuring Tasks Using the Measurement and Automation Explorer

The National Instruments Measurement and Automation Explorer can be opened in
several ways:

• From the Windows Start menu, use

Start / All Programs / National Instruments / Measurement and
Automation

• From the LabVIEW Getting Started dialog, use

Tools / Measurement & Automation Explorer . . .

• While editing a LabVIEW VI, use

Tools / Measurement & Automation Explorer . . .

However the Measurement and Automation Explorer is started, it opens and looks
something like Figure 5.21. The items in the Configuration list may vary, depending
on what is installed on your computer system.

In the Configuration list,

• The Data Neighborhood node can be expanded to show all previously defined
data acquisition tasks.

• The Devices and Interfaces node can be expanded to show all data acquisition
devices installed on the computer.

In Figure 5.22, the Devices and Interfaces node has been expanded to show
that there is one data acquisition device installed, an NI USB-6009 data acquisi-
tion system installed as “Dev 1” (provided by National Instruments for testing
associated with this text). This device has 8 single-ended (4 differential) AI ports,
2 AO ports, and 12 digital IO ports and connects to a computer via a USB port

Section 5.4 Using LabVIEW to Collect Data 159

Figure 5.21
NI Measurement and Automation Explorer.

Figure 5.22
Expanding the Devices
and Interfaces node.

(great for laptops). It utilizes a 14-bit ADC and can handle up to 48 K samples
per second.

If you right-click on the device name in the list, a pop-up menu appears (see
Figure 5.23) that offers some useful options.

160 Data Acquisition with LabVIEW

• Self-Test—Allows you to quickly see if the data acquisition system is connected
and working.

• Test Panels . . .—Opens a dialog to allow you to quickly test the inputs and out-
puts on a device.

• Reset Device—Resets the device back to factory default values. (Sets AO values
back to 0 V, for example.)

• Create Task . . .—Opens the dialog that is used to configure a data acquisition task.
• Device Pinouts—Shows how the connections to the data acquisition device are

organized.

Testing the Data Acquisition Device
The Self-Test is quick and easy and should be used at least once right after installing
the device just to ensure that it is communicating correctly with the computer.

The Test Panels . . . dialog allows you to see what is coming in through your AI
channels, and what is being sent out through your AO channels. Together these can
be used to test the AI channels.When you instruct an AO channel to output a voltage,
it will continue to do so until you instruct it to output a different value, reset the
device, or power down the device. You can wire the AO output to any of the AI
ports to make sure the AI ports are receiving and reporting the correct values.

To use the Analog Output test panel (see Figure 5.24),

1. Select the Analog Output panel on the Test Panels dialog.
2. Select the Device and Channel Name that you want to use.
3. Verify the Mode of the output signal. On the USB-6009 device, DC Value is

the only option.
4. Set the desired Output Value either by typing the value in the text box or by

using the slider control.
5. Verify that the Output Limits are correct for your device. If you attempt to

output a value outside the allowable range for the device, you will get an error
message.

6. Click the Update button to have the selected AO begin outputting the indicated
voltage.

You should be able to check the output voltage with a voltmeter, or you
can send the AO signal into an AI to check the value. To see what is entering

Figure 5.23
Pop-up menu of device
options.

Section 5.4 Using LabVIEW to Collect Data 161

Figure 5.24
Test Panels—setting
an AO value.

your AI ports, use the Test Panels dialog and the Analog Input panel (shown in
Figure 5.25).

The output from AO-0 (analog output zero) was connected to AI-1 (analog
input one), which was wired as a differential input. As shown in Figure 5.24, AO-0
was instructed to output 3 V. AI-1 was tested to verify that both the AO and AI are
working correctly.The result is shown in Figure 5.25.
To use the Analog Input panel, do the following:

1. Choose the Device and Channel Name that will be tested. In Figure 5.25, channel
AI-1 was used rather than the default,AI-0.

2. Select the Mode for data collection. In this example, On Demand was used
meaning the data collection will begin when the Start button is clicked and
continue until the Stop button is clicked. The values are graphed as collected.
Other options include the following:

• Finite—collects the number of samples specified in the Samples to Read
field at the sample rate specified in the Rate (Hz) field. Collection begins
when the Start button is clicked, and stops when the specified number of
samples has been collected. The values are graphed once the entire data set
has been collected.

• Continuous—collects the number of samples specified in the Samples to
Read field at the sample rate specified in the Rate (Hz) field. Collection
begins when the Start button is clicked. However, for continuous sampling,
once one batch of samples has been collected and displayed, data acquisition
continues and another batch is collected. Data collection continues until the
Stop button is clicked.

162 Data Acquisition with LabVIEW

3. Select the Input Configuration used with the analog input. Since AI-1 was
wired as a differential input, that option was selected in the Input Configuration
field. Options include the following:

• Differential—Two AI ports are used and a voltage difference is measured.
• RSE—Referenced single-ended.The source signal wire that is not connected

to the AI input is connected to the ground on the data acquisition device.
• NRSE—Non-referenced single-ended. The source signal wire that is not

connected to the AI input is connected to the AISENSE connection on the
data acquisition device.This connects the negative side of the AI measurement
to the sensor ground. (This is not an option for the USB-6009 device used in
these examples.)

• Pseudodifferential—The signal wire is connected to the positive side of the
AI measurement, and the negative side is connected to the sensor ground.A
small resistor is used to minimize current between the sensor ground and
the data acquisition device ground. (This is not an option for the USB-6009
device used in these examples.)

4. The Input Limits are used to scale the graphical display.
5. Click the Start button to begin data acquisition.

After testing the device, you typically create a data acquisition task to prepare
for data collection using LabVIEW.

Creating Data Acquisition Tasks from Measurement and Automation Explorer
You can create a data acquisition task either from the Measurement and Automation
Explorer or from inside LabVIEW using the DAQ Assistant Express VI. Creating a
task from the Measurement and Automation Explorer is shown first.

Figure 5.25
Testing an Analog Input
(Channel 1).

Section 5.4 Using LabVIEW to Collect Data 163

In the Configuration List, expand the Devices and Interfaces node to show the
NI-DAQmx devices installed on your computer. Right-click on the device that will
be used in the new task, and select Create Task . . . from the pop-up menu (illustrated
in Figure 5.26).

The Create Task dialog collects information in several steps. The first step is
shown in Figure 5.27. This part of the dialog is used to provide basic information on
what the task is designed to do.

Figure 5.26
Opening the Create Task
dialog from the
Configuration list.

Figure 5.27
Create Task dialog, page 1—
basic information.

When you click on the Voltage option (Acquire Signals/Analog Input/Voltage),
the second page of the Create Task dialog (Figure 5.28) will open to ask which
channel(s) will be used to read the voltage values. In Figure 5.28, AI-1 has been

164 Data Acquisition with LabVIEW

selected. Once all needed AI channels have been selected, click Next > to move to
the third page of the Create Task dialog, shown in Figure 5.29.

Figure 5.28
Create Task dialog, page 2—
data channel.

Figure 5.29
Create Task dialog, page 3—
assigning a task name.

The task name allows the task to be stored. In this example the task has been
named “Task01”.When you click Finish, the new task will be shown in the Measure-
ment and Automation Explorer, as shown in Figure 5.30. Many of the settings for
the task have been assigned default values; they can be edited in the Explorer.

Comments on Figure 5.30:

1. The new task is now listed in the Data Neighborhood section of the
Configuration list.

2. The basic data to be collected are shown in the Channel Settings list. In this
example, only one channel of AI will be used, and we indicated in Figure 5.27
that we would collect voltage values.

Section 5.4 Using LabVIEW to Collect Data 165

3. Click the Details button to see which device and AI channel are associated
with this task.

4. When you move the mouse pointer over the various fields, information about
the fields is displayed in the Explorer.

5. You must indicate how the AI has been wired. Here, a Differential input has
been used.

6. The Acquisition Mode indicates how the data will be collected. Options include
the following:

• 1 sample (On Demand)—collects one sample each time the task is called.
• 1 sample (HW Timed)—collects one sample based on a hardware clock.
• N Samples (default)—collects the number of samples specified in the

Samples to Read field each time the task is called.
• Continuous Samples—causes data collection to continue until the task is

stopped.

7. Samples to Read—indicates how many samples should be collected each time
the task is called.

Figure 5.30
Task01 displayed in the Measurement and Automation Explorer.

166 Data Acquisition with LabVIEW

8. Rate (Hz)—indicates how fast the samples should be collected. The default is
1 kHz, or 1000 samples per second. In Figure 5.30 the sampling rate has been
reduced to 100 samples per second.

9. At the top of the task pane in the Measurement and Automation Explorer,
there are buttons that allow you to Run the task to see if it works correctly,
and to Save the task.

Once the task has been configured, it can be used within LabVIEW.

Creating Data Acquisition Tasks inside LabVIEW—DAQ Assistant Express VI
You can also create a data acquisition task directly from LabVIEW using the DAQ
Assistant Express VI, which is located on the Function Palette:

Function Palette / Measurement I/O Palette / DAQmx—Data
Acquisition Group / DAQ Assistant Express VI

When the DAQ Assistant Express VI is placed on a block diagram, it automatically
opens the Create Task dialog as shown in Figure 5.31.

Figure 5.31
Create Task dialog, page 1—
called using DAQ Assistant.

This is the same dialog as shown in Figure 5.27, except that the Title indicates
that it has been called from the DAQ Assistant Express VI. The process to create a
task is the same as before:

1. Provide basic information—we will acquire voltage values (see Figure 5.27).
2. Select Device and Channel(s)—we will use “Dev1” and Channel AI-1 (see

Figure 5.28).

Next, the DAQ Assistant opens (Figure 5.32); it looks a lot like the task editor
in the Measurement and Automation Explorer.

In the example shown in Figure 5.32, the task has been set up to collect 1000
samples at a rate of 500 samples per second when the task is called. When the OK
button is clicked to close the DAQ Assistant, the DAQ Assistant Express VI
appears on the block diagram, as shown in Figure 5.33. If you need to modify the
task configuration, double-click on the DAQ Assistant icon to open the DAQ
Assistant dialog.

Section 5.4 Using LabVIEW to Collect Data 167

Figure 5.32
DAQ Assistant.

Figure 5.33
The DAQ Assistant Express
VI on the block diagram
after configuring the task.

The DAQ Assistant icon shown in Figure 5.33 indicates numerous inputs and
outputs. Expanding the icon provides more information (Figure 5.34).
The DAQ Assistant outputs include the following:

• Data—the collected voltage values.
• Error Out—access to the LabVIEW error system (could be used to programmat-

ically respond to a data collection error).
• Task Out—access to the data acquisition task (could be used to force the task to

stop, for example).

168 Data Acquisition with LabVIEW

The DAQ Assistant inputs include the following:

• Error In—access to the LabVIEW error system (could be used to prevent data
collection if an error was detected before the task started).

• Number of Samples—the number of samples to be collected each time the task is
called. This value was set using the DAQ Assistant dialog (1000 in Figure 5.32).

• Rate—the sample rate in Hz. Also set using the DAQ Assistant dialog (500 in
Figure 5.32).

• Stop—This is a Boolean variable that indicates how the task should complete.
“True” causes the task to stop and release resources when the DAQ Assistant VI
terminates. “False” is used to indicate that data acquisition is to be continuous.

• Timeout—This value indicates how long to wait for the DAQ Assistant VI to
complete the task. If the task is not completed in less than Timeout seconds, an
error is generated.The Timeout value is specified on the Advanced Timing Panel on
the DAQ Assistant. The default value is 10 seconds; if you plan to collect data over
a long period of time, the Timeout value will have to be changed from the default.

You may have noticed that when the data acquisition task was created using the
DAQ Assistant, we were never asked to assign a name to the task.Tasks created using
the DAQ Assistant are stored with the VI that contains the DAQ Assistant icon; they
do not appear in the list of stored tasks in the Configuration list in the Measurement
and Automation Explorer’s Data Neighborhood node. This means you must go
through the DAQ Assistant to edit the task created using the DAQ Assistant.

5.4.2 Acquiring Data with LabVIEW

Once the data acquisition task has been configured, using either the Measurement
and Automation Explorer or the DAQ Assistant Express VI, the task can be used
within LabVIEW to collect data. Data Collection using the DAQ Assistant is
shown first.

Data Collection Using the DAQ Assistant
Once the DAQ Assistant icon appears on the block diagram, the VI can be run and
data will be collected. But you probably want to add a couple of controls to the VI
to display the collected data, as shown in Figure 5.35.

Figure 5.35
Data Acquisition VI,
front panel.

It’s not a very interesting acquired signal, the AI is still measuring the 3 V output
being generated by AO-0 (see Figure 5.24).

The collected values have been shown both as an Array of double precision values
and as a Waveform.The data collected using the DAQ Assistant are dynamic data, and

Figure 5.34
The DAQ Assistant icon,
expanded.

Section 5.4 Using LabVIEW to Collect Data 169

contain time information as well as voltage information. This time information is
ignored when the values are displayed as a simple array.

The block diagram for the Data Acquisition VI is shown in Figure 5.36. Notice
that when the Data output was wired to the Array input, a converter was automati-
cally added to change the data type from dynamic to array. This Convert from
Dynamic Data converter essentially strips out the time information and leaves only
the voltages.

While the DAQ Assistant input values were specified using the DAQ Assistant
dialog, you can still send other values to the DAQ Assistant inputs. For example, if
you decide to collect 2000 samples at a rate of 200 samples per second, you could
double-click the DAQ Assistant icon to open the DAQ Assistant dialog to change
the parameters, or you could simply send the new values into the DAQ Assistant
on the block diagram. This latter approach is illustrated in Figures 5.37 and 5.38.
The AI was also wired to an external source to acquire a slightly more interesting
signal. Notice that the time span shown in the front panel waveform graph is now
10 seconds.

Figure 5.36
Data Acquisition VI, block
diagram.

Figure 5.37
Data Acquisition block
diagram modified for
2000 samples at
200 per second.

Figure 5.38
Front panel of modified
Data Acquisition VI.

170 Data Acquisition with LabVIEW

Data Collection Using Saved Tasks
When the Measurement and Automation Explorer is used to create and save a task,
the saved task can be used within LabVIEW. Earlier in the chapter we created a
task called “Task01” that reads 1000 values through AI-1 at a rate of 100 samples per
second. The block diagram shown in Figure 5.39 uses that task.

Figure 5.39
Block diagram of Data
Acquisition with Task VI.

When you are using a stored task, the procedure is to

1. Start the task using DAQmx Start Task.vi
2. Use the task, in this case using DAQmx Read.vi
3. Stop the task using DAQmx Stop Task.vi
4. Clear the task using DAQmx Clear Task.vi

These data acquisition VIs are available in the Measurement I/O Group on
the Functions Palette:

Functions Palette / Measurement I/O Group / DAQmx—Data
Acquisition Group

Stopping the task makes the task unavailable unless it is restarted, while clearing
the task releases the resources reserved for the task for reuse.

• If the DAQmx Start Task.vi and DAQmx Stop Task.vi are not used, the task will
be started and stopped automatically when the DAQmx Read.vi runs. If DAQmx
Read.vi is used inside a loop, starting and stopping the task each time the DAQmx
Read.vi runs will severely degrade performance.

• If the DAQmx Clear Task.vi is used the task will be stopped before being cleared.
Therefore, it is not necessary to explicitly stop the task before clearing it.

The DAQmx Read.vi is a polymorphic VI; it can be used for the following:

• Analog or digital inputs
• Single or multiple channels
• Single or multiple samples
• Results can be returned as array values (voltages only) or waveform (time informa-

tion and voltages)

In Figure 5.39, the DAQmx Read.vi was used to sample:

• AIs
• Single channel
• N samples
• Results returned as waveform

Section 5.4 Using LabVIEW to Collect Data 171

By returning the results as a waveform, the time displays correctly on the
Waveform Graph (shown in Figure 5.40).

Figure 5.40
Data Acquisition with Task
VI, front panel.

Using the Data as It Is Collected
The examples shown so far collect a batch of data and then provide access to the
results. If your goal is to collect data for later analysis, that approach works well.
However, if you need to use the data as it is collected in your LabVIEW program,
you will need to acquire the data values point by point and accumulate the results as
they are used.

For the next example, we will create two saved tasks:

• Read_AI01_1samp—reads one sample through AI-1, on demand.
• Write_AO0_1samp—writes one value to AO-0, on demand.

With these two tasks we can read or write single values, and, using a loop in
LabVIEW, we can collect or write as many values as we need.

The basic process required to read one voltage value is shown in the block
diagram in Figure 5.41.The task name is sent to the Start Task VI to instruct LabVIEW
to prepare to use the data acquisition system. The Read VI reads the analog input
and outputs the acquired voltage value. The Clear Task VI stops the task and releases
the resources used to handle data acquisition.

Figure 5.41
Reading one voltage value
using a stored task.

Every time the VI shown in Figure 5.41 is run, one value is collected and
displayed.To collect a preset number of values, we can build the read step into a For
Loop as shown in Figure 5.42. Notice that the start task and clear task actions are
outside the For Loop. It is very inefficient to start and stop the task each time you
read a value. Instead, start the task once, read the values as often as needed, and
then stop and clear the task when it is no longer required.

The Result indicator displays the most recently read voltage value, while the
Array indicator holds the entire array of read values, and is displayed only after the
For Loop terminates. The front panel for this VI is shown in Figure 5.43.

172 Data Acquisition with LabVIEW

There is no timing associated with the data acquisition using the VI shown in
Figure 5.42; LabVIEW will collect the 200 values as fast as it can. To slow down the
data acquisition process, you can include a Wait function in the For Loop, as shown
in Figure 5.44.

Figure 5.42
Reading 200 values with
a For Loop.

Figure 5.43
Front panel for data acqui-
sition using For Loop VI.

Figure 5.44
Adding a 10 ms wait to the
For Loop.

With the added wait, the VI shown in Figure 5.44 will take one sample approx-
imately every 10 ms for a period of 2 seconds. The “approximately” is there because
the 10 ms wait does not guarantee that the samples will be collected exactly once
every 10 ms, but if the data acquisition process is fast the sample rate should be very
close to one every 10 ms.

To check the timing, we can build the For Loop into a series of sequence
frames and check the clock tick value before and after the For Loop, as shown
in Figure 5.45. If the timing is perfect, we would expect the elapsed time to be
2000 ms.

Using the VI shown in Figure 5.45 with the USB-6009 data acquisition device,
we found that the time elapsed ranged from 1992 to 2026 ms. The timing is not
perfect, but it is close to 10 ms per sample.

Section 5.4 Using LabVIEW to Collect Data 173

Figure 5.45
Using a sequence structure
to test sample timing.

Figure 5.46
VI used to activate a pump
when tank level is high,
front panel.

Figure 5.47
VI used to activate a pump
when tank level is high,
block diagram.

The reason for reading one sample at a time is that we can use the results as they
are available. The VI shown in Figures 5.46 and 5.47 monitors a tank level (AI) and
writes an AO to 0 or 1 V based on whether the AI value is less than or greater than 5 V.
The AO would be used to switch on an outlet pump whenever the tank level is over 5 m.

Notice that a While Loop has been used in Figure 5.47 so that tank values are
monitored continuously until the STOP button is clicked.

This chapter has presented the basics of data acquisition using LabVIEW.
Proficiency comes with much practice.

174 Data Acquisition with LabVIEW

KEY TERMS AI (analog input)
aliasing
amplification
analog signal
analog-to-digital

converter (ADC)
AO (analog output)
band-pass filters
bits
calibration
channel
CMOS (complementary

metal-oxide-
semiconductor)

DAQ Assistant Express VI
data acquisition
data acquisition system
(DAQ)
DI (digital input)
differential input

digital signal
digital-to-analog

converter (DAC)
DO (digital output)
dynamic data
electromotive force (emf)
filter
floating
grounded
ground loop
high-pass filters
low-pass filters
Measurement and

Automation Explorer
multiplexer (MUX)
offset
oversampling
range
resistance temperature

device (RTD)

sampling rate
sensor
signal
signal conditioning
signal-to-noise ratio
single-ended, ground

referenced input
single-ended,

non-referenced input
signal filtering
source
span
task
thermocouple
transducers
TTL (transistor–transistor

logic)
voltage difference
waveform
zero

S U M M A RY

Data Acquisition
The process of automatically importing data from an instrument (source) directly
into a computer.

Signals

• Analog—vary continuously (smoothly)
• Digital—take only specific values

Signal Conditioning

• Filtering
• Low-pass filters—remove high-frequency components, often used to

remove high-frequency noise
• High-pass filters—remove low-frequency components
• Band-pass filters—allow specified range of frequencies to pass

• Amplification and Offset
• Range—the expected signal range, minimum to maximum (e.g., 4–10 V)
• Span—the difference between the minimum and maximum expected

signal (e.g., 6 V)
• Amplification adjusts the signal span
• Offset slides the entire signal range (a zero control is often used to adjust

the offset)

Aliasing
Sampling at too low a frequency can create artifacts in the sampled data.
Oversampling is a technique of sampling fast enough to record the noise as well as
the desired signal. When oversampling is used, filtering after data acquisition can be
used without danger of aliasing.

Self-Assessment 175

Calibration
Relating the measured sensor output to several known values of the quantity to
be measured. The known values should cover the entire range of the anticipated
measurements.

Data Acquisition Hardware

Channels

• Analog Input (AI)
• Analog Output (AO)
• Digital Input (DI)
• Digital Output (DO)

Wiring

• Differential Inputs—measure voltage difference, reject ground loop errors
• Single-Ended, Ground Referenced Inputs—measure voltage relative to ground
• Single-Ended, Non-referenced Inputs—measure voltage relative to ground

Precision (related to number of bits in ADC)
Sample Rate (the number of samples to be collected in a given period)

Data Acquisition Tasks
Can be created two ways:

• outside of LabVIEW using Measurement and Automation Explorer
• inside of LabVIEW using DAQ Assistant Express VI

A data acquisition task defines:
• what signal(s) to measure
• how the AI connections will be wired
• how often to take readings
• how many readings to collect or, how long to continue reading the signal(s)

Data Acquisition with LabVIEW
There are two basic approaches:

• Collect a batch of data, then process it.
• Collect data point by point and process each value as soon as collected.

Collecting a Batch of Data—task is easy to create from LabVIEW using DAQ
Assistant Express VI.
Collecting Data Point by Point—use Measurement and Automation Explorer to
create a task that collects one data point on demand. Then, inside LabVIEW:

• identify the task
• start the task
• use the task to read one value—this step is probably in a loop
• stop the task

1. What are the minimum components needed for automated data acquisition?
ANS: A signal source, a data acquisition device, and a computer.

2. What is the difference between an analog signal and a digital signal?
ANS: Digital signals take on only certain values while analog signals can vary
continuously (smoothly). Digital signals associated with digital inputs and
outputs take on only two values (high and low).

S E L F - A S S E S S M E N T

176 Data Acquisition with LabVIEW

3. Why is signal conditioning sometimes needed before a signal can be connected
to a data acquisition system?
ANS: Signals may be noisy, or the signal range may not align with the input
range of the data acquisition system.

4. Which type of filter is most commonly used to remove high-frequency noise
from a signal?
ANS: A low-pass filter.

5. What is the difference between a signal’s range and its span?
ANS: The span indicates the difference between the maximum and minimum
values of the signal, but not the minimum and maximum values themselves.
The range specifies the minimum and maximum signal values.

6. Describe how amplification and offset are used to align an input signal with
the range of a data acquisition device.
ANS: Amplification is used to adjust the span, and offset is used to slide the
signal range.

7. What is aliasing?
ANS: Aliasing is the generation of artifacts in a sampled data set because of
interplay between sampling rate and signal frequency.

8. How are known values used to calibrate a signal being sent to a data acquisition
system?
ANS: Known values allow you to build a relation between the measurement and
the acquired data values (called a calibration equation, or calibration curve).

9. Why is it important to know the range, and use values that span the entire
range of expected measurements?
ANS: If your measured values are outside the range of your calibration, you are
extrapolating the calibration equation and assuming that the extrapolation is
valid. Using known values that span the entire range of expected measurements
eliminates the need to extrapolate.

10. What is the difference between an analog input and an analog output?
ANS: An analog input receives a signal from a source and sends it to the analog-
to-digital converter. An analog output is used to generate an analog signal
(typically a voltage) and send it out of the data acquisition system.

11. What is the difference between an analog input and a digital input?
ANS:

• An analog input is used to receive an analog signal that can vary continuously
over a range of signal values (e.g., 2–7 V). The objective of using an analog
input is to determine the signal level (e.g., voltage).

• A digital input is used to receive a digital signal that should have only high-
or low-voltage values (e.g., 0 or 5 V).The objective of using a digital input is
determining whether the signal level is high or low.

12. What is a ground loop?
ANS: A ground loop is formed when two different devices (e.g., sensor and data
acquisition system) are both referenced to ground, but the ground potentials are
different.The ground loop is the current path that is formed when current flows
from one ground potential to the other.

13. Why are differential inputs generally preferred?
ANS: By measuring the voltage difference between two analog inputs, differential
inputs reject ground loop errors.

Problems 177

14. Explain why analog to digital converters with more bits can generate more
precise results.
ANS: More bits allow the input range to be divided into smaller increments
(higher precision).

15. Why must you consider the number of samples coming in through all analog
inputs when determining the required sample rate?
ANS: Because most data acquisition systems have multiple analog inputs that
are multiplexed through one analog-to-digital converter.

16. What are the two ways to generate a data acquisition task that can be used
within LabVIEW?
ANS: Data acquisition tasks can be created outside of LabVIEW using the
Measurement and Automation Explorer, or inside of LabVIEW using the
DAQ Assistant Express VI.

17. What information must be supplied to define a data acquisition task?
ANS:

• what input(s) to sample (channel(s))
• how the AI connections will be wired (differential or single-ended)
• how often to take readings (sample rate)
• how many readings to collect or (number of samples)

1. If the signal being sent from a transducer ranges from 2 to 14 V, what offset
and amplification are required to make the signal compatible with

a. a data acquisition system with an allowable input range of 0–10 V?
b. a data acquisition system with an allowable input range of �5 to 5 V?

2. How many analog input channels are required to sample two temperature
signals and one pressure signal if

a. All signals are wired using differential inputs.
b. The temperature signals are wired using differential inputs, and the

pressure signal is wired single-ended.

3. The readings listed below were displayed on the screen of an instrument and
represent repeated measurements of the same known quantity; the uncertainty
in the values represents the limits of the instrument’s precision.The instrument
is designed to output a voltage equal to the displayed measurement.

P R O B L E M S

6.01342
6.01340
6.01338
6.01344
6.01336
6.01332
6.01351
6.01348
6.01343
6.01336
6.01328
6.01340

If you want to read the values with no less precision than the instrument is
capable of supplying, what type of analog-to-digital converter will be required
(assume 0–10 V allowed DAQ input range)? Explain how you made your decision.

a. 12 bit
b. 14 bit
c. 16 bit

4. If your data acquisition system uses one analog-to-digital converter for all
analog inputs, what sampling rate must the data acquisition system be capable
of if you want to sample three temperature channels and two pressure chan-
nels at 200 samples per second per channel?

5. The VI shown in Figure 5.48 was created to demonstrate the effect of aliasing.

178 Data Acquisition with LabVIEW

Figure 5.48
Aliasing VI, front panel.

Figure 5.49
Aliasing VI, block diagram.

The VI uses LabVIEW’s sine wave generator to create a sine wave at 33.333 Hz.
By default, the sine wave generator outputs 1000 samples per second, or 30 dots
per cycle of the sine wave. The Get Waveform Components function strips out
the time component of the sine waveform and sends only the Y component to

The block diagram for the Aliasing VI is shown in Figure 5.49.

Problems 179

the Original Sine Wave graph (Waveform Graph from the Controls Palette /
Modern Group/Graph Group).

What causes the aliasing is the Decimate 1D Array function.This function
takes the input array (the sine wave with 30 data points per cycle) and divides
the array elements between all of the available outputs. We’re only using one
output to send data to the Sampled Sine Wave graph, but there are 16 outputs
displayed in Figure 5.49. LabVIEW is sending one out of every 16 array elements
to the Sampled Sine Wave graph. So, instead of 30 dots per original sine cycle,
the Sampled Sine Wave graph is only getting less than 2 dots per sine cycle.When
you try to sample at about two data points per cycle, some interesting things
start happening (aliasing).

Recreate the Aliasing VI shown in Figure 5.49 and run it several times,
using a different number of outputs on the Decimate 1D Array function each
time.Try 2, 5, 10, 15, 16, 17, and 20 outputs.The relationship between the number
of Decimate 1D Array function outputs and samples per sine cycle and effective
sampling rate is shown in Table 5.1. The functions required are available at the
following locations on the Functions Palette:

Functions Palette / Signal Processing Group / Waveform
Generation Group / Sine Waveform VI

Functions Palette / Programming Group / Waveform Group /
Get Waveform Components

Functions Palette / Programming Group / Array Group /
Decimate 1D Array

Table 5.1 Decimate 1D array outputs and related variables.

Outputs
Data points
per cycle

Effective sampling
rate* (Hz)

Effective sampling rate/
signal frequency

2 15 500 16.7
5 6 200 6.7

10 3 100 3.3
15 2 67 2.2
16 1.88 63 2.1
17 1.76 59 1.97
20 1.5 50 1.67

*The LabVIEW Sine Waveform VI generates sine waves with 1000 data points per second.

Use your observations to answer the following questions:

a. As you increase the number of outputs, how many outputs are required
before you can observe a significant difference between the original and
sampled sine waves?

b. What is the effect of aliasing as the number of outputs is increased from
10 to 15?

c. Is aliasing something that should be considered and avoided when
preparing to use a data acquisition system?

d. How can you avoid aliasing?

Note: If you have access to a sine wave generator and a data acquisition system,
you can sample the sine wave at 1000 Hz and use your acquired data rather
than the Sine Waveform function in the Alias VI.

180 Data Acquisition with LabVIEW

6. Use the DAQ Assistant from LabVIEW to collect 2000 voltage samples
through analog input 0 in 5 seconds.

7. Use the Measurement and Automation Explorer to create and save a data
acquisition task that will collect 1000 voltage samples through analog input 1 in
2 seconds. Then write a LabVIEW VI that uses the saved task to perform the
actual data acquisition.

8. Use the DAQ Assistant from LabVIEW to write 2.3 V to analog output one.
9. Create a LabVIEW VI that uses tasks created in the Measurement and Automa-

tion Explorer to send a voltage out through analog output one and read that
voltage through analog input zero.

6.1 INTRODUCTION

Data acquisition is a very common way of getting data into LabVIEW, but that
was the topic of an earlier chapter; the primary focus of this chapter is reading
and writing files that can be used by other programs (such as spreadsheets).
LabVIEW supports several types of data files, and the type of file format you
should use depends on what you want to do with the data.

O b j e c t i v e s
After reading this chapter,
you will know:

the various types of files
that LabVIEW can read
from and write to
how to write LabVIEW data
to a file that can be opened
in a spreadsheet program
how to write LabVIEW data
to a measurement file
how to read data from a
spreadsheet program in
LabVIEW
how to use spreadsheet
data to initialize controls
in LabVIEW

C H A P T E R 6
Getting Data Into
and Out of LabVIEW
without Data Acquisition

File Format Objective

• Text Files Interchange data with other programs
• Binary Files Not compatible with other programs, used with

large data sets when speed and size are critical
• Datalog Files LabVIEW data storage files

In this chapter we will focus on getting data into LabVIEW from another
program and out of LabVIEW for use in another program. We will use text
files for this. LabVIEW provides three functions to write text files:

• Write to Text File (.txt)—used for single values, but not for arrays or matrices
• Write to Spreadsheet File (.txt)—used for 1D or 2D arrays or matrices
• Write to Measurement File (.lvm)—used to send acquired data (waveforms)

to text files

The last two are the most useful and will be covered here.

6.2 WRITING LABVIEW DATA TO A SPREADSHEET FILE

The text files created by LabVIEW can be opened in spreadsheet programs
such as Excel®. Writing data to a spreadsheet file is the mechanism used to
move LabVIEW data into a spreadsheet.

A LabVIEW spreadsheet file is a text file that spreadsheets such as Excel
can read, but LabVIEW does not create .xls or .xlsx files directly. However,
opening a text file in Excel is so straightforward, it makes little difference that
LabVIEW creates .txt files instead of .xls files.

Figure 6.1
Front panel showing data
to be saved in each text
file format.

A B C

1

2

new file path

format (%.3f)

append to file? (new file: F)

file path (dialog if empty)

2D data

1D data

transpose? (no: F)

delimiter (\t)

Figure 6.2
Connection pane for Write
to Spreadsheet File function.

Figure 6.3
Block diagram to send Data
array values to a text file.

The Write to Spreadsheet File function is available in the Function Palette’s
Programming Group, in the File I/O group. For example, here are the directions to
the Write to Spreadsheet File function:

Function Palette / Programming Group / File I/O group / Write to
Spreadsheet File

To learn how to send data from a matrix to a text file, we will create a VI that uses
the Write to Spreadsheet File function.

We begin on the front panel by creating an array and filling it with some data
values (see Figure 6.1). Many significant figures have been used on purpose to illus-
trate how many digits are saved in the text file.

182 Getting Data Into and Out of LabVIEW without Data Acquisition

Then, we move to the block diagram to use the Write to Spreadsheet File func-
tion. The annotated connection pane for the Write to Spreadsheet File function is
shown in Figure 6.2.

We will describe the various terminals later, but we can accept the default
values for all but one; we must wire the Data matrix output to the 2D data input on
the Write to Spreadsheet File function. This is shown in Figure 6.3.

Because we did not specify a file path, when we run the VI the Choose File to
Write dialog (Figure 6.4) opens to allow the user to select a folder and enter a file
name.The .txt file extension was used so that the text file will be recognized by other
programs. Click OK to save the data to the “Write Test.txt” file.

Figure 6.4
The Choose File to Write dialog allows the user to set the file name.

Figure 6.5
The data in the Write
Test.txt file.

Section 6.2 Writing LabVIEW Data to a Spreadsheet File 183

We can open the file in any program that can display a text file (Notepad was
used in Figure 6.5) to see how data were saved.

The values in the Data array were sent to the file, but only three decimal places
were saved. This is a result of using the default format string (%.3f, as indicated in
Figure 6.2.) we can change the format string to save more decimal places, if needed.

The terminals on the Write to Spreadsheet File function block (see Figure 6.2)
include

Inputs:

• format (%.3f)—the format string used to write the values to the text file.
• file path (dialog if empty)—this is a path variable indicating where the file should

be stored. If no path is specified, the Choose File to Write dialog is opened to
determine the path at run time.

184 Getting Data Into and Out of LabVIEW without Data Acquisition

%.3f (default) 12.345

%.7f 12.3450000
%#.7f 12.345
%e 1.234500e1
%.3e 1.235e1 (rounded)
%^.3e 12.345e0
%g 12.345000
%#g 12.345

• 2D data—the terminal used to save a 2D array or matrix of values.
• 1D data—the terminal used to save single row or column of values.
• append to file (new file: F)—a Boolean (True or False) value used to tell

LabVIEW how to handle the data if the file already exists. TRUE means append
the data to the data already in the file. FALSE (the default) means overwrite the
existing data.

• transpose? (no: F)—a Boolean (True or False) value indicating whether or not
the data should be transposed (rows and columns interchanged) before saving.
The default is not to transpose the data.

• delimiter (\t)—the delimiter is the value placed between numbers to separate
them. The default is a tab character (“\t”).

Output:

• new file path—provides programmatic access to the file path that was used to
save the data.

To see how these inputs can be used to modify the way the data are saved, we will
change the format string that controls how LabVIEW writes the data to the file.

6.2.1 Format Strings

A format string for writing floating point numbers:

• Begins with the “%” character.
• Sometimes includes “^” (caret, [Shift 6]) to force engineering notation (scientific

notation in multiples of three, e.g., e3, e6.)
• Sometimes a “#” symbol—instructs LabVIEW to drop trailing zeros.
• Sometimes includes a period and a number (e.g., “.3”) indicating the number of

decimal places to show.
• Ends with a final letter indicating the notation style.

• f—floating point notation (decimal point)
• e—scientific notation
• g—LabVIEW uses “f” or “e” depending on size of number

The following table shows how the value 12.3450000 will be saved using various
formats.

Figure 6.6 shows how the format string can be sent to the Write to Spreadsheet
File function.

The resulting file is shown in Figure 6.7. Notice that LabVIEW rounds when
the “f” format is used.

Section 6.3 Writing LabVIEW Data to a Measurement File 185

Figure 6.6
Asking for seven decimal
places on saved values.

Figure 6.7
Data file created using
the “%.7f” format.

Figure 6.8
Data file created using
the “%g” format.

A good all-purpose format is the “%g” format. The data file created with this
format is shown in Figure 6.8. Note that the “%g” format also rounds the values that
are written to the file.

6.3 WRITING LABVIEW DATA TO A MEASUREMENT FILE

A LabVIEW measurement file (file extension .lvm) is a text file used to save wave-
forms. A LabVIEW waveform is a collection of data values collected over time plus
some additional header information. Waveforms are automatically generated when
data are acquired using LabVIEW data acquisition functions.

Measurement files are commonly used to save the data collected using a
data acquisition system. LabVIEW can read measurement files to reload data for
processing and analysis. And, because measurement files are text files, they can be
opened by other programs such as word processors and spreadsheets.

A measurement file is created using the Write to Measurement File Express VI.
An Express VI is a function, or VI, that comes with a dialog box to help the program-
mer configure the required connections. You can recognize Express VIs by a blue
border around the icon in the Function Palette.

The Write to Measurement File Express VI is located in the Programming
Group’s File I/O Group.

Functions Palette / Programming Group / File I/O Group / Write to
Measurement File

186 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.9
The Configure Write to
Measurement File dialog.

When the Write to Measurement File Express VI is placed on the block diagram,
the icon for the function is placed on the block diagram and the Configure Write to
Measurement File dialog (shown in Figure 6.9) automatically opens.

Six areas have been indicated on the Configure Write to Measurement File
dialog (shown in Figure 6.9):

1. File Name—you can specify the name of the file to be created.
2. Action—instructs LabVIEW what to do if you run the VI multiple times

(creating multiple files).
3. File Format—the function will output text files (.lvm) and binary files.
4. Segment Headers—you can configure the data acquisition functions to take

multiple data sets in a single run. Each of these would be considered a segment.
The segment header provides information on when the data were collected,
who collected the data, and what data were collected.

5. X Value Columns—a typical waveform contains data collected over a period
of time, and time is the X value.You can select how the time values are reported
in the measurement file.

6. Delimiter—the delimiter is the character that is placed between each numeric
value so that the program that reads the file can tell where one number ends
and the next starts. Tab delimiters are very commonly used.

When the Configure Write to Measurement File dialog has been completed, click
OK to return to the block diagram.

Section 6.3 Writing LabVIEW Data to a Measurement File 187

The Express VI icon for the Write to Measurement File function can be
displayed in two forms, as illustrated in Figure 6.10. Both forms provide the same
terminals, but the expanded form is easier to read as long as space on the block
diagram is available.

The Signals input terminal expects to receive a waveform. Waveforms are
created by the DAC Assistant Express VI as the result of a data acquisition task. To
demonstrate the creation of a waveform, a data acquisition device (NI USB-6009,
courtesy of National Instruments) was connected to a simple low-voltage source.
The voltage was read using the DAQ Assistant Express VI and the resulting waveform
was filtered, plotted, and sent to a LabVIEW measurement file. The complete block
diagram is shown in Figure 6.11.

The front panel after collecting the data is shown in Figure 6.12.

Figure 6.10
Write to Measurement
File icon in compact
and expanded forms.

Figure 6.11
Block diagram for data
acquisition and writing
measurement file.

188 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.12
Front panel of data
acquisition VI showing
filtered waveform.

The collected data were automatically saved to the file named in the Configure
Write to Measurement File dialog, C:\LabVIEW Examples\test.lvm (see Figure 6.9).
Figure 6.13 shows what the measurement file looks like when opened in Excel.
(The graph was created in Excel and is not part of the original measurement file.)

Figure 6.13
Measurement file opened
in Excel (graph created in
Excel).

Section 6.4 Reading a LabVIEW Measurement File 189

Figure 6.14
Excel warns to change the file type when saving an .lvm file from Excel.

The measurement file shown in Figure 6.13 contains 21 rows of header infor-
mation (cells A1:B21) followed by column headers for the data values (cells
A22:C22), and 1000 data points in cells A23:B1022. The number of data points
collected is set in the DAQ Assistant Express VI’s dialog; 1000 data points collected
in 1 second is LabVIEW’s default for the NI USB-6009 device.

The data in cells A23:B1022 were plotted in Excel using an XY Scatter chart.
Once the measurement file has been opened in Excel, all of Excel’s capabilities can
be used with the data.

Note: When a LabVIEW measurement file is opened in Excel, the .lvm file extension
is retained. When new Excel features are added, such as the graph in Figure 6.13,
those features are not compatible with the .lvm file format and will be lost if the file
format and file extension are not changed when the spreadsheet file is saved from
Excel. Excel will warn you (see Figure 6.14) if there is a danger of losing information
when you try to save the .lvm file from Excel. To save the graph, we must save the
spreadsheet as an Excel file with an .xls or .xlsx file extension.

6.4 READING A LABVIEW MEASUREMENT FILE

To read a LabVIEW measurement file, use the Read From Measurement File
Express VI (see Figure 6.15) found in the File I/O group:

Functions Palette / Programming Group / File I/O Group / Read From
Measurement File

Figure 6.15
Block diagram for a VI
to read a measurement
file and plot the values.

190 Getting Data Into and Out of LabVIEW without Data Acquisition

The Signals waveform graph block was created in the block diagram by right-clicking
on the Signals output terminal on the Read From Measurement File icon and selecting
Create / Graph Indicator from the pop-up menu.

When the Read From Measurement File Express VI is placed on the block
diagram, the Configure Read From Measurement File dialog (shown in Figure 6.16)
automatically opens. You should ensure that the correct .lvm file is indicated in the
File Name field, or check Ask user to choose file in the Action section to select the
desired file at run time.

Figure 6.16
The Configure Read From
Measurement File dialog.

When the VI is run, the measurement file is read and the results are plotted, as
shown in Figure 6.17. The signal is described as Voltage (Filtered) in Figure 6.17
because that was how the data were described in the measurement file (see cell B22
in Figure 6.13).

6.5 READING A SPREADSHEET FILE IN LABVIEW

LabVIEW provides a Read From Spreadsheet File function, which can be used to
read values from a text file into LabVIEW.

Functions Palette / Programming Group / File I/O Group / Read From
Spreadsheet File

Section 6.5 Reading a Spreadsheet File in LabVIEW 191

Note: LabVIEW does not read Excel files directly. But an Excel workbook can
be saved as a tab-delimited text file (.txt file extension) and LabVIEW can read
it. However, this approach will only work for the first worksheet in an Excel
workbook. When you try to save an Excel workbook with multiple worksheets
as a .txt file, Excel will warn you that only the first worksheet will be saved in the
text file.

The general process for getting data from an Excel workbook into LabVIEW
is as follows:

1. Get the data values (no text column headers) into an Excel worksheet.
a. Make sure it is the only worksheet in the workbook.
b. The top-left value should be in cell A1.

2. Save the Excel file as a .txt file.
3. Place a Read From Spreadsheet File function on a LabVIEW block diagram.
4. Select the data type of the values to be read from the file.
5. Use a string constant to specify the format string that should be used to read

the values, if desired. The default format string is “%.3f”, which reads floating
point numbers with three decimal places.

6. Use a string constant to specify the path name if desired. If the path name is
omitted, LabVIEW will ask the user to choose the file at run time.

7. Add an indicator to the block diagram to display the values read from the file.

Step 1: Get the data values into an Excel worksheet
Figure 6.18 shows an Excel file containing temperature data from seven thermo-
couples collected over a period of 1 hour. It is a typical spreadsheet with

• Title information at the top
• Column headings
• Graph
• Three worksheets in the workbook

All of that information needs to be deleted before saving the workbook
as a text file that LabVIEW can read. Figure 6.19 shows the same temperature
and time data in a worksheet by itself.

Figure 6.17
The VI front panel after
reading the measurement
file.

192 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.18
Excel file with extraneous information.

Figure 6.19
Excel worksheet with
extraneous information
removed.

Step 2: Save the Excel file as a .txt file
To save the Excel worksheet as a tab-delimited text file, start with the following
menu options, illustrated in Figure 6.20:

Office button / Save As / Other Formats

Section 6.5 Reading a Spreadsheet File in LabVIEW 193

Figure 6.20
Using the Office button to
save the Excel worksheet
in another format.

This opens the Save As dialog shown in Figure 6.21. Select Text (Tab delimited)
(*.txt) in the Save as type: field.

Figure 6.21
Select tab-delimited text file
in the Save As dialog.

194 Getting Data Into and Out of LabVIEW without Data Acquisition

Excel will likely display a warning box that information may be lost by
saving in a text file, but you must use a text file for LabVIEW.The numeric val-
ues will not be lost when the file is saved as a text file.

Note: Undisplayed digits are lost when the text file is saved. The Time
Temperature.txt file will contain values with only one decimal place (because
that’s how they were displayed in the Excel worksheet, see Figure 6.19).

Step 3: Place a Read From Spreadsheet File function on a LabVIEW block
diagram
The Read From Spreadsheet File function is in the Programming Group’s File
I/O Group on the Functions Palette.

Functions Palette / Programming Group / File I/O Group / Read From
Spreadsheet File

The annotated connection pane for the function is illustrated in Figure 6.22.
Most of the terminals have default values that work most of the time.

A B C

1

2

format (%.3f)

max characters/row (no limit: 0)

file path (dialog if empty)

number of rows (all: -1)

start of read offset (chars.: 0)

transpose? (no: F)

delimiter (\t)

new file path

all rows

first row

mark after read (chars.)

EOF?

Double

Figure 6.22
Connection pane for the
Read From Spreadsheet File
function.

Inputs:
• format (%.3f)—the format string used to read the values from the text file.
• file path (dialog if empty)—this is a path variable indicating where the file

should be stored. If no path is specified, the user is asked to choose a file at
run time.

• number of rows (all: �1)—if only a part of the file is to be read, you must
indicate the number of rows to be read. Accept the default to read the
entire file.

• start of read offset (chars.: 0)—if the top-left corner of the data set is not
in cell A1, you must indicate the required offset. Because the offset must
be specified in characters, not cells, this is very inconvenient to use.

• max characters/row (no limit: 0)—you can set a limit on the number of
characters read per row. The default is to read the entire row.

• transpose? (no: F)—a Boolean (True or False) value indicating whether
or not the data should be transposed (rows and columns interchanged) as
it is read. The default is not to transpose the data.

• delimiter (\t)—the delimiter is the value that has been placed between
numbers to separate them. The default is a tab character (“\t”).

Section 6.5 Reading a Spreadsheet File in LabVIEW 195

Outputs:
• new file path—provides programmatic access to the file path that the

user may have selected using the Choose File to Write dialog.
• all rows—this is the most commonly used output terminal. All rows of

data are available through this output.
• first row—this terminal provides access to only the first row of values.
• mark after read (chars.)—the location of the file marker after the file has

been read. Rarely used, this might be useful if you needed to append data
to the end of the file.

• EOF?—this output is set to TRUE when the end of the file has been read.

In this example, we will set a format string constant to increase the number of
decimal places slightly, and send all rows to an indicator.

Step 4: Select the data type of the values to be read from the file
LabVIEW must know the data type of the values that will be read so that it can
read, store, and display the values correctly. The default data type is “Double”
(double-precision floating point numbers), as indicated on the data type
selector shown below the Read From Spreadsheet File function icon in
Figure 6.23. In this example, we want to use the Double data type.

Note: The data type selector can be hidden. Right-click on the node and select
Visible Items from the pop-up menu if needed.

Step 5: Use a string constant to specify the format string
To attempt to display more decimal places than were saved in the text file, we
will instruct LabVIEW to use format string “%.5f” to read the data. This will
allow us to observe how LabVIEW handles a request to read more digits than
are present in the values in the file.
To set the format string:

1. Right-click on the format input terminal.
2. Select Create/Constant from the pop-up menu.
3. Enter “%.5f” (without the quotes) into the constant.

The result is shown in Figure 6.24.

Step 6: Use a string constant to specify the path name
If the path name is not specified, LabVIEW will ask the user to choose the file
at run time. In this example, we will not specify the file path name.

Step 7: Add an indicator to the block diagram to display the read values
Right-click on the Read From Spreadsheet File function’s all rows output and
select Create / Indicator from the pop-up menu. LabVIEW will add an array
indicator to the block diagram and the front panel to display the values read
from the file. The complete (for now) block diagram is shown in Figure 6.25.

Figure 6.23
The drop-down selector
labeled “Double” is used
to indicate the data type
of the values to be read.

Figure 6.24
Setting the string constant
that specifies the read format.

Figure 6.25
Block diagram, ready to
read data from text file.

196 Getting Data Into and Out of LabVIEW without Data Acquisition

When the VI is run from the front panel, the user is asked to select the file to
be read as shown in Figure 6.26.

Figure 6.26
The Choose file to read
dialog is used to select
the text file.

The results are shown in Figure 6.27. The array indicator was resized to show
the entire array of values.

Recall that we asked LabVIEW to read five decimal places (“%.5f”), but the
values in the text file contained only one decimal place. LabVIEW read the values
in the file anyway, with as much precision as the values would allow. The values are
displayed on the front panel with three decimal places because of the (default)
display format used with the array indicator.

6.5.1 Pulling Single Columns or Rows from 2D Arrays

Once the array values have been read from a file, they can be used for other calcula-
tions. It is often handy, and sometimes necessary, to pull a single column or single
row from a 2D array.The Index Array function is used for this purpose.The connection
pane for the Index Array function is illustrated in Figure 6.28.

Functions Palette / Programming Group / Array Group / Index Array

When you connect a multidimensional array (2D or higher) to the array input
(labeled 2D array in Figure 6.28, but higher order arrays can be connected), the
connection pane automatically resizes to display one index input for each array
dimension. Figure 6.28 has been labeled for a 2D input array.

Section 6.5 Reading a Spreadsheet File in LabVIEW 197

Figure 6.27
Front panel showing
the values read from
the text file.

Column Index (0)

2d array

Row Index (0) 1d array

Figure 6.28
Connection pane for Index
Array function.

• To select a single row, wire an integer value (the row index value) to the row index
input and leave the column index input unwired.

• To select a single column, wire an integer value (the column index value) to the
column index input and leave the row index input unwired.

In Figure 6.29 two Index Array functions have been used to pull out the
Time and TC1 columns. The Time data are in column 0, and the TC1 data are in
column 1. Since we wanted the data from two columns, the row index inputs were
not used. The front panel (Figure 6.30) shows the Time and TC1 arrays, and the
XY Graph.

Note: By specifying the file path on the block diagram, the Choose file to read dialog
is bypassed.

198 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.30
Graphing the data read from the text file.

Figure 6.29
Using the data read from the text file.

Section 6.6 Using Spreadsheet Data to Initialize a Matrix Control 199

Figure 6.31
Block diagram used to
read data from text file.

6.6 USING SPREADSHEET DATA TO INITIALIZE A MATRIX CONTROL

Occasionally, you may want to initialize a control using data from a file. For example,
you may want to send someone a compiled VI with the required data already loaded
into a control (and not attach a text file). This is easy to do:

1. Read the text file and show the results in an array indicator.
2. Change the array indicator to a control.
3. Delete the Read From Spreadsheet File function and any broken wires.
4. Make the current data the default data for the control.

Step 1. Read the text file and show the results in an array indicator
The VI shown in Figure 6.31 reads a text file and sends the data values to an
array indicator.

Step 2. Change the array indicator to a control
To change the array indicator to a control, right-click on the matrix indicator
and select Change to Control from the pop-up menu as shown in Figure 6.32.
The indicator will be turned into a control, but the values that the indicator was
displaying will be left in the control.

Figure 6.32
Right-click on the array
indicator and select
Change to Control.

Step 3. Delete the Read From Spreadsheet File function
The wire from the Read From Spreadsheet File function’s all rows output
will be broken (see Figure 6.33) because you cannot sent output to a control,
but we don’t need the Read From Spreadsheet File function anymore;
we’ve already filled the control with values from the text file. Just delete the
Read From Spreadsheet File function and the broken wire.

Figure 6.33
Changing the indicator to a
control breaks the wire from
the Read function.

200 Getting Data Into and Out of LabVIEW without Data Acquisition

Step 4. Make the current data the default data for the control
The array control now contains the values read from the file, but if the VI is
closed and reopened, default values (zeroes) will be loaded, not the values from
the text file. We need to make the current values (read from the text file) the
default values before closing the VI so that they will be saved with the VI.

To make the current values the default values, right-click on the array
control and select Data Operations / Make Current Value Default from the
pop-up menu (illustrated in Figure 6.34).

Once the array control has default values, it can be used like any other control
as illustrated in Figure 6.35.

Figure 6.34
Making the current values
the default values for
the array control.

Figure 6.35
Using the array control in
a VI.

A P P L I C AT I O N

Spl ine In terpolat ion of Exce l Values

One reason to import and export data is to take advantage of the features of various
software products. Excel is handy for working with data, but it does not provide a
spline interpolation function. In this example we import Excel data (via a .txt file)

Section 6.6 Using Spreadsheet Data to Initialize a Matrix Control 201

Figure 6.36
The original decaying
sine wave data.

Figure 6.37
VI block diagram for reading
the decaying oscillation
data file.

and perform the spline interpolation in LabVIEW, and then export the results back
to Excel for plotting.

The original data can be seen in the Excel image shown in Figure 6.36. The
shape is a decaying oscillation.

y = e-ax sin(bx)

The complete curve is shown behind the data points in Figure 6.36, but only the
small data set will be sent into LabVIEW for interpolation. We will attempt to use a
cubic spline interpolation in LabVIEW to smooth out the curve, and then send the
result back to Excel to compare the spline interpolation with the calculated curve.

The data have been saved in a text file, DecayOsc.txt.This file can be read into
a LabVIEW VI as shown in Figure 6.37. The X and Y arrays have been separated
using Index Array functions.

Next, the X and Y 1D arrays are combined (“bundled” is the official term) and
sent to an XY Graph control as shown in Figure 6.38 (block diagram) and Figure 6.39
(front panel).

The next step is to use LabVIEW’s cubic spline interpolation functions to
interpolate between each point.

Functions Palette / Mathematics Group / Interpolation & Extrapolation /
Interpolate 1D.vi

LabVIEW’s Interpolation 1D function is easy to use. The Interpolation 1D func-
tion has been placed on the block diagram in expanded form to show the terminals
in Figure 6.40. The method has been set to “spline” and the number of iteration

202 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.38
The DecayOsc VI (block
diagram) with the X and
Y arrays graphed.

Figure 6.39
The DecayOsc VI (front
panel) showing the original
X and Y data.

Figure 6.40
Adding spline interpolation to the DecayOsc VI.

Section 6.6 Using Spreadsheet Data to Initialize a Matrix Control 203

Figure 6.41
The interpolated points
superimposed on the
original data.

Figure 6.42
The completed DecayOsc VI block diagram with interpolated values sent to .txt file.

passes, ntimes, has been set to 3. The original X and Y values are sent into the func-
tion as inputs, and the interpolated values (xi used, yi) are sent from the function,
bundled, and sent to the XY Graph. The interpolated values are plotted on the
front panel, as shown in Figure 6.41.

The last step is to use the Write Spreadsheet File function to send the results
back to Excel, so that they can be compared to the calculated decaying oscillatory
curve. The completed block diagram is shown in Figure 6.42.

204 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.43
Comparing the interpolated
results with the calculated
decaying oscillation curve.

6.6.1 Reading the First Row or Column from a Text File

Some LabVIEW controls and functions (especially graphing controls) require 1D
arrays as inputs. When data are read from a .txt file using the all rows output on the
Read From Spreadsheet File function, the output is a 2D array. A 2D array is not
compatible with controls that require 1D arrays as inputs (but you can use the
Index Array function to pull a single column or row from a 2D array, as shown in
Figures 6.29 and 6.35).

If you only need the first row or first column from the text file, you can use the
first row output on the Read From Spreadsheet File function. Using the first row
output allows you to get a 1D array directly, without needing the Index Array
function—but it only works for the first row or column in the text file.

• Reading One Row—By default, the first row output on the Read From Spreadsheet
File function will read one row from the .txt file.

• Reading One Column—Send a True into the transpose input on the Read From
Spreadsheet File function to read one column from the .txt file.

The steps involved in reading a single column of values from a .txt file are as follows:

1. Place the Read From Spreadsheet function on the block diagram.
2. Connect a 1D array indicator to the first row terminal.
3. Send True to the transpose terminal. (This step is needed to read a column

instead of a row.)
4. Run the VI. Select the .txt file containing the values when prompted.

As an example, the spreadsheet shown in Figure 6.44 has a column of values
that we want to bring into LabVIEW to chart.

All that remains is to open the DecayOscInterp.txt file in Excel, and
plot the interpolated results with the calculated curve. The result is shown in
Figure 6.43. You can see that the interpolated values fit well where there were at
least a couple of original points per peak, but the interpolation missed the first
peak badly.

Section 6.6 Using Spreadsheet Data to Initialize a Matrix Control 205

Step 1: Place the Read From Spreadsheet function on the block diagram
The Read From Spreadsheet function is found in the Programming Group:

Functions Palette / Programming Group / File I/O Group / Read
From Spreadsheet File

In preparation for reading the values from the spreadsheet (saved as file
Sinh Data.txt), the Read From Spreadsheet function is placed on the block
diagram. In Figure 6.45 the icon has been expanded to show all terminals. The
terminals we will use in later steps have been indicated.

Figure 6.44
Spreadsheet data to be
read into LabVIEW.

Figure 6.45
Block diagram showing
expanded Read From
Spreadsheet File icon.

206 Getting Data Into and Out of LabVIEW without Data Acquisition

Step 2: Connect a 1D array indicator to the first row terminal
Right-click on the first row terminal and select Create / Indicator from the
pop-up menu (illustrated in Figure 6.46).

Step 3: Send True to the transpose terminal
Since the spreadsheet data are in a column instead of a row, we need to
instruct LabVIEW to read a column. This is done by sending a True to the
transpose terminal.

To connect a Boolean constant to the transpose terminal, right-click on
the transpose terminal and select Create / Constant from the pop-up menu.
Then slide the switch on the Boolean constant (with the mouse) to output
True. The result is shown in Figure 6.47.

Step 4: Run the VI
Run the VI to read the .txt file. LabVIEW will open the Choose File to
Read dialog, shown in Figure 6.48. Once the file has been selected,
LabVIEW will read the data into a 1D array (as a row). This is illustrated in
Figure 6.49.

By default, 1D arrays are imported as rows, but any 1D array in
LabVIEW can be presented as either a row or a column. Simply resize the

Figure 6.46
Connecting a 1D array
indicator to the first
row terminal.

Section 6.6 Using Spreadsheet Data to Initialize a Matrix Control 207

array to show the values as a column (optional). In Figure 6.50 the array has
been resized to display as a column, and the values have been sent to a
Waveform Chart control for plotting.

Figure 6.47
A value of True is sent
to the transpose terminal.

Figure 6.48
The Choose file to read
dialog is used to identify
the .txt file containing data.

Figure 6.49
The imported data as
a 1D (row) array.

208 Getting Data Into and Out of LabVIEW without Data Acquisition

At this point the spreadsheet data are in the VI, but displayed in an indi-
cator. The data are accessible by splicing into the wire running from the first
row terminal to the array indicator. This is how the data were sent to the
Waveform Chart control in Figure 6.51.

Figure 6.51
Block diagram of the data
import and graphing VI.

Figure 6.50
The imported data as a
1D (column) array, charted
using a Waveform Chart
control.

Summary 209

KEY TERMS binary files
data type selector
datalog files
delimiter
engineering notation

Express VI
floating point notation
format string
measurement file (.lvm)
scientific notation

spline interpolation
spreadsheet file
text files (.txt)
waveform

Data File Types

• Text Files—stored in standard alphanumeric characters, very interchangeable,
and can be large

• Binary Files—stored using binary values, fast, but specific to each software product
• Datalog Files—LabVIEW data storage files

Writing LabVIEW Data to a Spreadsheet File
Function: Write to Spreadsheet File (see Figure 6.52)

Function Palette / Programming Group / File I/O group / Write to
Spreadsheet File

S U M M A RY

A B C

1

2

format (%.3f)

append to file? (new file: F)

file path (dialog if empty)

2D data

1D data

transpose? (no: F)

delimiter (\t)

new file path

Figure 6.52
Connection pane for Write
to Spreadsheet File function.

Format Strings

• Begins with the “%” character
• “^” (caret, [Shift 6])—engineering notation
• “#”—drop trailing zeros
• period and number (e.g., “.3”)—number of decimal places to include
• final letter—notation style

• f—floating point
• e—scientific notation
• g—general format

Examples:

%.3f (default) 12.345

%.7f 12.3450000
%#.7f 12.345
%e 1 .234500e1
%.3e 1.235e1 (rounded)
%^.3e 12.345e0
%g 12.345000
%#g 12.345

210 Getting Data Into and Out of LabVIEW without Data Acquisition

Writing LabVIEW Data to a Measurement File
Measurement files are text files used to save the data collected using a data acqui-
sition system. Saved data include data values with time information plus header
information.

Function: Write to Measurement File—an Express VI, opens a dialog box when
used

Functions Palette / Programming Group / File I/O Group / Write to
Measurement File

Reading a LabVIEW Measurement File
Function: Read From Measurement File—an Express VI, opens a dialog box when used

Functions Palette / Programming Group / File I/O Group / Read From
Measurement File

Reading a Spreadsheet File in LabVIEW
Function: Read From Spreadsheet File

Functions Palette / Programming Group / File I/O Group / Read From
Spreadsheet File

Process:

1. Get the data values (no text column headers) into an Excel worksheet.
(a) Make sure it is the only worksheet in the workbook.
(b) The top-left value should be in cell A1.

2. Save the Excel file as a .txt file.
3. Place a Read From Spreadsheet File function on a LabVIEW block diagram.
4. Select the data type of the values to be read from the file.
5. Use a string constant to specify the format string that should be used to read

the values, if desired. The default format string is “%.3f”.
6. Use a string constant to specify the path name if desired. If the path name is

omitted, LabVIEW will ask the user to choose the file at run time.
7. Add an indicator to the block diagram to display the read values.

Pulling Single Columns or Rows from 2D Arrays
Function: Index Array

Functions Palette / Programming Group / Array Group / Index Array

• To select a single row, wire the row index input and leave the column index input
unwired.

• To select a single column, wire the column index input and leave the row index
input unwired.

Using Text File Data to Initialize a Control

1. Read the text file and show the results in an array indicator.
2. Change the array indicator to a control.
3. Delete the Read From Spreadsheet File function and any broken wires.
4. Make the current data the default data for the control.

Reading the First Row or Column from a Text File

1. Place the Read From Spreadsheet function on the block diagram.
2. Connect a 1D array indicator to the first row terminal.
3. Send True to the transpose terminal. (This step is needed to read a column instead

of a row.)

Self-Assessment 211

S E L F - A S S E S S M E N T

1. By default, how many decimal places are included in values written to text
files by LabVIEW?
ANS: Three (default format string is “%.3f”)

2. If you want to save five decimal places when saving data to a text file, what
format string should you specify?
ANS: “%.5f”

3. How do you tell LabVIEW to drop trailing zeros when writing to a file?
ANS: Include “#” in the format string. For example: “%#.5f”

4. What happens if you use a LabVIEW function that writes values to a text file,
but you do not provide a file path?
ANS: LabVIEW will show the Choose File to Write dialog at run time.

5. What is the difference between a .txt file and a .lvm file?
ANS: LabVIEW measurement files (.lvm) include a header containing infor-
mation about how and when the data were collected as well as the data set.
Text files (.txt) do not contain the header information.

6. What is a delimiter?
ANS: A delimited is a character (often a tab, comma, or space) placed between
numeric values in a file. Delimiters are used when the file is read to determine
where one value ends and the next begins.

7. Can the following file types be opened in Excel?

• .txt
• .lvm

ANS:

• .txt—YES, automatically
• .lvm—YES, will probably have to explicitly “open with” Excel

8. Can LabVIEW open an Excel workbook?
ANS: No. However, the Excel worksheet (first worksheet in the work-
book) can be saved as a .txt file from Excel, and LabVIEW can open that
.txt file.

9. When LabVIEW reads data using the Read From Spreadsheet function, the
data must be assigned a data type. How do you specify the data type associated
with the imported data?
ANS: There is a drop-down selector under the Read From Spreadsheet node
that is used to select the data type of the imported values.

10. What steps are required to read one column from a .txt file into a 1D array?
ANS:

a. Place the Read From Spreadsheet function on the block diagram.
b. Right-click on the first row terminal and select Create / Indicator from the

pop-up menu.
c. Right-click on the transpose? terminal and select Create / Constant from

the pop-up menu. Set the True/False constant to True. (This step is needed
to read a column instead of a row.)

d. Run the VI. Select the .txt file containing the values when prompted.

212 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.53
LabVIEW measurement
file opened in Excel.

P R O B L E M S

1. Look at the LabVIEW measurement file shown in Figure 6.53 (only a small
portion of the file is visible in the image) to answer the following questions:

a. What are the units on the Y values?

b. When were the data collected?

c. How many samples were collected?

d. What is the time interval between samples?

e. What delimiter separates values in the data list?

2. Use LabVIEW to convert the following temperature values to °C, and then
export the values to Excel and create a time (x axis) and temperature
(y axis) plot.

Start Time: 0
Time Interval: 5 seconds

T (°F)

75
109
133
152
166
176
183
189
193
196
198

Problems 213

3. A typical Excel data file might look something like Figure 6.54 , with head-
ings, units, and graphs. The contents must be stripped down to nothing but
data values before saving as a .txt file and importing the values into
LabVIEW.
The Excel file (CalibData.xls) shown in Figure 6.54 is available at the text’s
website: www.chbe.montana.edu/LabVIEW

a. Download the Excel file (or create something similar).

b. Create a .txt file suitable for transferring the data into LabVIEW.

c. Import the data into a matrix or array control in LabVIEW.

Figure 6.54
Calibration data in Excel.

4. The Excel file shown in Figure 6.55 contains a system of simultaneous linear
equations in matrix form. Prepare two .txt files from the Matrices.xls file, one
for the coefficient matrix and one for the right-hand-side vector. Import the
matrices into LabVIEW and solve the equations simultaneously.

Figure 6.55
Excel file containing
coefficient and right-hand-
side matrices.

www.chbe.montana.edu/LabVIEW

214 Getting Data Into and Out of LabVIEW without Data Acquisition

Figure 6.56
Front panel of a VI that
calculates sine values.

5. The VI shown in Figure 6.56 (front panel) and Figure 6.57 (block diagram)
calculates sine data in the range of 0�2π. Recreate the VI, and then save the
calculated sine values to a .txt file using a format that displays five decimal
places and does not truncate trailing zeros.

6. The VI shown in Figure 6.58 calculates Bessel function (jn(x)) data and writes
the data to a .txt file, specifically, Bessel jn.txt.The file is available on the text’s
website.

Download the Bessel jn.txt file, and then create a VI that reads the file and
sends the output to a Waveform Graph control. The Waveform Graph control
can be found at

Controls Palette / Modern Group / Graph Group / Waveform
Graph

Figure 6.57
Block diagram of Sine VI.

Problems 215

Figure 6.58
VI to generate and save Bessel function values.

From the Waveform Graph, what is the value of jn(x) when x = 100? Check
your answer by evaluating jn(100) using the Bessel jn(x) function located at

Functions Palette / Mathematics Group / Elementary & Special
Functions Group / Spherical Bessel Function jn(x).vi

Graphing with
LabVIEW

7.1 INTRODUCTION

LabVIEW provides a number of charting and graphing options for producing
data plots; only some of the more common will be presented in this chapter.

O b j e c t i v e s
After reading this chapter,
you will know:

the difference between a
chart and a graph in
LabVIEW
how to use Waveform
Charts to display LabVIEW
waveform data
how to use Waveform
Graphs to display
array data
how to modify the features
of a LabVIEW graph
how to create a data array
for graphing
how to use LabVIEW XY
Graphs for 2D plotting
how to use LabVIEW
3D graphs

how to get an image of
a LabVIEW graph into
a report

7C H A P T E R

Chart Types Graph Types

• Waveform Chart • Waveform Graph
• Intensity Chart • XY Graph

• Intensity Graph
• Digital Waveform Graph
• Mixed Signal Graph
• 3D Surface Graph
• 3D Parametric Graph
• 3D Curve Graph

The chart and graph indicators are available on the Controls Palette, either in
the Modern Group or the Express Group.

In LabVIEW,

• A chart is able to receive individual data points and continuously update the
presentation of the data. A Waveform Chart, for example, is typically used
during data acquisition to monitor the data as they are being collected.
(Waveform Charts can also receive entire arrays.)

• A graph receives a complete data set (as an array) before preparing the
graphical display.

LabVIEW provides

• Graph and chart indicators for 1D plotting (assuming uniformly spaced x
values)

• Graph indicator for 2D plotting (XY Graph)
• Graph indicators for 3D plotting

7.2 USING WAVEFORM CHARTS

The Waveform Chart is LabVIEW’s basic charting indicator for data acquisition. In
its most fundamental form, the Waveform Chart receives data one point at a time
and displays the data values on a graph. This is termed point-by-point plotting.

Controls Palette / Modern Group / Graph Group / Waveform Chart

Controls Palette / Express Group / Graph Indicators Group /
Waveform Chart

7.2.1 Waveform Charts—Point-by-Point Plotting

In the block diagram shown in Figure 7.1, every time the For Loop cycles a new
iteration value is divided by 100 and sent to the Sine function. The Sine function
sends one sin(x) value to the Waveform Chart each time the For Loop cycles.

Section 7.2 Using Waveform Charts 217

Figure 7.1
The Waveform Chart
indicator used for point-by-
point plotting.

When the VI is run, the Waveform Chart starts displaying values, as illustrated in
Figure 7.2. Here, the image was captured less than half way through the For Loop, so
less than a full sine cycle is shown.

Figure 7.2
The Waveform Chart—For
Loop interrupted.

If the For Loop is allowed to complete (the VI terminates), a full sine cycle is
graphed as shown in Figure 7.3.

If the VI is run again, the Waveform Chart continues to display the sine wave,
as shown in Figure 7.4. This is because all but the last value plotted are stored in the
chart history, an array of previously plotted values; only the last point is sent to the
chart each time the For Loop cycles.

218 Graphing with LabVIEW

Figure 7.3
Waveform Chart—one
complete For Loop.

Figure 7.4
Waveform Chart—running
the VI again continues the
curve.

By default the chart history stores 1024 points. This is why the X axis limits in
Figure 7.2 were set from 0 to 1023, to show as many values as stored in the chart
history. When the VI was run the second time, the number of points sent to the
Waveform Chart exceeded 1024 and the curve started scrolling to the left.That is why
the X axis limits in Figure 7.4 are shown as 232–1255. Only the most recent 1024 values
are displayed; the original 232 values (0–231) have scrolled off the display.

Note: You can change the size of the chart history. Right-click on the chart and select
Chart History Length . . . from the pop-up menu.

Section 7.2 Using Waveform Charts 219

By default,Waveform Charts scroll to the left when the chart history is full, but
this action is based on the update mode, and there are three options:

• Strip Chart (default)—the data scrolls smoothly to the left. The current value is
always at the right end of the curve.

• Scope Chart—the chart display fills, then clears, and fills again as often as needed.
• Sweep Chart—the chart does not clear, but a sweep line moves across indicating

the new data plotted to the left of the sweep and the old values remaining on the
right side of the sweep line.

The three update options are shown in Figure 7.5. The block panel is shown in
Figure 7.6.

Figure 7.5
Waveform Chart update
options.

The Update Modes can be selected in two ways:

• From the chart pop-up menu: Advanced / Update Mode
• From the Chart Properties dialog (right-click on chart, select Properties to open

the dialog): Appearance Panel / Update Mode drop-down list

You can right-click on the chart and change the Update Mode when a waveform
chart is running, too.

7.2.2 Waveform Charts—Array Plotting

The Waveform Chart can also be used for array plotting.With array plotting, an entire
array of values is sent to the Waveform Chart for plotting (not point by point).

220 Graphing with LabVIEW

Note: Waveform Charts require 1D arrays rather than matrices. This is because a
matrix in LabVIEW is always 2D, even if you only use one column or one row. If
you attempt to send a matrix into a LabVIEW graphing function, you will generate
a data type mismatch error.

In the VI shown in Figure 7.7 the Waveform Chart has been moved outside
the For Loop boundary. The sin(x) values are built into an array at the For Loop
boundary, and then the entire array is sent to the Waveform Chart when the For
Loop terminates.

Figure 7.6
Block diagram used to
demonstrate update modes.

Figure 7.7
Waveform Chart used to display an array.

Section 7.2 Using Waveform Charts 221

The graph in figure 7.8 looks very similar to what was observed with point-by-
point plotting except that when the VI is run you won’t see the plot being drawn;
it just pops on the screen when the array is sent to the Chart. The chart history is
still the same, and the curve will scroll (in batches, not smoothly) when the chart
history is full.

So, the Waveform Chart works for either point-by-point plotting, or array
plotting.

7.2.3 Using the Waveform Chart with Data Acquisition

The two common modes of data acquisition are reading analog input values
point by point, and reading in an entire array of values. These coincide with the
two ways that the Waveform Chart can display data—this is probably not a
coincidence.

In Figure 7.9, a data acquisition system is being used to acquire data point by
point, and a Waveform Chart is used to display the values as they are collected.

Figure 7.8
Waveform Chart display—
array plotting.

Figure 7.9
Block diagram of point-by-point data acquisition and plotting.

222 Graphing with LabVIEW

Alternatively, data can be acquired in a batch and then plotted using a Waveform
Chart, as shown in Figure 7.11 (block diagram) and Figure 7.12 (front panel).

Figure 7.10
Waveform Chart used to
display acquired data point
by point.

Figure 7.11
Block panel for data
acquisition, batch mode,
with array plotting.

Figure 7.12
Acquired data, plotting
with Waveform Chart
using array plotting.

(Each time the While Loop cycles, another value is read from the data acquisition
system.) The resulting chart is shown in Figure 7.10.

Section 7.2 Using Waveform Charts 223

Notice, in Figure 7.12, that the X axis now shows sample time, not sample number.
This is the result of sending a signal (includes time information) to the Waveform
Chart instead of just the numerical values.The DAQ Assistant automatically outputs
a signal.

The Waveform Chart can receive data in two ways: point by point, and array.
Those two options correspond with the two common ways of acquiring data using
data acquisition devices.

7.2.4 Displaying Multiple Curves on a Waveform Chart

It is common to acquire multiple channels of data, and the Waveform Chart can
display multiple inputs in two ways:

• Overlay Plots—all curves shown on the same plot
• Stacked Plots—each curve shown in its own plot

The VI shown in Figure 7.13 shows the same data plotted both ways.The block diagram
used to generate the plots is shown in Figure 7.14.

Figure 7.13
Waveform Chart options:
Overlay Plots (top), Stacked
Plots (bottom).

224 Graphing with LabVIEW

You can pull the Waveform Charts outside the For Loop to attempt to plot using
arrays instead of point by point. The block diagram for this is shown in Figure 7.15.
As the front panel (Figure 7.16) shows, array plotting works for the Overlay Plot
(build an array of arrays for plotting, and deselect transpose array option), but
stacked plots are not an option when plotting arrays.

Figure 7.14
Block diagram for generating three curves for plotting.

Figure 7.15
Block diagram for multi-curve plotting using arrays.

Conclusion: Put the Waveform Chart inside the loop for point-by-point plotting if
you want stacked plots. If you need separate plots and you are working with arrays,
use three separate Waveform Charts.

Section 7.2 Using Waveform Charts 225

Figure 7.16
Stacked plots only work
with point-by-point plotting
(arrays used here).

Bui ld a LabVIEW Funct ion Generator

To demonstrate the use of the Waveform Chart function, we will create a function
generator that can create any of the following waveforms at run time.

• sine wave (signal type = 0)
• triangle wave (signal type = 1)
• square wave (signal type = 2)
• sawtooth wave (signal type = 3)

The LabVIEW function that creates these waveforms is called the Basic Function
Generator, and it is available deep inside the Programming Group’s Waveform Group:

Functions Palette / Programming Group / Waveform Group / Analog
Waveform Group / Waveform Generation Group / Basic Function
Generator

A P P L I C AT I O N

226 Graphing with LabVIEW

The connection pane for the Basic Function Generator function is illustrated in
Figure 7.17.

Offset (0.0)

reset signal (FALSE)

signal type (0)

frequency (10 Hz)

amplitude (1.0)

phase (0.0)

error in

sampling info

square wave duty cycle (50%)

signal out

phase out

error out

Figure 7.17
Connection pane for Basic
Function Generator.

Figure 7.18
Function Generator VI front panel.

The front panel of the Function Generator VI is shown in Figure 7.18, and the
block diagram is shown in Figure 7.19.

Section 7.2 Using Waveform Charts 227

Notice, in Figure 7.19, that the Waveform Chart indicator has been used and the
entire block diagram has been enclosed in a While Loop. This program runs contin-
uously once it has started, and the Basic Function Generator continues to generate
signal values appropriate for the selected waveform (e.g., sine, square, or triangle
wave). The Waveform Chart indicator is designed to receive a waveform point by
point and (when built into a While Loop) continuously update the display of the
waveform.

Note: A Waveform Graph indicator cannot be used in this situation because the
signal coming out of the Basic Function Generator is a series of point values, not
the 1D array required by the Waveform Graph indicator.

The Square Wave Duty control (bottom-left corner of Figure 7.18) is used to
adjust the percentage of time that the square wave is in the high position.The square
wave duty only has meaning when the square wave has been selected.The portion of
the block diagram reproduced in Figure 7.20 is responsible for enabling the Square

Figure 7.19
Block diagram for the Function Generator VI.

Figure 7.20
The portion of the Function
Generator block diagram
that enables the Square
Wave Duty control.

228 Graphing with LabVIEW

Wave Duty control when “square wave” has been selected and disabling the control
otherwise. Here’s how it works:

• First the Signal Type is compared against a constant (“2” is the signal type for
“square wave”) and a TRUE is sent to the Select function when Signal Type � 2.

• The Select function sends either a “0” or a “2” to the Square Wave Duty control’s
Disabled property node. Setting the Disabled property value to “0” enables the
control, and setting the property value to “2” disables and grays the control.

Note: If the portion of the Function Generator block diagram shown in Figure 7.20
was omitted, the Square Wave Duty control would function all the time, but its output
would be ignored unless the square wave signal type was selected. (The Function
Generator would still work.)

The Timer function (shown in Figure 7.21) puts a 100 ms wait inside the While
Loop shown in Figure 7.19. This slows down the execution of the While Loop to
improve the display of the waveform.

The Waveform Chart function is commonly used in LabVIEW to display a
waveform that is changing with time. That waveform could be coming from a func-
tion generator (as in this example) or it could be a signal coming in from a data
acquisition system.

7.3 USING WAVEFORM GRAPHS

LabVIEW’s Waveform Graph indicator is distinct from the Waveform Chart indicator
in that Waveform Graphs must receive a complete array of values for plotting.There
is no chart history, Waveform Graphs just display the array values that they receive
as input. Waveform Graphs are never used for point-by-point plotting.

Controls Palette / Modern Group / Graph Group / Waveform Graph

Controls Palette / Express Group / Graph Indicators Group / Waveform
Graph

Note: Waveform Graphs require 1D arrays rather than matrices. This is because a
matrix in LabVIEW is always 2D, even if you only use one column or one row. If
you attempt to send a matrix into a LabVIEW graphing function you will generate
a data type mismatch error.

Figure 7.21
The Timer function is used
to slow the While Loop.

Calculate y array values given polynomial coeff ic ients
and x array values. Graph the y array.

Polynomial:
Coefficients:
x array values: uniformly spaced integers between 0 and 10

First, the x array values are entered into a 1D array on the front panel, and a
Waveform Graph indicator is placed on front panel, as shown in Figure 7.22.

The block diagram is shown in Figure 7.23.
The result is shown in Figure 7.24.

In Figure 7.23 you can see that most of the VI is dedicated to solving for the Y
values. There are a number of ways that the Polynomial VI could be programmed.The
next two figures show a couple of possible modifications to simplify the block diagram.

A = 4, B = 3.7, C = - 1.9, D = 0.17
y = A + Bx + Cx2 + Dx3

E X A M P L E 7 . 1

Section 7.3 Using Waveform Graphs 229

Figure 7.22
Front panel for Polynomial VI.

Figure 7.23
Block diagram of Polynomial VI (version 1, annotated).

In the second version of the Polynomial VI (see Figure 7.25), we have replaced
all of the individual summations with a Compound Arithmetic function. The
Compound Arithmetic function can be found in either of these locations:

230 Graphing with LabVIEW

Functions Palette / Programming Group / Numeric Group / Compound
Arithmetic function

Functions Palette / Mathematics Group / Numeric Group / Compound
Arithmetic function

In the third version of the Polynomial VI (see Figure 7.26), we have replaced all of
the math functions with a Formula Express VI. The formula was entered as 4 � 3.7*
X � 1.9* X **2 � 0.17* X **3. The Formula Express VI can be found in

Functions Palette / Mathematics Group / Scripts and Formulas Group /
Formula Express VI

Figure 7.24
The calculated polynomial values and graph of the Y array values.

Figure 7.25
Second version of Polynomial
VI using Compound Add
function.

Section 7.3 Using Waveform Graphs 231

7.3.1 Comparing the Waveform Charts and Waveform Graphs

In the next VI, we will send the same array data to both a Waveform Chart indicator
and a Waveform Graph indicator to observe how each handles the same data. The
array contains only four values [2, 4, 4, 2]. The font panel (before running the VI) is
shown in Figure 7.27, and the block diagram is shown in Figure 7.28.

Figure 7.26
Third version of Polynomial
VI using the Formula
Express VI.

Figure 7.27
Front panel before running the VI.

Figure 7.28
Block diagram of the VI.

232 Graphing with LabVIEW

As you can see in Figure 7.28, the 1D array is wired directly into both the Waveform
Chart indicator and the Waveform Graph indicator; they both get exactly the same
input.

Now, we run the VI. After one cycle through the While Loop, the front panel
looks as shown in Figure 7.29; both the chart and the graph are presenting the same
information.

Figure 7.29
The front panel after one cycle through the While Loop.

The VI continues to run, and the next time through the While Loop, the same
array data are sent to both the chart and the graph indicators. The result is shown in
Figure 7.30. Both the chart and the graph have received the array values as input
twice, but the chart shows the history (the array data twice) while the graph only
displays the most recently received array values.

Figure 7.30
The front panel after two cycles through the While Loop.

The Waveform Chart indicator is unique in that it keeps and displays a history
of the data received for plotting rather than just showing the most recent values. If
we continue to run the VI for a few more cycles of the While Loop (see Figure 7.31),

Section 7.3 Using Waveform Graphs 233

the chart continues to display all of the values received, while the graph will
always display only the most recently received array values.

The number of values stored in the Waveform Chart indicator’s history list is
1024 by default. To change the value, right-click on the indicator and select Chart
History Length . . . from the pop-up menu.

7.3.2 Plotting Multiple Curves Using Waveform Graphs

If you want to plot multiple arrays on a Waveform Graph indicator, you must send a
2D array to the input of the Waveform Graph indicator. Use the Build Array function
to combine the X and Y arrays into a 2D array that is sent to the Waveform Graph
indicator. The Build Array function is found in the Programming group’s Array
group:

Functions Palette / Programming Group / Array Group / Build Array

In Figure 7.32 the Polynomial VI has been modified to build the 2D array for
graphing. The Transpose 2D Array function was used to convert the two-row array

Figure 7.31
The front panel after five cycles through the While Loop.

Figure 7.32
Block diagram that plots
both X and Y arrays.

234 Graphing with LabVIEW

created by the Build Array function into a two-column array. The result is shown in
Figure 7.33.

Figure 7.33
Plotting both X and Y arrays using a Waveform Graph indicator.

7.3.3 Data Acquisition and Waveforms

When a data acquisition system is used, the system is configured to record one or
more measurements at a specified time interval.The data set that comes from a data
acquisition system often contains the following items:

• Start time
• Time interval between readings
• Array of recorded values

In LabVIEW, these three pieces of information are bundled together in a cluster,
and called a waveform. There are several ways to obtain a waveform in LabVIEW:

• A data set collected with a data acquisition system will be available as a waveform
in LabVIEW.

• LabVIEW provides functions that act as waveform generators (simulated data).
• You can create a waveform in LabVIEW by bundling (start time, time interval,

data array) values into a cluster.

Plot t ing array data and waveform data us ing
LabVIEW’s Waveform Graph ind icator

LabVIEW’s Waveform Graph indicator will accept a waveform as input (so will a
Waveform Chart). To illustrate the difference between plotting arrays and plotting
waveforms, consider a data set that was collected starting at 11:00 AM with an inter-
val between measurements of 3 minutes (180 seconds). The measured values were:
10, 12, 16, 22, and 30. In Figure 7.34 both the waveform and the 1D array have been
plotted using Waveform Graph indicators.

E X A M P L E 7 . 2

Section 7.3 Using Waveform Graphs 235

The graphs are pretty much the same, except for the values on the Time axes.

• Waveform—When the waveform was sent to the Waveform Graph (upper graph
in Figure 7.34), start time and time interval information was available to the graph
indicator, so actual time values were plotted on the x axis.

• 1D Array—When the data array was plotted (lower graph in Figure 7.34) the
Waveform Graph received no information about time, so the markers on the
Time axis just represent array index values.

Note: When plotting waveforms in LabVIEW, plotting actual times on the Time axis is
not the default; the default is to plot times relative to the beginning of data acquisition,
in seconds.You must request that actual times be plotted by right-clicking on the graph
and clearing the check mark before the Ignore Time Stamp item in the pop-up menu.

A waveform provides all of the data values, plus information on the timing of
the data acquisition. When a waveform is available, it gives you more options for
presenting the data graphically.

The block diagram that was used to bundle the waveform information and
create the graphs is shown in Figure 7.35.

The Build Waveform function is available in the Waveform group:

Functions Palette / Programming Palette / Waveform Group / Build
Waveform

Figure 7.34
Two Waveform Graph indicators, one plotting a LabVIEW waveform and one plotting a 1D array.

236 Graphing with LabVIEW

7.4 MODIFYING GRAPH FEATURES

Some of the features of a graph, such as the axis labels, can be modified just by double-
clicking on the displayed text string. Features can be activated and deactivated
by using the graph’s pop-up menu. Right-click on the graph to see the pop-up menu
options. This is illustrated in Figure 7.36.

Many of the options under Visible Items will be presented later, in Section 7.3.2,
but a few comments on the X Scale and Y Scale menu options are in order.

Figure 7.35
Block diagram of VI that
bundles and plots
a waveform.

Figure 7.36
Right-click the graph to
change graph features.

Section 7.4 Modifying Graph Features 237

If you select the X Scale menu option (the options for the Y Scale are the
same), the options shown in Figure 7.37 appear on the submenu.

• Marker Spacing—options are Uniform and Arbitrary. Uniform is the most
commonly used. Arbitrary markers allow you to indicate specific levels.

• Formatting . . . —opens the Graph Properties dialog to the Display Format panel
shown in Figure 7.38. This is described in more detail at the end of this list.

• Style—allows you to select how much information (scale values, tick marks) you
want to see on the axis.

• Mapping—allows you to select whether the axis is Linear or Logarithmic.
• Properties—opens the Graph Properties dialog to the Scales panel shown in

Figure 7.39. The Scales panel allows you to activate or deactivate autoscaling, and
enter minimum and maximum scale values if autoscaling is deselected.

• AutoScale X—allows you to activate or deactivate autoscaling from the pop-up
menu. When autoscale is active, LabVIEW automatically adjusts the axis range to
fit the displayed values. If you deactivate autoscaling, the axis limits that were in
place when autoscaling was deactivated will continue to be used.

Figure 7.37
Options for the X axis.

238 Graphing with LabVIEW

Figure 7.38
Graph Properties dialog,
Display Format panel.

• Loose Fit—When checked, the minimum and maximum scale values will always
be a whole multiple of the axis value interval; this makes your axis look cleaner.

• Visible Scale Label—allows you to activate or deactivate the display of the axis
label (not the numbers). To hide both the axis label and the scale values, set the
Style to blank.

A Properties dialog is available for any control that displays numeric values, but
some of the panels change depending on the type of control or indicator.To open the
Properties dialog, right-click on a control or indicator (including a graph) and select
Properties from the pop-up menu.

For a graph, the Display Format panel (Figure 7.38) allows you to select either
axis using the drop-down list near the top of the dialog, and then

• Set the number of Digits desired.
• Select whether the number of digits represents Digits of precision or Significant

figures.
• Choose whether or not to display trailing zeroes (Hide trailing zeroes checkbox).

The Properties dialog Scales panel (Figure 7.39) allows you to adjust a number
of graph elements. First, select an axis using the drop-down list near the top of the
panel, and then you can

Section 7.4 Modifying Graph Features 239

Figure 7.39
Graph Properties dialog,
Scales panel.

• Assign or edit the display name (Name field).
• Indicate whether or not the label will be displayed (Show scale label checkbox).
• Indicate whether or not the numeric scale will be displayed (Show scale

checkbox).
• Select a Log or Inverted scale, activate or deactivate autoscaling.
• Set display colors for the tick marks, marker values, and gridlines.

The other commonly used panel when working with graphs is the Plots panel, shown
in Figure 7.40.

Graph features that can be changed from the Plots panel are as follows:

1. Select the plot (if multiples plots are shown in the graph).
2. Enter or modify the display name for the plot.
3. Choose the line style (solid, dashed, etc.).
4. Choose the line thickness.
5. Choose the marker style.
6. Choose how the plot will be displayed.

• Markers only
• Markers with lines, no smoothing, horizontal lines at right marker value
• Markers with smoothed lines (selected in Figure 7.40)

240 Graphing with LabVIEW

• Markers with lines, no smoothing, horizontal lines at left marker value
• Markers with lines, no smoothing, markers between horizontal lines
• Markers with lines, no smoothing, markers between vertical lines

7. Choose the colors of the lines and markers.

7.5 GENERATING 1D ARRAYS FOR GRAPHING

Because most LabVIEW graphing controls require 1D arrays as inputs, you need to
be careful to generate 1D arrays prior to graphing.

When data are read from a .txt file using the all rows output on the Read From
Spreadsheet File function, the data are placed in a 2D array, which is not compatible
with graphic controls that require 1D arrays as inputs. But you can use the Index
Array function to extract individual 1D arrays (either rows or columns) from a 2D
array. The Index Array function is located at

Functions Palette / Programming Group / Array Group / Index Array

Note: If your .txt file only has one row or column, use the Read From Spreadsheet
File function’s first row output and a 1D array will be created automatically.

Figure 7.40
Graph Properties dialog,
Plots panel.

Plot t ing the involute of a c i r c le

The involute of a circle is the curve that results by following the end of a string as it
is being unwound from a circle. Data for the involute of a circle are available in the
text files Involute.txt.The first step is to use the Read From Spreadsheet function to
read the files.

Function Palette / Programming Group / File I/O Group / Read From
Spreadsheet.vi

In Figure 7.41, the Read From Spreadsheet function is shown expanded so that the
terminals can be seen. The file path and all rows terminals are in use.

• file path—indicates the location of the .txt file
• all rows—reads the entire .txt file

Section 7.5 Generating 1D Arrays for Graphing 241

To get data from a .txt file into a 1D array, use the following steps:

1. Place the Read From Spreadsheet function on the block diagram.
2. Wire the all rows output to an Index Array function’s 2D array input (use one

Index Array function for each row or column needed).
3. Wire the Index Array’s row index or column index to indicate which row to

pull out (the top row or left column is identified as 0).
4. Wire the 1D array output of the Index Array to an array indicator to see the

values.

We will use these steps in the following example.

Figure 7.41
Using Read From
Spreadsheet function to
read data from .txt file.

Once the data values are read from the Involute.txt file, two Index Array functions
are used to grab the first and second columns as 1D arrays. Then, the 1D arrays (of
X and Y values) are bundled and sent to an XY Graph control. The result is shown
in Figure 7.42.

E X A M P L E 7 . 3

242 Graphing with LabVIEW

7.6 PUTTING LABVIEW GRAPHS TO WORK

LabVIEW provides some tools that can help get values from graphs. We will use
those tools to solve for the roots of an equation using a graph. (The roots are the values
of the variable that satisfy the equation.)

As an example, we’ll solve for the values of x that satisfy the equation

Since the greatest power on x is 3, we expect three roots.
This equation is entered into the Formula Express VI as shown in Figure 7.43.
The VI shown in Figure 7.44 uses a For Loop to evaluate the formula for x values

between 0 and 10. The roots are the values of x that generate y values equal to 0.
By plotting the X and Y arrays using an XY Graph (as shown in Figure 7.45),

we can see that the roots are close to 0.5, 3, and 5.5. We’ll use some features of
LabVIEW’s graphics to zoom in and get more precise values for the roots.

If you right-click on the XY Graph and select Visible Items from the pop-up
menu, the following options are displayed:

1. Label—(defaults to graph type, XY Graph in this example)
2. Caption—(defaults to graph type, changed to “Plotting a Polynomial” in this

example)
3. Plot Legend—identifies the curves displayed on the plot (defaults to Plot 0,

Plot 1, etc.).
4. Scale Legend—shows the text strings used as axis labels (X and Y here);

buttons allow axes to be unlocked.
5. Graph Palette—provides access to cursor, zoom, and pan features. Axes must

be unlocked before cursor, zoom, and pan features are useful.

x2 - 9.4x2 + 22.95x - 10.602 = 0

Figure 7.42
The involute of a circle.

Section 7.6 Putting LabVIEW Graphs to Work 243

Figure 7.43
Entering the polynomial into the Configure Formula dialog.

Figure 7.44
Block diagram of VI used to
evaluate and graph
polynomial.

6. Cursor Legend—once a cursor has been defined, the cursor legend shows the
current location on the axes. The diamond controller allows you to use the
mouse to move the active cursor in four directions.

7. X Scrollbar—if the graph has been zoomed or panned, the X Scrollbar can be
used to slide the graph back and forth.

Figure 7.46 shows each of these items on the polynomial graph.

244 Graphing with LabVIEW

Figure 7.45
XY graph of the polynomial showing approximate locations of roots.

Figure 7.46
Polynomial graph with all graphing features made visible.

Section 7.6 Putting LabVIEW Graphs to Work 245

Zoom In
To try to more precisely determine the root values, we will first zoom in on the portion
of the graph in the lower-left corner. The following steps are needed:

1. Unlock the X and Y axes using the Scale Legend buttons (if needed), in
Figure 7.47 the axes are shown already unlocked.

Figure 7.47
The axes are unlocked on
the Scale Legend.

Figure 7.48
The Zoom button opens a
menu of zoom options.

2. Click the Zoom (magnifying glass) button on the Graph Palette and select a
zoom option (see Figure 7.48).

• Top-left (selected)—zoom to an area (to be) indicated with the mouse.
• Top-middle—use full Y axis, zoom to selected region of X axis.
• Top-right—use full X axis, zoom to selected region of Y axis.
• Bottom-left—restore full graph (unzoom).
• Bottom-middle—zoom in on a selected point.
• Bottom-right—unzoom at a selected point.

3. Select the bottom-left corner of the graph, from about (0, �20) to (6.5, 20).The
displayed portion of the graph will zoom in on the selected region as shown in
Figure 7.49. Use the panning tool (hand) on the Graph Palette to slide the
graph around if needed.

Activate a Cursor
Next, we will activate a cursor to help us read values off the graph very precisely. To
activate a cursor, right-click in the Cursor legend and select Create Cursor / Single-Plot
from the pop-up menu as shown in Figure 7.50.

• A Free cursor can be moved anywhere on the graph.
• A Single-Plot cursor can be moved around, but the cursor intersection will always

be on the displayed plot (that’s what we want for finding roots).
• The Multi-Plot cursor is not available because there is only one plot displayed on

the graph.

246 Graphing with LabVIEW

The cursor is made up of horizontal and vertical lines as shown in Figure 7.51. You
can move around with the mouse. Click on the cursor button on the Graph Palette if
needed to activate the cursor tool. In Figure 7.51, the cursor has been placed very
close to Y = 0 at X = 0.6. This tells us that x = 0.6 is one of our roots.

Simply move the cursor to the other two locations where the polynomial crosses
Y = 0 to find the other two roots. One is at x = 3.1 as shown in Figure 7.52. The other
is at x = 5.7 (not shown).

Figure 7.49
The zoomed graph.

Figure 7.50
Creating a Single-Plot cursor.

Section 7.6 Putting LabVIEW Graphs to Work 247

Figure 7.51
Move the cursor to Y = 0 to find a root.

Figure 7.52
The second root is located at X = 3.1.

The ability to use a cursor to find values on a graph is very convenient.

248 Graphing with LabVIEW

7.7 USING XY GRAPHS—2D PLOTTING

To this point, all of the graphing examples in this chapter have been plotted with
uniform spacing on the x axis; no x values have been sent to either the graph or chart
indicators. Even when a waveform was plotted, a constant time interval was as-
sumed so that the points were evenly spaced across the x axis.

Collecting data using an automated data acquisition system commonly pro-
duces values uniformly spaced through time. But there are many data analysis situ-
ations (and some data acquisition situations) where the data to be plotted do not
have uniformly spaced points in the x direction. When this is the situation, you must
provide both an X array and a Y array, and use LabVIEW’s XY Graph indicator to
accurately plot non-uniformly spaced values.

Controls Palette / Modern Group / Graph Group / XY Graph

Lab tes t ing a new medica l d iagnost i c too l

A new medical test is being developed that uses an enzyme to convert a blood
chemical into a form that is easy to measure using a test strip. The problem is
that the enzyme slowly begins to lose potency as soon as the test kit is opened to
air. A researcher is testing to see if a new formulation will allow the concentra-
tion to reach 0.37 μg/L (this is the critical value for a successful test) before the
enzyme activity has fallen to 20% of its original level. The data sheet is shown in
Figure 7.53.

Ultimately, we will want to plot both the product concentration and the
enzyme activity as functions of time, but we will begin with just the product concen-
tration. The front panel of a VI that plots the product concentration on the y axis
and the sample time on the x axis is shown in Figure 7.54. The block diagram used to
generate Figure 7.54 is shown in Figure 7.55.

Figure 7.53
Data sheet for medical
diagnostic study.

E X A M P L E 7 . 4

Section 7.7 Using XY Graphs—2D Plotting 249

The array or sample times and the array or product concentration values
must be bundled before wiring to the XY Graph input. The Bundle function is
available at

Functions Palette / Programming Group / Cluster, Class & Variant Group /
Bundle

The enzyme activity can be plotted as well, as shown in Figure 7.56. The units on
enzyme activity were changed from percent of initial activity level to fraction of
initial level. This was done to get both the product concentration and the enzyme
activity on the same scale for plotting. From the graph, you can see that the product
concentration reaches 0.37 μg/L when the enzyme activity level is still 0.36 or 36%
of the initial activity level. Since this is well over the target of 20%, the new formu-
lation is a success!

Figure 7.54
Front panel showing XY plot of Product Concentration vs. Time.

Figure 7.55
Block diagram used to
create the XY Graph of
Product Concentration
vs. Time.

250 Graphing with LabVIEW

Preparing the data for plotting takes a few steps:

• The product concentration and sample time arrays are bundled.
• The enzyme activity and sample time arrays are bundled.
• The two bundles are appended using the Build Array function.
• The 2D array of bundles of X and Y values is sent to the XY Graph indicator.

The Build Array function is available at

Functions Palette / Programming Group / Array Group / Build Array

In this example the product concentration and enzyme activity measurements were
made at the same time, but this is not required. Because the X and Y values for each
curve are bundled before being built into the final array, each curve can use a different
array of X values.

Figure 7.56
Plotting two curves on the XY Graph.

Figure 7.57
Block diagram to plot two
curves on an XY plot.

The block diagram required to plot two curves on an XY plot is shown in
Figure 7.57.

Section 7.7 Using XY Graphs—2D Plotting 251

PRACTICE

Bundling and (Array) Building for Multi-Curve XY Graphs

Learning when to bundle and when to build an array will make working with
LabVIEW XY Graph controls easier. Practice by creating a VI that plots the
following data:

The X values are non-uniformly spaced to make it obvious that the XY Graph control
uses the X values to locate the markers.

Note: Your VI should have three 1D arrays:

• X
• Y1
• Y2

Part 1: Create two XY Graphs

First, practice bundling (X, Y) pairs by bundling (X, Y1) and (X, Y2). Send each
pair to a separate XY Graph Control. The bundle function and XY Graph control
are located at

Functions Palette / Programming Group / Clusters, Class & Variant
Group / Bundle

Controls Palette / Modern Group / Graph Group / XY Graph

The front panel should look something like Figure 7.58.

X Y1 Y2

1 1 49

2 4 36
5 25 9
6 36 4
7 49 1

Figure 7.58
Part 1, Create two XY graphs.

252 Graphing with LabVIEW

Part 2: Create one XY Graph with two curves

Modify your VI as follows:

• Delete one XY Graph control

• Build the two bundles into an array, as

• Send the array of bundles into the XY Graph control

Your result should look like Figure 7.59.

c (X,Y 1)
(X,Y 1)

d

The block diagram for part 1 is shown in Figure 7.60, and for part 2 in Figure 7.61.
Notice, in part 2, that bundling comes first; then the array (of bundles) is built.

Figure 7.59
Part 2, Create one XY graph with two curves.

Figure 7.60
Block diagram for part 1.

Section 7.7 Using XY Graphs—2D Plotting 253

Figure 7.61
Block diagram for part 2.

XY Graphics Demonstrat ion—Spinning S ine Waves

This demonstration just shows what can be done with a For Loop, a While Loop, a
couple of trig functions, three knobs and an XY plot. If you run the program at a
public gathering, people will stop by to turn the knobs. The front panel is shown in
Figure 7.62, and the block diagram in Figure 7.63.

Figure 7.62
Spinning Sine Waves VI.

A P P L I C AT I O N

It’s a simple application with an interesting graphic display.

7.8 3D GRAPHING

LabVIEW provides three indicators for presenting 3D graphs:

• 3D Surface Graph
• 3D Parametric Graph
• 3D Curve Graph

The icon for the 3D Parametric Graph indicator is a torus (doughnut shape).We will
generate that shape to demonstrate the use of the 3D graphing indicators in
LabVIEW.

254 Graphing with LabVIEW

Figure 7.63
Spinning Sine Waves, block diagram.

Rr

Figure 7.64
Defining the radius values
for the torus.

Creat ing a 3D Parametr i c Graph of a torus

To help define terms, consider the torus shown in Figure 7.64.

E X A M P L E 7 . 5

We will call the diameter of the smaller circle “r” and the diameter from the center
of the torus to the center of the tube “R”. With these definitions, the surface of a
torus can be described with the following equations:

Where u and v are working variables that each range between 0 and 2π radians.
The number of increments used for u and v is arbitrary, but a smaller step size creates
a smoother surface when the torus is plotted. In this example we will use 30 steps for
both u and v. The step values for u and v were calculated in Excel, and are shown in
Figure 7.65. Values of u are in column B, and values for v are in row 7.

The values of x, y, and z are then calculated using the surface equations for the
torus. The calculations for x values are illustrated (partially) in Figure 7.65.
Ultimately the size of the 2D x array will be 31 × 31 elements.

z = r sin(v)
y = (R + r cos(u)) sin(v)
x = (R + r cos(u)) cos(v)

Section 7.8 3D Graphing 255

Figure 7.65
Calculating X values
for a torus in Excel.

To prepare for importing the values into LabVIEW, the x, y, and z arrays are each
moved to the top-left corner of a worksheet (no headings) and then stored in
separate tab-delimited text (.txt) files.

Once the three text files have been prepared, the Read From Spreadsheet
function can be used three times to read the x, y, and z arrays into LabVIEW as
three 2D arrays.

The Read From Spreadsheet function is available at

Functions Palette / Programming Group / File I/O Group / Read From
Spreadsheet

256 Graphing with LabVIEW

The Read From Spreadsheet functions are used to read each of the three text files.
Then the 2D arrays are displayed, and sent to the 3D Parametric Graph function for
plotting. The complete block diagram is shown in Figure 7.66, and the resulting plot
on the front panel in Figure 7.67.

Figure 7.66
Final block diagram for
Torus VI.

Figure 7.67
Front panel of the Torus VI.

To adjust the display properties of the 3D graph, right-click on the graph and select
CWGraph3D / Properties . . . from the pop-up menu. The CWGraph3D Control
dialog will open, as illustrated in Figure 7.68.

Section 7.8 3D Graphing 257

7.8.1 A Look Ahead

It is not necessary to create the x, y, and z values in Excel and import them into
LabVIEW. The same calculations that were performed in Excel can be done in
LabVIEW; it requires two nested For Loops. The block diagram for the LabVIEW
Torus VI is shown in Figure 7.69 as a preview of what LabVIEW can do.

Figure 7.68
Adjusting the display
properties of the
3D graph.

Figure 7.69
Block diagram for the LabVIEW Torus VI.

258 Graphing with LabVIEW

7.9 GETTING GRAPHS ONTO PAPER AND INTO REPORTS

One way to get a printout of a LabVIEW graph is simply to print the VI front panel
that shows the graph. While that works much of the time, LabVIEW will also export
a simplified version of the graph that can be either pasted or inserted into a document.
To export an image of a graph, right-click on the graph and select Export Simplified
Image . . . from the pop-up menu.

None of the export methods is perfect.The .bmp (bitmap) export in Figure 7.70,
for example, is a little pixilated and truncates the x-axis value label on the right. Still,
the export method provides a way to get a LabVIEW graph into a report when
needed.

Figure 7.70
Graph from Figure 7.56
exported as .tif file, then
inserted into this document.

KEY TERMS 3D parametric graph
array plotting
autoscale
chart
chart history
cursor
cursor legend
digits of precision
export
graph
Graph Palette
involute

overlay plots
(waveform chart)

Plot Legend
Properties dialog
root (of polynomial)
sawtooth wave
Scale Legend
Signal
significant figures
sine wave
square wave
square wave duty

stacked plots
(waveform chart)

torus
trailing zeroes
triangle wave
update mode (strip chart,
scope chart, sweep chart)
waveform
Waveform Chart
Waveform Graph
X Scrollbar
XY Graph

Summary 259

S U M M A RY

Chart—receives individual data points and continuously update the presentation of
the data.
Graph—receives a complete data set (as an array) before preparing the graphical
display.

Chart Types

• Waveform Chart
• Intensity Chart

Graph Types

• Waveform Graph
• XY Graph
• Intensity Graph
• Digital Waveform Graph
• Mixed Signal Graph
• 3D Graph (surface, parametric, curve)

1D Graphing and Charting

• Waveform Chart—receives single values, 1D array, or waveform
• Keeps a chart history (right-click on chart, choose Chart History Length . . . to

change size)
• Update Modes (Strip Chart, Scope Chart, Sweep Chart)
• Stack or Overlay Plots

• Waveform Graph—receives a 1D array, or a waveform

Controls Palette / Modern Group / Graph Group / Waveform Chart
Controls Palette / Modern Group / Graph Group / Waveform Graph

2D Plotting

XY Graph

• Receives a bundle of 1D arrays (X values array and Y values array are bundled)
• For two curves, build an array of two (X|Y) bundles

Plotting Multiple Curves

• Waveform Chart receives a bundle of values to plot multiple curves point by
point (stack or overlay).

• Waveform Graph receives a 2D array to plot multiple curves (use Build Array
function to create 2D array from two 1D arrays).

• XY Graph receives an array of (X|Y) bundles to plot multiple curves.

Modifying Graph Features

Pop-Up Menu

• Marker Spacing—options are Uniform and Arbitrary
• Style—select scale values, tick marks
• Mapping—linear or Logarithmic scale
• Properties—opens the Graph Properties dialog

260 Graphing with LabVIEW

• AutoScale X—activate or deactivate autoscaling
• Loose Fit—When checked, minimum and maximum scale values will be a whole

multiple of the axis value interval
• Visible Scale Label—activate or deactivate the display of the axis label
• Visible Items

• Label (defaults to graph type)
• Caption (defaults to graph type)
• Plot Legend (defaults to Plot 0, Plot 1, etc.)
• Scale Legend—shows the text strings used as axis labels; buttons allow axes to

be unlocked
• Graph Palette—access to cursor, zoom, and pan features; axes must be unlocked
• Cursor Legend—once a cursor has been defined, shows the current cursor location
• X Scrollbar—used to slide the graph back and forth

Properties Dialog (right-click on graph, choose Properties to open the dialog)

Display Format Panel

• Set the number of Digits desired.
• Select whether the number of digits represents Digits of precision or Significant

figures.
• Choose whether or not to display trailing zeroes.

Scales Panel

• Assign or edit the display name.
• Indicate whether or not the label will be displayed.
• Indicate whether or not the numeric scale will be displayed.
• Select a Log or Inverted scale; activate or deactivate autoscaling.
• Set display colors for the tick marks, marker values, and gridlines.

Plots Panel

• Select the plot (if multiples plots are shown in the graph).
• Enter or modify the display name for the plot.
• Choose the line style (solid, dashed, etc.).
• Choose the line thickness.
• Choose the marker style.
• Choose how the plot will be displayed.

• Markers only
• Markers with lines, no smoothing, horizontal lines at right marker value
• Markers with smoothed lines
• Markers with lines, no smoothing, horizontal lines at left marker value
• Markers with lines, no smoothing, markers between horizontal lines
• Markers with lines, no smoothing, markers between vertical lines

• Choose the colors of the lines and markers

Outputting Graphs

• Print the front panel
• Export Simplified Image . . . —right-click on the graph and select Export

Simplified Image . . .

Self-Assessment 261

S E L F - A S S E S S M E N T

1. What is the difference between a chart and a graph in LabVIEW?
ANS: Chart controls can continuously receive data and update as needed.
Graph controls receive an entire data set before creating the plot.

2. Are graphic displays (charts or graphs) added to the front panel or the block
diagram?
ANS: Graphic controls (e.g., Waveform Chart, XY Graph) only appear on the
Controls Palette and must be placed on the front panel.When a graphic control
is placed on the front panel, a node for the graphic control appears on the block
diagram as well.

3. Does LabVIEW expect data for graphic controls in the form of arrays,or matrices?
ANS: With one exception, LabVIEW expects data sent into graphic controls
to be in arrays, not matrices. The exception is the Waveform Graph which will
accept a 2D matrix (each row contains data for one curve).

4. How are “bundles” used with XY graphs?
ANS: A bundle is a grouping of related items. The LabVIEW XY Graph
control wants the X and Y values to be bundled before plotting. This ensures
that there are the same number of X values as Y values being plotted.
Because bundles can contain different data types, bundling (as opposed to
building an array) allows, for example, integer X values to be bundled with
double-precision Y values.

5. When do you “bundle” and when do you “build an array” when working with
XY Graph controls?
ANS: (X, Y) pairs are bundled. Bundles are built into arrays when you want to
plot multiple curves on the same XY Graph.

6. What is a “waveform” in LabVIEW?
ANS: A waveform is a data set with header information that includes the
following items:

• Start time
• Time interval between values

7. What is the difference between the inputs required by a Waveform Graph and
an XY Graph?
ANS: A waveform graph receives a 1D array of Y values and plots the points
evenly distributed across the horizontal (X) dimension of the graph. An XY
graph receives a bundle of two 1D arrays, one array contains X values, one
contains Y values.

While a waveform graph will accept a 2D array of values, it will plot multiple
curves; it will not use any input values as X values. An XY graph will also plot
multiple curves, but the data must be sent in as an array of (X, Y) bundles.

8. How can you create an image of a LabVIEW plot (to put into a report, for
example)?
ANS: Right-click on the graph and select Export Simplified Image . . . from
the pop-up menu.

262 Graphing with LabVIEW

P R O B L E M S

1. Enter the following values into a 1D array and graph them using a Waveform
Graph control. Adjust the plot characteristics to show the plot with solid
squares, connected by a dashed line.

2. Plot the following values and use the plot to estimate the curve’s maximum value.

3. Enter the following values into two 1D arrays. Bundle the (X, Y) values and
send the bundle to an XY Graph control. Show the data points with markers
connected with a dashed line.

Y

2
4
3
5
4
6

Y

1.0
2.2
3.4
4.1
4.0
2.0
1.1

X Y

1.2 3.5

2.1 4.0
3.5 4.3
4.2 4.2
4.6 4.1
5.6 3.7
7.2 2.7

4. Enter the following values into two 1D arrays. Bundle the (X, Y) values and
send the bundle to an XY Graph control. Estimate the X value where the
curve crosses Y = 0.

X Y

1.2 9.1

2.3 12.4
3.5 10.5
4.2 6.7
5.8 �9.3
7.6 �39.5
8.2 �52.5

Problems 263

5. Enter the following values into three 1D arrays and create an XY graph with
two curves: (X, Y1) and (X, Y2). Use the Plot Legend and set the curve properties
so that the curves are easily distinguished when printed on a black and white
printer.

6. Enter the following values into four 1D arrays and create an XY graph with
two curves: (X1, Y1) and (X2, Y2). Set the curve properties so that the curves
are easily distinguished when presented in a classroom using a color projection
system. Estimate the point of intersection of the two curves.

7. The data required to generate a plot of Bessel function J0(x) are available in
files BesselX.txt and BesselY.txt at the text’s website.

www.chbe.montana.edu/LabVIEW

Download the files, then create an XY graph of the Bessel function.
What is the value of J0(x) when x = 22?
Hint: You can check your result using LabVIEW’s function: Bessel Function Jv.vi.

8. A first-order response is a common model for a variety of processes in engi-
neering (e.g., mixing in a tank, warming a thermocouple, charging a capacitor).
A first-order response has a time constant, τ, that is indicative of the speed of
the response.

• After a time equal to 1τ, 63.2% of the total change in Y will have taken
place.

• After a time equal to 2τ, 86.4% of the total change in Y will have taken
place.

• After a time equal to 3τ, 95.0% of the total change in Y will have taken
place.

Data for a first-order response are available in files FirstOrderTime.txt and
FirstOrderY.txt at the text’s website. Download the files, and then create an
XY graph of the response. What is the value of the time constant, τ, for the
process?

X Y1 Y2

1.2 9.1 7.1

2.3 12.4 9.6
3.5 10.5 8.5
4.2 6.7 6.1
5.8 �9.3 �4.4
7.6 �39.5 �24.1
8.2 �52.5 �32.5

X1 Y1 X2 Y2

1 12 1 1.5

2 9.0 3 4.6
3 7.0 5 7.0
4 5.4 7 8.4
7 1.9 9 9.0
8 1.3
9 1.0

www.chbe.montana.edu/LabVIEW

Data Analysis Using
LabVIEW VIs

8.1 INTRODUCTION

This chapter focuses on the routine calculations that are basic to working with
data sets, including

• Calculating means and standard deviations
• Interpolating between data points in a data set
• Fitting a curve to a data set
• Determining regression coefficients for the best-fit curve

The goal of this chapter is not to write elaborate VIs, but to demonstrate how
to use the data analysis tools that are built into LabVIEW.

We will use a number of data sets in the examples in this chapter; these
data sets are available on the text’s website www/chbe/montana.edu/
LabVIEW.

8.2 BASIC STATISTICS

LabVIEW provides functions to calculate basic descriptive statistic values on a
single data set such as

• Maximum
• Minimum
• Mean
• Median
• Standard deviation
• Variance

For two data sets LabVIEW provides functions to compute correlation
coefficients.

There are random number generators that can generate sets of random
values with various distributions (uniform, normal, etc.)

O b j e c t i v e s
After reading this chapter,
you will know:

how to use LabVIEW func-
tions to calculate basic
statistical quantities
how to interpolate data
tables using a LabVIEW
function
how to fit an interpolated
curve through each data
point in a data set
how to use linear regression
to finding the best-fit
regression model for
a data set

8C H A P T E R

www/chbe/montana.edu/LabVIEW
www/chbe/montana.edu/LabVIEW

Additional functions provide for

• Creating histograms
• Hypothesis testing
• Analysis of variance (ANOVA)

We will begin with a VI that calculates and displays the basic descriptive statistics
for a data set. To start with a data set very familiar to students, we will begin by looking
at scores from an exam.

Section 8.2 Basic Statistics 265

Descr ip t ive S tat i s t i cs for a Set of Exam Scores

Given the exam scores in Table 8.1, calculate and display the basic descriptive
statistics, including

• Maximum
• Minimum
• Mean
• Median
• Standard deviation
• Variance

Then create a histogram showing how the scores were distributed.

The scores were imported from a tab-delimited text (.txt) file using the Read From
Spreadsheet function in the Programming Group.

Functions Palette / Programming Group / File I/O Group / Read From
Spreadsheet

Since the scores ultimately need to be in a 1D array (for compatibility with the func-
tions in the Probability & Statistics Group), the first row output terminal on the Read
From Spreadsheet function must be used, and the Transpose input must receive a
TRUE in order to read a column of values. The block diagram used to read the
exam scores is shown in Figure 8.1.

Note: Alternatively, the data can be assigned to a 2D array using the Read From
Spreadsheet function’s all rows output, and then the first column pulled out using
the Index Array function. Since there is only one column of values in the .txt file, using
the first row output is more efficient.

The first row array indicator was changed to a control (current values saved as
default), just to save space on the block diagrams.

E X A M P L E 8 . 1

Table 8.1 Data set 1: Exam scores

77 93 87 92
91 83 87 86
85 75 92 90
97 74 85 82
83 53 74 71
85 93 78 78
92 87 92 84
55 82 73
83 86 81

266 Data Analysis Using LabVIEW VIs

Figure 8.1
Block diagram used to read
exam scores from text file.

Note: In these examples the scores are presented as a column array, but the mathe-
matical calculations in the rest of the example will work equally well with either a row
array or a column array.

The statistics were calculated using functions from either the Array Group or
Probability & Statistics Group:

Functions Palette / Programming Group / Array Group /
Array Max & Min

Functions Palette / Mathematics Group / Probability &
Statistics Group

• Mean.VI—arithmetic average value
• Median.VI—central value
• Std Deviation and Variance.VI

Definitions

• Mean—arithmetic average value
• Median—the median is the central value when values are arranged in a sorted list
• Standard Deviation—the standard deviation describes the extent of variability in

the values
• Variance—the variance is the square of the standard deviation

The block diagram for calculating these statistics is shown in Figure 8.2, and the
results are shown on the front panel in Figure 8.3.

Figure 8.2
Block diagram of Descriptive Statistics VI.

Section 8.2 Basic Statistics 267

Notice that the mean (arithmetic mean) was calculated twice, once using the
Mean function and once as one of three outputs from the Std Deviation and
Variance function. Both calculations gave the same result (mean � 82.5) and either
can be used.

PRACTICE

Find the Mean and Standard Deviation of a Data Set

The mean and standard deviation are commonly used to provide a sense of the
average value in a data set and the extent of the spread of the values in the data
set. For example, if you take the same measurement several times, you can use
the standard deviation to get an idea of the uncertainty associated with the
measurement.

The values in the following list represent repeated diameter measurements
taken using a caliper with a digital readout. The caliper shows four decimal places,
but how accurate are the readings? Calculate the standard deviation to find out.

Figure 8.3
Front panel of Descriptive
Statistics VI.

Diameter (mm)

451.0063
453.5625
451.1954
455.2409
453.4645
453.6030

The mean and standard deviation were determined using LabVIEW’s Std
Deviation and Variance.VI, and the results are shown in Figure 8.4. The mean is
453 mm, but the standard deviation is 1.6 mm. This indicates that there is uncer-
tainty in the “ones” position, so it is absurd to report these values with seven signif-
icant digits.

Note: This does not imply that the calipers are unable to deliver a more precise value
in a different situation. This result could be imprecise because the measurement is
being taken on something that is not a true circle, or perhaps it is in a difficult
location and the calipers are not being positioned accurately.

Once the mean and standard deviation have been calculated, they are typically
reported as mean ± std. dev., or 453 ± 1.6 mm in this example.

The block diagram used to find the mean and standard deviation of the data
set is shown in Figure 8.5.

268 Data Analysis Using LabVIEW VIs

As a final step, we will modify the VI to display the exam scores as a histogram.
LabVIEW provides three functions for creating histograms:

• Histogram.vi—you can set the number of bins, but not the bin ranges.
• General Histogram.vi—you can specify the bin ranges.
• Create Histogram.vi—designed to create a histogram from a signal, although it

will accept an array as input.

Functions Palette / Mathematics Group / Probability & Statistics Group

Definitions

• Histogram—a graph that shows how values in a data set are distributed. Most
students are familiar with grade distribution graphs, which are a type of histogram.

• Bins—the values in a data set are sorted into categories, called bins. Bins for a
grade distribution are typically A, B, C, and so on.

Figure 8.5
Block diagram of VI used
to find mean and standard
deviation.

Figure 8.4
Calculating the mean
and standard deviation
of a data set.

Section 8.3 Interpolation 269

In this example we will use the General Histogram function so that we can specify
the bin range values to see how many scores are in the following ranges:

• 50–60
• 60–70
• 70–80
• 80–90
• 90–100

We also need to decide how to handle scores that fall on a bin boundary. For example,
should a score of 80 fall into the 80–90 bin, or the 70–80 bin? That is, should someone
who got an 80 be in the “B” bin or the “C” bin? The usual way of thinking about
grades is to include a score on the lower bin limit in the bin (they get the higher
grade). So, the bin limits are now:

• 50–60, include score on the lower bin limit in the bin
• 60–70, include score on the lower bin limit in the bin
• 70–80, include score on the lower bin limit in the bin
• 80–90, include score on the lower bin limit in the bin
• 90–100, include scores on both the lower bin and upper bin limit in the bin

The bins are specified for the General Histogram function by defining a cluster
consisting of (lower bin limit, upper bin limit, boundary inclusion code) where the
boundary inclusion codes are as follows:

• 0–lower-score on lower bin boundary is included in bin
• 1–upper-score on upper bin boundary is included in bin
• 2–both-score on either bin boundary is included in bin
• 3–neither-score on either bin boundary is not included in bin

The array of clusters that needs to be sent to the General Histogram function’s Bins
input looks like this:

Fortunately, we don’t have to create that array of clusters ourselves. We can right-
click on the Bins input and select Create / Control from the pop-up menu.A control
will be placed on the front panel that can be expanded to five array elements to
allow us to set the required values for the five bins.This is shown near the bottom of
the final front panel of the Descriptive Statistics VI, in Figure 8.6.
The block diagram for the final Descriptive Statistics VI is shown in Figure 8.7.

8.3 INTERPOLATION

When you are working with tabulated data, as often as not it seems like, the value
you need is in between the values in the table. For example, steam tables are tabu-
lated values of the thermodynamic properties of water. The example shown in

(50, 60, 0)
(60, 70, 0)
(70, 80, 0)
(80, 90, 0)
(90, 100, 2)

270 Data Analysis Using LabVIEW VIs

Figure 8.6
Front panel of Descriptive
Statistics VI with histogram.

Figure 8.7
Block diagram for the final Descriptive Statistics VI.

Section 8.3 Interpolation 271

Table 8.2 has values of enthalpy at six different temperature values, but not at
230°C. How can we estimate the enthalpy of saturated steam at 230°C using the
data in Table 8.2? We need to interpolate to find the answer; the process is termed
interpolation.

Table 8.2 Properties of saturated steam

Temperature
(°C)

Internal energy
(kJ/kg)

Enthalpy
(kJ/kg)

Entropy
(J/g*K)

100 2506.0 2675.6 7.3541
150 2559.1 2745.9 6.8371
200 2594.2 2792.0 6.4302
250 2601.8 2800.9 6.0721
300 2563.6 2749.6 5.7059
350 2418.1 2563.6 5.2110

Source: E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical Properties of Fluid Systems”
in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and
W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899,
http://webbook.nist.gov (retrieved February 4, 2009).

Definitions

• Internal Energy—When energy is added to an object (heat transfer), it is stored as
internal energy. The usual evidence that internal energy is increasing is an increase
of temperature. Commonly used with closed (non-flow) systems.

• Enthalpy—Accounts for not only the internal energy change when energy is
added, but also changes in pressure and volume. Commonly used with open
(flow) systems.

• Entropy—a measure of randomness, sometimes described as the amount of energy
in a system that cannot be used for mechanical work.

In terpolate to F ind the Enthalpy of Saturated
S team at 230°C

Interpolation involves using neighboring data values to estimate an unknown quan-
tity. One method is to look at the data and estimate. From Table 8.2 we know that
the enthalpy is 2792.0 kJ/kg at 200°C, and 2800.9 kJ/kg at 250°C. A quick estimate
would be 2798 kJ/kg at 230°C. In the following paragraphs, we will look at calcula-
tion methods for interpolation, and we can test the estimate.

If we plot the temperature and enthalpy data, we get the plot in Figure 8.8.
The dashed line is at 230°C from the graph it is apparent that the enthalpy value is
near 2800 kJ/kg, but the graph is hard to read much more accurately than that.

Zooming in on the graph and connecting the dots in a couple of ways will
provide some insight into how some interpolations methods work.

In Figure 8.9 the graph has been zoomed in to the region around 230°C, and
the data values have been connected with a straight line. From Figure 8.9 it appears
that the enthalpy should be about 2797 kJ/kg.

E X A M P L E 8 . 2

http://webbook.nist.gov

272 Data Analysis Using LabVIEW VIs

Figure 8.8
Enthalpy of saturated steam.

But, the spreadsheet that was used to create the enthalpy graphs will also
connect the data points with “smoothed” lines, as shown in Figure 8.10.

The smoothed lines through the data take into account the data points at 150
and 300°C as well.The result is shown in Figure 8.10, and this curve suggests that the
enthalpy value should be about 2804 kJ/kg.

These last two graphs illustrate linear interpolation (assuming the unknown value
is on a straight line between data points, Figure 8.9) and cubic spline interpolation
(assuming the unknown value is on a smooth curve between data points, Figure 8.10).
Both types of interpolation are available using LabVIEW’s Interpolate 1D function.

Note: LabVIEW provides a number of interpolation functions. We are focusing on
the Interpolate 1D function because it can be used for several different types of
interpolation.

Figure 8.9
Zooming in on the region
between 200 and 250°C—
straight line.

Section 8.3 Interpolation 273

The Interpolate 1D function is located at (not available in Base LabVIEW
Package):

Functions Palette / Mathematics Group / Interpolation & Extrapolation /
Interpolate 1D

The connection pane for the Interpolate 1D function is illustrated in Figure 8.11.

Figure 8.10
Zooming in on the region
between 200 and 250°C—
smoothed line.

Interp
1d

ntimes

X is monotonic (FALSE)

xi 1D array

X 1D array

Y 1D array

method (linear)

yi 1D array

xi used

error

Figure 8.11
Connection pane info for
Interpolate 1D function.

The method terminal is used to select the interpolation method:

• 0—nearest (no interpolation, just the closest value in the data set)
• 1—linear (default)
• 2—cubic spline
• 3—cubic Hermite
• 4—Lagrange

The X and Y input terminals are used to supply the data set values used in the inter-
polation. The xi input is used to indicate the value(s) at which the interpolation
should be performed (230°C in this example).

Note: The xi input requires a 1D array. In this example we are interpolating at a
single temperature, but we must supply that temperature value to the xi input as
a 1D array containing one value.

If you know that the X values in your data set have been sorted and increase
monotonically (always increasing, not jumping around), then you can input a TRUE

274 Data Analysis Using LabVIEW VIs

to the X is monotonic input. This speeds up the interpolation routine since it does not
need to sort the X array. The ntimes input is not used if xi values are specified.

The yi output provides our desired solution. The xi used output provides an
array of the xi values used to compute yi values. This will be useful when the ntimes
input was used (see next section), otherwise the xi values are already known.

To use the Interpolate 1D function, we will need to provide the following:

• the method indicator (we will use several)
• known (data set) Temperature values, as a 1D array of X values
• known enthalpy values that correspond to the temperature values, as a 1D array

of Y values
• the temperature at which we want to determine the enthalpy, as a 1D array of xi

values

The front panel of the Interpolation VI is shown in Figure 8.12, and the corresponding
block diagram is shown in Figure 8.13. In Figure 8.12 the “linear” interpolation
method was used, and the interpolated enthalpy value was found to be 2797.34 kJ/kg,
very close to the value obtained from Figure 8.9.

Figure 8.12
Interpolation VI, using Linear method.

Figure 8.13
Block diagram for
Interpolation VI.

Section 8.3 Interpolation 275

To use the other interpolation methods, simply change the method control value
and run the VI again. The results of the various interpolation methods are

• Linear: 2797.3 kJ/kg
• Spline: 2801.7 kJ/kg—this is the cubic spline result, called “spline” in the

method list
• Hermite: 2799.2 kJ/kg—this is the cubic Hermite result, called “cubic” in the

method list
• Lagrange: 2802.57 kJ/kg

Which one is “correct”? They are all correct to about three significant digits, and
none is likely to be correct to five.

PRACTICE

Interpolating Sine Data

LabVIEW’s Interpolate 1D function is powerful and easy to use. Try using both lin-
ear and cubic spline interpolation to find the sine of 45° given:

a. Sine values at 40° and 50° [sin(40°) � 0.6428, sin(50°) � 0.7660]
b. Sine values at 30°, 40°, 50° and 60° [sin(30°) � 0.5000, sin(60°) � 0.8660]

Compare the interpolated values with the known result, sin(45°) � 0.7071

Part a—one point on either side.The interpolated result is 0.7044 with either method.
There is no difference between the linear interpolation (see Figure 8.14) and the
cubic spline interpolation (see Figure 8.15) because there are not enough data points
to fit a cubic spline curve.

Figure 8.14
Linear interpolation with
one point on either side
of unknown angle.

Figure 8.15
Spline interpolation with
one point on either side
of unknown angle.

276 Data Analysis Using LabVIEW VIs

Part b—two points on either side. The interpolated result is still 0.7044 with the
linear method (see Figure 8.16). This is because linear interpolation only uses the
adjacent points; the additional known values were ignored.

The cubic spline interpolation does use the additional known values and generates a
more accurate interpolated result of 0.7076 (see Figure 8.17). This result is accurate
to 5 parts in about 7000, or 0. 07% error.

Figure 8.16
Linear interpolation with
two points on either side
of unknown angle.

Figure 8.17
Spline interpolation with
two points on either side
of unknown angle.

8.4 CURVE FITTING

The general term curve fitting means getting some sort of a curve through a set of
data points. There are two general approaches to curve fitting, with different goals:

• Method 1—Get a curve on a graph that goes through each data point; no model
(mathematic equation) is needed.

Section 8.4 Curve Fitting 277

• Method 2—Find the coefficients of a mathematical model (regression equation)
that best fits the model to the data. It is not required that the plotted regression
equation go through each data point.

Method 2 (Regression) is the subject of the next section. This section on curve
fitting focuses on Method 1. Method 1 is intrinsically related to interpolation,
because the same methods are used for interpolation and for Method 1 curve
fitting.

To use LabVIEW’s Interpolation 1D function for curve fitting, you have two
options:

• Supply an array of xi values that spans the range of the X values in the data set.
• Do not supply the xi array at all, but set the ntimes value to tell LabVIEW how

many times to interpolate between the values.

The meaning of ntimes may not be immediately obvious; it indicates how many
times LabVIEW will go through the data set interpolating between each current
value of X. This is illustrated in Figure 8.18. The black circles represent the original
data values, and the open circles represent interpolated values.

original data

first interpolation (ntimes = 1)

second interpolation (ntimes = 2)

third interpolation (ntimes = 3)

Figure 8.18
The ntimes value indicates
how many interpolation
passes will be made through
the data.

• ntimes � 1—LabVIEW makes one interpolation pass through the data and adds
one interpolated point between each original data point.

• ntimes � 2—LabVIEW makes two interpolation passes through the data. In the
first pass one interpolated point is added between each original data point (same
as when ntimes = 1). In the second pass, another interpolated point is added
between each point after the first pass (original and interpolated). The result is
three interpolated points between each original data point.

• ntimes � 3—LabVIEW makes three interpolation passes through the data and
ultimately leaves seven interpolated points between each original data point.

Figure 8.19 shows the Curve Fitting VI’s block diagram. It is similar to the
Interpolation VI, but the xi array is gone, and a constant with a value of 3 has been
wired to the ntimes input terminal. The xi and yi outputs have been wired to array
indicators to show the calculated xi (Temperature) values and the interpolated
yi (Enthalpy) values.

The two Bundle functions are used to collect x and y values (i.e., temperature
and enthalpy values) for plotting. The Bundle on the left combines the temperature
and enthalpy values from the data set, while the Bundle on the right combines the
calculated temperature values and the interpolated enthalpy values. The Build Array
function is used to combine the two bundles so that two enthalpy vs. temperature

278 Data Analysis Using LabVIEW VIs

Figure 8.19
Block diagram of the Curve Fitting VI.

Figure 8.20
Front panel of Curve Fitting VI.

Some of the other method options (cubic spline, cubic Hermite, and Lagrange) can
also be used for curve fitting, but when there is a curvature (as in Figure 8.21) the
fitted curves can be quite dissimilar. Figure 8.21 shows the result of fitting with a
spline curve, while Figure 8.22 shows the Lagrange fit (same data).

curves can be plotted on the XY Graph. Figure 8.20 shows the result of calculating three
intermediate points (ntimes = 2) between each original data point using a spline fit.

Section 8.4 Curve Fitting 279

Figure 8.22
Lagrange fit to data set with lots of curvature.

Figure 8.21
Spline fit to data set with lots of curvature.

280 Data Analysis Using LabVIEW VIs

8.5 REGRESSION

Regression involves finding the coefficients that cause a mathematical model
(regression model) to best fit the values in a data set. “Best” means the coefficients
that minimize the sum of the squared error (SSE) between the y values predicted by
the regression model and the y values in the data set.

Quick Explanation

In Figure 8.23, the regression goal is to find the coefficients of the regression
model—the “b” values in —that cause the regression curve
to “best fit” the data values. The distance between any data point and the regression
curve at that point is called the error at that point (see ei in Figure 8.23). You might
try minimizing the overall error for all data points, but that won’t work because
some errors are positive and some are negative.To keep positive errors from cancel-
ing with negative errors, we use the squared error at each point. Squaring errors
makes all of the values positive. By minimizing the sum of the squared error (SSE)
for all points, we can find the “b” values that best fit the data points, where “best”
means minimum overall SSE.

ypred = b0 + b1x + b2x
2

Note: Actually LabVIEW allows you to select between three different definitions of
“best” for many of the regression functions:

• Least Square
• Least Absolute Residual
• Bisquare

The Least Square method is the common method, and we will use that method in
the VIs developed here.

The most common type of regression is linear regression. With linear regres-
sion the coefficients can be determined directly (perhaps with some significant
matrix math). Non-linear regression is also possible, but requires an iterative solution
of trying various coefficient values until the sum of the squared error is minimized.
LabVIEW provides functions for both linear and non-linear regression. All of the
regression functions are found in the Fitting Group (not available in Base
LabVIEW Package):

Functions Palette / Mathematics Group / Fitting Group

point “i”

ei

ypred_i = b0 + b1 xi + b2 xi
2

x

y

Figure 8.23
How least squares
regression works.

Section 8.5 Regression 281

Linear Regression Functions

• Linear Fit
• Exponential Fit
• Power Fit

• Gaussian Peak Fit

• Logarithm Fit c (logarithm base) is a function
parameter

• General Polynomial Fit

• General LS (Least Squares) Linear Fit—fits any linear model that you provide

Non-Linear Regression Functions

• Non-Linear Curve Fit
• Constrained Non-Linear Curve Fit

8.5.1 Linear Fit

A linear fit uses the following regression model:

where
b0 is the intercept
b1 is the slope

The connection pane for the Linear Fit function is illustrated in Figure 8.24.

yp = b0 + b1x

f = g
m

j=0
aj xi

j 1 … m … 25

f = a logc (bx)

f = a exp c- (x - m)2

2s2 df = axb
f = aebx
f = ax + b

Method (Least Squares)

W 1D array

X 1D array

Y 1D array Best linear fit

slope

error

intercept

residue

Figure 8.24
Linear Fit function connector
pane (showing Least
Squares terminals only).

We need to supply 1D arrays of X and Y values. The W (weight) array is optional and
rarely used. The slope and intercept will be displayed, and the Best Linear Fit values
(yp values) will be used to create a graph showing the original values and the best fit line.

A common feature of linear regressions is reporting the R2 value. The Linear
Fit function does not provide that value, but it can be calculated by the Goodness of
Fit function, which receives the Y (data) and yp (regressed) values as inputs, and
outputs the R2 value. The Goodness of Fit function is available in the Advanced
Curve Fitting Group:

Functions Palette / Mathematics Group / Fitting Group /
Advanced Curve Fitting

Definition

• R2—the coefficient of determination. If the best fit regression curve goes through
every data point perfectly, R2 � 1. The more distance there is between the data
points and the regression curve, the smaller the value of R2.

282 Data Analysis Using LabVIEW VIs

The Slope and Intercept VI is shown in Figure 8.25 (front panel) and Figure 8.26
(block diagram). The R2 value of 0.97 indicates a good fit between the regression
curve and the data points.

PRACTICE

Linear Regression for a Linear Fit

Regression for a slope and intercept is a very common data analysis task. Practice
using LabVIEW for this by regressing the following data using LabVIEW’s Linear
Fit function. Also use the Goodness of Fit function to calculate R2.

Figure 8.25
Slope and Intercept VI,
front panel.

X Y

1 2.0

2 7.5
3 8.2
4 12.8
5 15.9
6 19.1

Section 8.5 Regression 283

Figure 8.26
Slope and Intercept VI, block diagram.

The intercept, slope, and R2 values were found to be (see Figure 8.27):

• Intercept �0.61
• Slope 3.29
• R2 0.979

Figure 8.27
Finding slope and intercept.

284 Data Analysis Using LabVIEW VIs

The block diagram used to perform the regression is shown in Figure 8.28.

Figure 8.28
Block diagram used for Linear Fit regression.

8.5.2 Gaussian Fit

The various linear regression functions are all similar in layout and function. The
Gaussian Fit function is an unusual regression function in that it is not available in
common math software products. A Gaussian curve is the “bell curve” or normal
distribution curve.
The regression model for the Gaussian Fit is

Where the regression coefficients are

a, the amplitude
μ, the center of the peak
σ, the standard deviation (controls the spread of the bell)

yp = a exp c -
(x - m)2

2s2 d

Section 8.5 Regression 285

Method (Least Squares)

W 1D array

X 1D array

Y 1D array Best Gaussian Fit

a, amplitude

error

mu, center

residue

initial guess (NAN)

Sigma, std. dev.

Figure 8.29
Connection pane for the
Gaussian Fit function
(simplified for Least
Squares).

We need to supply 1D arrays of X and Y values. The W (weight) array is optional
and rarely used.

The regression coefficients (a, μ, σ) will be displayed, and the Best Gaussian
Fit values (Yp values) will be used to create a graph showing the original values and
the best fit line.The Goodness of Fit function will be used to determine the R2 value.

The results are shown in Figure 8.30 (front panel) and Figure 8.31 (block
diagram).

Figure 8.30
Gaussian Regression VI, front panel.

The connection pane for the Gaussian Fit function is illustrated in Figure 8.29.

286 Data Analysis Using LabVIEW VIs

8.5.3 Polynomial Regression

Polynomial regression is a commonly used approach because the flexibility in set-
ting the order of the polynomial model allows the regression curve to bend.
LabVIEW provides the General Polynomial Fit function, which allows polynomial
regression up to 25th order.

The regression model for the General Polynomial Fit is

Where the regression coefficients are the aj values.
The connection pane for the General Polynomial Fit function is illustrated in

Figure 8.32.

ypi = a
m

j=0
aj xi

j

Figure 8.31
Gaussian Regression VI, block diagram.

Section 8.5 Regression 287

polynomial order (2)

W 1D array

X 1D array

Y 1D array Best Polynomial Fit

Polynomial Coefficients

error

mse

Figure 8.32
Connection pane for the
General Polynomial Fit
function (simplified for
Least Squares).

We need to supply 1D arrays of X and Y values. The W (weight) array is optional
and rarely used.

The regression coefficients will be returned as an array, and the Best
Polynomial Fit values (Yp values) will be used to create a graph showing the original
values and the best fit line. The Goodness of Fit function will be used to determine
the R2 value.

The results are shown in Figure 8.33 (front panel) and Figure 8.34 (block
diagram).

Figure 8.33
Polynomial Regression VI, front panel.

Notice that a While Loop was added to the block diagram so that the Polynomial
Regression VI will keep running so that the polynomial order can be varied to
observe the impact on the regression result.

288 Data Analysis Using LabVIEW VIs

Figure 8.34
Polynomial Regression VI, block diagram.

A P P L I C AT I O N

TS

FLOW

TW

Figure 8.35
Experimental setup.

Determin ing Heat Transfer Coef f i c ient
f rom Exper imenta l Data

Heat transfer coefficients are used to predict the amount of energy transferred from
a hot surface to a moving fluid. The heat transfer coefficients are obtained from
experimental data.

An experiment was conducted using a small (1.0 cm diameter) spherical
heater in a tube filled with flowing air (see Figure 8.35.) Two thermocouples are
used to record the heater surface temperature, TS, and the wall temperature, TW.

The rate of heat transfer from the heater to the fluid is described by the equation

Where

h is the heat transfer coefficient
A is the surface area of the heater

Q
#

= hA(Ts - Tw)

Section 8.5 Regression 289

can be measured, A can be calculated, and TS and TW can be measured.The
only unknown is h, and we can determine the heat transfer coefficient as the slope of
the plot shown in Figure 8.36.

Q
#

Slope is h

Q
 (J

/s
)

A (TS -TW) (m2 °C)

Figure 8.36
Finding the heat transfer
coefficient.

Figure 8.37
Experimental Heat Transfer Coefficient VI, front panel.

The following files contain the experimental data:

• Qdot.txt heat transfer rate, J/s
• DeltaT.txt (TS�TW), °C

We can read the data into LabVIEW, and perform a regression to determine the heat
transfer coefficient.The results are shown in Figure 8.37.The block diagram is shown
in Figure 8.38.The heat transfer coefficient value was found to be 48.4 J/(s m2 °C).

290 Data Analysis Using LabVIEW VIs

KEY TERMS bins
coefficient of

determination (R2)
cubic spline interpolation
curve fitting
error
gaussian curve (bell curve,

normal distribution)
heat transfer coefficients

histogram
interpolate
interpolation
linear interpolation
linear regression
mean
median
monotonically
non-linear regression

polynomial regression
regression
regression model
standard deviation
statistics
sum of the squared

error (SSE)
variance

Basic Statistics
• Maximum—Array Max & Min
• Minimum—Array Max & Min
• Mean—Mean.VI
• Median—Median.VI
• Standard deviation—Std Deviation and Variance.VI
• Variance—Std Deviation and Variance.VI

Functions Palette / Programming Group / Array Group /
Array Max & Min

Functions Palette / Mathematics Group / Probability &
Statistics Group

Histograms

Functions Palette / Mathematics Group / Probability & Statistics Group

• Histogram.vi—you can set the number of bins, but not the bin ranges.
• General Histogram.vi—you can specify the bin ranges.
• Create Histogram.vi—designed to create a histogram from a signal, although it

will accept an array as input.

Figure 8.38
Experimental Heat Transfer Coefficient VI, block diagram.

S U M M A RY

Summary 291

Interpolation

Functions Palette / Mathematics Group / Interpolation & Extrapolation /
Interpolate 1D

You supply an X array, Y array, and known x value. The Interpolate 1D function
returns the interpolated y value corresponding to the known x value.

Methods

• 0—nearest (no interpolation)
• 1—linear (default)
• 2—cubic spline
• 3—cubic Hermite
• 4—Lagrange

Curve Fitting

Functions Palette / Mathematics Group / Interpolation & Extrapolation /
Interpolate 1D

You supply an X array, Y array, and an array of known x values. The Interpolate
1D function returns the interpolated y array corresponding to the known x values.

ntimes input

1—adds one interpolated point between each original data point
2—adds three interpolated point between each original data point
3—adds seven interpolated point between each original data point

Regression
Finding the coefficients that cause a regression model to best fit the values in a data set.

Functions Palette / Mathematics Group / Fitting Group

Linear Regression Functions
• Linear Fit
• Exponential Fit
• Power Fit

• Gaussian Peak Fit

• Logarithm Fit c (logarithm base) is a function
parameter

• General Polynomial Fit

• General LS (Least Squares) Linear Fit—fits any linear model that you provide

Non-Linear Regression Functions
• Non-Linear Curve Fit
• Constrained Non-Linear Curve Fit

R2—Coefficient of Determination

Functions Palette / Mathematics Group / Fitting Group / Advanced Curve
Fitting / Goodness of Fit

f = g
m

j=0
aj xi

j 1 … m … 25

f = a logc (bx)

f = a exp c-
(x - m)2

2s2 df = axb
f = aebx
f = ax + b

292 Data Analysis Using LabVIEW VIs

S E L F - A S S E S S M E N T

1. Where can you find the data sets used in this chapter (so that you can follow
along without having to type in all the array values)?
ANS: At the text’s website: www.chbe.montana.edu/LabVIEW

2. What are the descriptive statistics that are commonly used with a single data set?
ANS:

• Mean
• Standard deviation
• Variance
• Median

3. What is a histogram?
ANS: A graph that shows how the values in a data set are distributed.

4. What is interpolation?
ANS: A method of using nearby data values to estimate an intermediate value.

5. What methods of interpolation are available using LabVIEW’s Interpolate
1D function?
ANS:

• Nearest (no interpolation)
• Linear
• Cubic Spline
• Cubic Hermite
• Lagrange

6. What is the difference between linear and cubic spline interpolation?
ANS: With linear interpolation a straight line is drawn between adjacent
points and the interpolated value is assumed to be on the line. With cubic
spline interpolation, a smooth curve is drawn through all of the data points
and the interpolated value is assumed to line on the curve.

7. What are the two basic approaches to curve fitting?
ANS:

• Find a curve that must go through every data point; no mathematical
equation for the curve is required.

• Find the mathematical equation for the best fit (regression) curve through
the data point; the curve does not need to go through each data point.

8. What linear regression functions are available in LabVIEW’s Fitting Group
on the Functions Palette?
ANS:

• Linear Fit
• Exponential Fit
• Power Fit
• Gaussian Fit
• Logarithm Fit
• General Polynomial Fit
• General Least Squares Fit

www.chbe.montana.edu/LabVIEW

Problems 293

P R O B L E M S
1. Determine the mean and standard deviation of the following values:

2. Determine the average (i.e., arithmetic mean) and median values of the fol-
lowing set of test scores. When there are a few very low scores (such as zeros,
when people fail to take the exam), which measurement is a better indicator of
class performance?

1.29
1.32
1.28
1.30
1.33
1.32
1.30
1.31

88
95
97
87
100
80
0
78
96
97
62
75
0
90
85
0
0
68

3. Create a histogram showing how many scores in the data set in the previous
problem fit into the following bins:

• 90–100
• 80–90
• 70–80
• 60–70
• 0–60

State how you are handling scores that fall on the bin boundaries.
4. A company has advertised an updated instrument that now comes with a digital

readout and an enhanced price. The old analog display could be read to two
decimal places, but the digital display shows four. To see if the new instrument
is truly more precise, an old sample was re-run on the new instrument. The old

294 Data Analysis Using LabVIEW VIs

and new data sets are shown below. Calculate the mean and standard deviation
to find out:

a. If the two instruments give essentially the same mean value.
b. if the new instrument produces results with a smaller standard deviation

than the old instrument.

Old New

11.55 11.5308

11.43 11.5310
11.54 11.5268
11.49 11.5348
11.56 11.5203
11.51 11.5276
11.67 11.5361
11.52 11.5447
11.66 11.5360
11.44 11.5234

5. An assumption of “normally distributed errors” is common in statistical analysis,
but the assumption is frequently not tested.To test that assumption, a researcher
connected two meters to a data acquisition system and tested the same samples
1000 times for each meter.The data files are available at the text’s website: www.
chbe.montana.edu/LabVIEW in files Meter1.txt and Meter2.txt.

Read each file into LabVIEW, and create a histogram for each data set.
Do the values appear to be normally distributed (do the histograms look like a
“bell curve”)?

6. Create a VI that will allow you to interpolate the steam table data in Table 8.2
for the following values:

a. Internal Energy at 140°C
b. Enthalpy at 280°C
c. Entropy at 330°C

Compare the results using linear interpolation and spline interpolation.
7. The following table shows how the population of Ireland has varied over time.

Create a VI using LabVIEW’s Interpolate 1D function that will allow you to

a. Interpolate the data to determine the population in 2000.
b. Extrapolate the data to predict the population in 2015.

Try various methods for part b. How widely do the extrapolated values vary?

Year Population

1901 3,221,823
1911 3,139,688
1926 2,971,992
1936 2,968,420
1946 2,955,107

www.chbe.montana.edu/LabVIEW
www.chbe.montana.edu/LabVIEW

Problems 295

1951 2,960,593
1961 2,818,341
1971 2,978,248
1981 3,443,405
1991 3,525,719
1996 3,626,087
2002 3,917,203
2006 4,239,848

8. Create a VI using LabVIEW’s Interpolate 1D function that will allow you to
create an XY Graph of the population of Ireland between 1901 and 2006 with
several interpolated points between each value in the data set shown in the
previous problem.

9. Analytical instruments typically need to be calibrated for one or both of the
following reasons:

a. To ensure that the instrument is still reporting correct values.
b. To correlate the measurement units to the units output by the instrument.

As an example of the latter, consider a meter that measures pH but out-
puts a voltage signal suitable for automated data acquisition. A calibration
curve is used to correlate pH and voltage.

To calibrate the pH meter, solutions of known pH are prepared and used
with the meter.The output voltages (in triplicate) corresponding to the known
pH values are recorded. The calibration data are listed below, and available in
files pHData.txt and VoltData.txt.

pH Voltage

1.5 1.21 1.14 1.16

2.3 1.76 1.70 1.76
3.3 2.32 2.39 2.40
4.1 2.89 2.91 2.90
5.6 3.91 3.87 3.89
6.9 4.68 4.72 4.68
7.4 4.98 5.05 5.05
8.2 5.57 5.47 5.57

10.4 7.01 6.98 6.95
11.8 7.96 7.88 7.91

Read the data into LabVIEW, plot it to see if a linear fit is reason-
able, and then regress the data to determine the calibration equation. The
calibration equation should allow you to calculate a pH given a voltage
value.

Source: Central Statistics Office Ireland,
http://www.cso.ie/statistics/Population1901-2006.htm

http://www.cso.ie/statistics/Population1901-2006.htm

296 Data Analysis Using LabVIEW VIs

10. When data have a significant number of bends, many people think of polynomial
regression as the only option for trying to get a fit. This problem is designed to
demonstrate that polynomial regression has limitations.

Two text files on the text’s website contain data for a decaying oscillation:
DecayOscXLarge.txt and DecayOscYLarge.txt. Use LabVIEW’s General
Polynomial Fit function and vary the order of the polynomial (LabVIEW allows
orders between 1 and 25.) Use LabVIEW’s Goodness of Fit function to deter-
mine the R2 value as well. Which order’s provide a “good” fit to the decaying
oscillation function, and what happens when the order is too small or too large?

Programming in
LabVIEW

O b j e c t i v e s
After reading this chapter,
you will know:

more about controlling
display options with
LabVIEW controls
how to use LabVIEW block
diagram options, like auto-
matic wiring, to create VIs
more efficiently
how to create SubVIs to
allow you to reuse
program elements
how to use LabVIEW
projects to store related VIs
and other files
how to use LabVIEW
programming structures
for more powerful VIs

Loop structures
Case structures
Sequence structures

C H A P T E R 9
9.1 INTRODUCTION

Since LabVIEW is an object-oriented graphical programming language, each
time you place a control (an object) on the front panel, and every time you
connect two terminals with a wire, you are programming. We’ve included
programming examples in every chapter. This chapter on “Programming in
LabVIEW” is about taking LabVIEW programming to the next level, about
creating more advanced VIs, and about some features that LabVIEW provides
that can help you stay organized and work more efficiently.

9.2 LABVIEW PROGRAMMING BASICS, EXPANDED

Here, we’ll revisit the basics of LabVIEW programming, but push the boundary
of each section a little.

• Front Panel—getting greater control over controls and indicators
• Block Diagrams—working more efficiently with nodes and wiring
• SubVIs—Packaging commonly used code pieces for reuse
• Projects—Collecting VIs and other files that work together

9.2.1 Front Panel: Controls and Indicators

The LabVIEW user interface is the Front Panel, which holds the controls and
indicators needed to set required values, and display calculated results. But
LabVIEW gives you much control over how controls and indicators function.
For example, you can

• Adjust the display format of displayed values
• Restrict allowed data entry values
• Change the data type of the output value
• Use a logarithm scale (on controls with scales)
• Set default initial values

298 Programming in LabVIEW

Adjust the Display Format of Displayed Values
To change the display format on a control or indicator, right-click on the object and
select Display Format . . . from the pop-up menu. The Numeric Properties dialog
will open with the Display Format panel visible as shown in Figure 9.1.

The display options that can be changed are numbered in Figure 9.1:

1. While automatic formatting is usually a good option, you can force the display
to use only floating point or scientific notation, or use SI notation which uses
text prefixes (e.g., milli, nano) to indicate magnitude.

2. You can change the number of displayed Digits (six is the default).
3. You can change the Precision Type between “Significant digits” and “Digits of

precision”. To understand the difference, consider the value 102.331. This
value is shown with six significant digits, but three digits of precision.

4. You can show or hide trailing zeroes.

Restrict Allowed Data Entry Values
By default, a numeric control will accept any numeric value that will fit within the
limits of the control’s assigned data type. You can restrict the values that a control
will accept. For example, if a math operation is going to take the logarithm of the
value entered into the control, you can restrict the data entry to positive values.

Figure 9.1
Changing the format used
to display numbers.

Section 9.2 LabVIEW Programming Basics, Expanded 299

Right-click on the control and select Data Entry . . . from the pop-up
menu. The Numeric Properties dialog will open with the Data Entry panel visible
as shown in Figure 9.2. Change the Minimum field to a very small positive
number.

Figure 9.2
Preventing a control from
accepting non-positive
values.

Figure 9.3
Ideal Gas Solver VI.

PRACTICE

Controlling User Inputs

The VI shown in Figure 9.3 displays the volume of N moles of gas at temperature T
and pressure P. The temperature Dial control has already been modified to allow
high temperatures to be selected. But the VI uses the ideal gas law to solve for
volume, so pressures ought to be kept fairly low, perhaps below 8 atm. Create the VI
shown in Figure 9.3, but change the upper limit on the P Dial to restrict the allowable
range of pressure settings.

300 Programming in LabVIEW

The block diagram of the VI is shown in Figure 9.4.

Figure 9.4
Ideal Gas Solver VI,
block diagram.

Figure 9.5
Knob Properties dialog,
Data Entry panel.

To restrict the maximum value of P, do one of the following:

• Click on the “10” on the P Dial scale and change it to an “8”.
• Right-click on the P Dial control and select Data Entry . . . from the pop-up

menu. The Knob Properties dialog will open as shown in Figure 9.5.

• Clear the Use Default Limits box.
• Enter “8” in the Maximum field.

Note: The latter approach does not change the upper limit on the Dial control scale;
it simply prevents the Dial control from moving past 8.

Section 9.2 LabVIEW Programming Basics, Expanded 301

Change the Data Type of the Output Value
The data type of a control should be set to be consistent with the use of the control’s
output value. By default, numeric controls are set to output double-precision floating
point (DBL) values.You can change that by right-clicking on the control and selecting
Representation and then selecting the desired data type. In Figure 9.6 the Numeric
control’s output will be 32-bit integer (Long Integer).

Use a Logarithm Scale (On Controls with Scales)
By default, scale values on controls with scales are linear.You can switch to a logarithm
scale as follows (see Figure 9.7):

1. Place the control on the front panel.
2. Change the minimum and maximum scale values (if desired).
3. Right-click on the control and select Scale / Mapping / Logarithmic.

Set Default Initial Values
When you open a VI after it has been saved, all controls and indicators are initially
displayed with default values (usually zeros). That may not be ideal. For example, if
you have invested some time filling a large array with values, and then close
LabVIEW and leave to have lunch, it would be nice if that array still displays the
same values when you re-open the VI for editing after lunch. It won’t unless you
save the current value(s) as the default value(s).

Figure 9.6
Changing the data type
of a control’s output value.

302 Programming in LabVIEW

Note: When working with an array or matrix, be sure the entire array or matrix is
selected, not just one element. Then, right-click on the control and select Data
Operations / Make Current Value Default. The current value(s) in the control will be
saved with the VI as the default value(s) to load into the control when the VI is opened.

Select the entire matrix labeled “Protected Matrix” and then right-click on the
selected matrix and choose Data Operations / Make Current Value Default from
the pop-up menu. Leave the Unprotected Matrix alone.

• Now: Save the VI and assign it a file name so that it can be re-opened
• Close the VI
• Re-open the VI

Figure 9.7
Changing to a log scale
on a control.

Figure 9.8
Two matrix controls on a VI.

PRACTICE

Setting Default Values on Controls

To observe what happens to array controls when you don’t make the current values
the default values, build the VI shown in Figure 9.8 and put a few non-zero values in
each array.

Section 9.2 LabVIEW Programming Basics, Expanded 303

When the VI is re-opened (shown in Figure 9.9), LabVIEW fills the matrices with
default values. Since the “1, 2, 3” were set as the default values for Protected Matrix,
those values are restored. But Unprotected Matrix was initialized with zeros. For
small matrices, it is not a big deal to reenter the values before running the VI, but
for large matrices you want to be sure to make the entered values the default values
before closing the VI.

9.2.2 Block Diagram: Nodes, Terminals, and Wires

The block diagram is where the majority of the graphical programming takes place
by wiring the nodes (blocks) of the various objects (controls, indicators, functions)
together to create a working VI. There are a few things you can do to minimize the
time spent working on block diagrams:

• Start on the block diagram with functions rather than on the front panel with
controls and indicators.

• Use automatic wiring when you can.
• Use the short-cut [Ctrl B] to remove all broken wires from a block diagram.

Start on the Block Diagram
To minimize wiring, place the function on the block diagram first, and then

• Right-click on the function inputs and select Create / Control.
• Right-click on the function outputs and select Create / Indicator.

This approach has several benefits:

• The data type of the control or indicator is automatically set to be appropriate for
the function’s requirements.

• The wiring is automatic.
• The control or indicator is automatically labeled using the label of the function’s

input or output.

Automatic Wiring
When you are placing a new node on a block diagram, if you locate the new node’s
input terminal near an unused output terminal, LabVIEW will automatically wire
the terminals together. As you move the new node near the existing terminal, the
proposed wire will flash briefly to let you know that LabVIEW will automatically
wire the terminals.

The down side of automatic wiring is that LabVIEW will sometimes wire
some terminals that you don’t want to have wired. When you place a new node on a

Figure 9.9
The two matrix controls
on a VI, reinitialized.

304 Programming in LabVIEW

block diagram and a wire automatically appears connected to a terminal, check to
make sure the automatic wiring is correct.

Remove All Broken Wires from a Block Diagram [Ctrl B]
When you are making changes to a block diagram, removing one control or indi-
cator can sometimes break wires all over the diagram. It is time consuming and
frustrating to select and delete all of those broken wires. It is also unnecessary
because LabVIEW will remove all broken wires from a block diagram when you
press [Ctrl B].

9.2.3 SubVIs

You can build a VI into another VI, in fact, it’s done all of the time. Most of the
“functions” on the Functions Palette are actually VIs. When a VI is built into
another VI, it is called a SubVI. You can create your own SubVIs using LabVIEW.
By turning commonly used VIs into SubVIs, they become available for use when-
ever you need them. If you do the same things routinely, SubVIs can save you a lot
of time.

One of the tasks that can get tedious is the bundling and array building
required to plot multiple curves on an XY Graph. We can create a SubVI that will
allow you to wire your X and Y arrays into the SubVI and it will take care of the
bundling and array building.

The first step is to get a VI working without using a SubVI. In this example, we
create an XY Graph with two curves from four small arrays (X1, Y1, and X2, Y2).
The block diagram is shown in Figure 9.10, and the front panel in Figure 9.11.

Figure 9.10
A VI that generates an
XY Graph with two curves.

Next, to create a SubVI from a portion of an existing VI, you select the
part that will become the SubVI, as shown in Figure 9.12, and then use menu

Section 9.2 LabVIEW Programming Basics, Expanded 305

options Edit / Create SubVI. The resulting SubVI (with generic icon) is shown
in Figure 9.13.

Notice that LabVIEW left the XY Graph control out of the SubVI; it can’t be
included, but LabVIEW put the rest of the functions into the SubVI.

Figure 9.11
Front panel showing simple arrays and XY Graph.

Figure 9.12
Select the portion of the
existing VI that will become
the SubVI.

306 Programming in LabVIEW

There are a few more steps to go through to finish the SubVI:

1. Change the icon.
2. Save the SubVI.
3. Review connections on the connector pane.

Step 1. Change the SubVI’s Icon
To change the icon, double-click on the SubVI. LabVIEW will display a front
panel for the SubVI—it will look just like the front panel for the VI used to
create the SubVI, except for the title, which will have (SubVI) in it, and the
number on the icon in the top-right corner of the front panel.

Right-click on the icon in the top-right corner and select Edit Icon . . .
from the pop-up menu. The Icon Editor will open as shown in Figure 9.14

Figure 9.13
The SubVI with generic icon.

Figure 9.14
LabVIEW 8.5’s Icon Editor.

Section 9.2 LabVIEW Programming Basics, Expanded 307

(LabVIEW 8.5) or Figure 9.15 (LabVIEW 2009).The drawing tools are arranged
on the left in the old Icon Editor, and on the right in the new one.The new icon is
shown in Figure 9.16 (top-right corner).

Figure 9.15
LabVIEW 2009’s Icon Editor.

Figure 9.16
Front panel for the untitled SubVI.

308 Programming in LabVIEW

Step 2. Save the SubVI
When you close the Icon Editor, you will be returned to the SubVI’s front
panel; “(SubVI)” should appear in the title bar as shown in Figure 9.16.

Save the SubVI using menu options File / Save. You will be asked to
specify a name. In this example the SubVI was named “Two Curve XY
Graph.VI”. Once the SubVI has been assigned a name, the name becomes the
label on the icon or Expandable Node, as illustrated in Figure 9.17.

Figure 9.17
The SubVI can be viewed
as an Expandable Node
which identifies the inputs
and outputs.

The power of SubVIs is that they can be used in other VIs whenever you
need them. In Figure 9.18 (block diagram) and Figure 9.19 (front panel), the Two
Curve XY Graph VI was used to create a plot of time and temperature values.

Figure 9.18
Using the Two Curve
XY Graph SubVI.

Section 9.2 LabVIEW Programming Basics, Expanded 309

Admittedly, the block diagram looks just the same, but the arrays are
totally new, even if they have the same names.

Step 3. Review Connections on Connector Pane
LabVIEW automatically selects a connector pane layout with enough connec-
tions to handle all of the SubVIs inputs and outputs (up to 14 of each). To see
(or modify) how LabVIEW has laid out the connector pane for the SubVI,
right-click on the SubVI’s icon at the top-right corner of the edit window as il-
lustrated in Figure 9.20. Then select Show Connector from the pop-up menu.

Figure 9.19
Front panel showing the plot created using the Two Curve XY Graph SubVI.

Figure 9.20
Showing the SubVI’s
connector pane.

310 Programming in LabVIEW

The SubVI’s icon will be replaced by the SubVI’s connector pane as shown
in Figure 9.21.

You can right-click on the SubVI’s connector pane to see a menu of options. In
Figure 9.21 a display of connector pane options has been displayed. You can select a
different arrangement of connectors from this display.
Using the Options menu shown in Figure 9.21, you can also

• Add a terminal to the connector pane.
• Remove a terminal from the connector pane.
• Disconnect all terminals.

If you click on an individual terminal on the connector pane, it will be highlighted to
indicate that it is selected, and the control wired to the terminal will also be selected.
This is illustrated in Figure 9.22. By clicking on the terminals on the connector pane,
it is easy to see how the SubVI connector is wired.

If you need to change how a connector is wired, first unwire the terminal
(right-click on connector pane, choose Disconnect This Terminal from the options
menu). The disconnected terminal is indicated as shown in Figure 9.23. To wire the
disconnected terminal, move the mouse over the disconnected terminal (the mouse
icon will change to a wiring spool) and click once on the disconnected terminal, and
then once on the control that should be wired to the terminal (X2 in this example).
After wiring, the connector pane will show that the terminal is connected.

Figure 9.21
The SubVI’s connector
pane, and options menu.

Section 9.2 LabVIEW Programming Basics, Expanded 311

PRACTICE

Create a SubVI that Reads a Column from a Text File

Because many LabVIEW graphing controls require 1D arrays, reading one column
from a text file is a common task. You can speed up the process by creating a Read
Text Column VI.

The block diagram of a VI that reads one column and sends the values to an
indicator is shown in Figure 9.24. The portion that will become the SubVI is
indicated with a dashed line.

Select the portion of the VI indicated in Figure 9.24, and then use menu
options Edit / Create SubVI. LabVIEW will package the Read From Spreadsheet
File VI and the Boolean constant connected to the transpose terminal (causes a
column to be read). The result is shown in Figure 9.25. The SubVI was assigned the
temporary identifier “7”—this will vary depending on how many VIs are open on
your desktop.

At this point you should change the icon (optional) and save the SubVI (essen-
tial). Then it can be used in other VIs. Since SubVIs don’t appear on the Functions

Figure 9.22
Click a terminal on the connector pane to see the control that is wired to that terminal.

Figure 9.23
The connector pane
showing a disconnected
input terminal.

312 Programming in LabVIEW

Palette, to place a SubVI on a block diagram select Select A VI . . . from the bottom
of the Functions Palette, then browse for the SubVI file.

In Figure 9.26 the Read Text Column VI has been used twice to read two .txt files.
One (InvoluteX.txt) contains a column of X values and the other (InvoluteY.txt)
contains a column of Y values. The SubVI can be displayed as an icon (as used to
read the X values) or in expanded form (as used to read the Y values). The path
string specifying the file path could be omitted; LabVIEW would ask you to select
the files when the VI was run.

Figure 9.24
Block diagram of the VI
before creating the SubVI.

Figure 9.25
The Read Text Column
SubVI has been created,
temporarily called “7”.

Figure 9.26
Using the Read Text Column
VI to read X and Y data
columns for plotting.

Section 9.2 LabVIEW Programming Basics, Expanded 313

The involute graph is shown in Figure 9.27.

9.2.4 LabVIEW Projects

A project is a collection of all of the VIs and SubVIs needed to make an application
work. As your VIs become more and more complex, keeping track of all the required
code is essential. Projects not only collect all the required VIs and SubVIs, they help you
keep track of who is editing what (access control) and what changes have been made to
which VIs, and what other VIs may be impacted (revision control).Then, when the time
comes to compile a stand-alone version of the program, you compile it from the project
so that all of the pieces required to make the program work are built together.

For example, the VI created in the last example needed the Two Curve XY
Graph SubVI. We could create a project that would keep the two files together.

To create a project, use menu options Project / New Project . . .
If you have open VIs, LabVIEW will ask if you want them included in the new

project. Click the Add button. The Project Explorer (see Figure 9.28) will open

Figure 9.27
The XY Graph crated using
the data values read from
the files.

Figure 9.28
The Project Explorer, Items
view.

314 Programming in LabVIEW

showing the VI that was written to plot the time and temperature values (it was
named Plot Time and Temp.vi) and the VI that it depends on, Two Curve XY
Graph.vi.

If other SubVIs are added to the Plot Time and Temp VI, they will appear in
the Dependencies list as well.

The Project Explorer provides two views, the view by Items (shown in Figure 9.28)
shows how the VIs and SubVIs are related.The Files view (see Figure 9.29) shows how
the VIs are arranged on disk.

The project shown in Figure 9.29 has not been saved. To save the project, use
the menu options File / Save from the Project Explorer window.

Projects are very helpful when developing LabVIEW applications. They keep
all of the required pieces together so that you can easily access all of the VIs in an
application. The Files / Save All provides a quick and easy way to ensure that all of
the changes made in an editing session to all of the open VIs are saved before clos-
ing the project. Projects are required before you can build an application.

9.3 STRUCTURES

The Programming Group on the Functions Palette provides access to a number of
LabVIEW programming structures, and these structures give LabVIEW a lot of
power as a programming language. The programming structures are relisted here,
and then used in the following sections:

• Loop Structures

• While Loop
• For Loop

• Case Structure
• Sequence Structures

• Flat
• Stacked

9.3.1 While Loop

The While Loop keeps looping until a stop condition is satisfied. The While Loop is
commonly used to keep a VI running until a STOP button is clicked, but there are

Figure 9.29
The Project Explorer,
Files view.

Section 9.3 Structures 315

many other uses. The example in Figure 9.30 uses a While Loop to keep generating
random numbers. The While Loop stops when the random value is exactly 50.

Controlling the Timing of Loops
In Figure 9.30 a Wait function was used to slow the While Loop iterations to make it
possible to read the Current Value indicator while the VI was running. The required
input for the Wait function is the duration (time to wait). In Figure 9.31 the wait
period was set to 100 ms.

When the Wait function executes, all other programming activities stop for the
duration of the wait period. When a Wait function is included inside a While loop,
the Wait function will execute once for iteration of the While Loop, and the loop
must do nothing until the wait period is completed.This has the effect of slowing the
While Loop down to approximately one iteration every X milliseconds, where X is
the duration value input to the Wait function.

Note: This assumes that the Wait function is the only slow operation inside the While
Loop. If there are other slow operations, the loop will cycle even more slowly.

PRACTICE

Using the Wait Function

Create a VI with the block diagram shown in Figure 9.32. This VI simply runs until
the STOP button is clicked, loops once every 1000 ms because of the Wait function,
and turns the Even LED on each time the remainder of division by two equals 0,
and off when the remainder is 1. (The LED turns on or off every second.)

Figure 9.30
The While Loop cycles until
the random number is 50.

Figure 9.31
The duration of the Wait
function set to 100 ms.

Figure 9.32
A While Loop with an LED
that turns on and off every
1000 ms.

316 Programming in LabVIEW

Change the value of the constant that inputs the delay time to the Wait function
to see how the VIs performance changes.

Reducing the “1000” to smaller values causes the LED to blink faster. You can
control the speed of the While Loop by changing the value input to the Wait
function.

An alternative to the Wait function is the Wait Until Next ms Multiple function,
which has a metronome icon as shown in Figure 9.33. The required input is the
millisecond multiple value.

The differences between the Wait function and the Wait Until Next ms
Multiple function are as follows:

• If the Wait function duration is set to 100 ms, it will always add 100 ms to the
time required to complete all other programming steps in the loop. If the other
programming steps in the loop take 20 ms, then the loop will cycle once every
120 ms.

• The Wait Until Next ms Multiple function will wait whatever time is necessary to
get to the next even multiple of the millisecond multiple value input to the function.
If the millisecond multiple value is set to 100 ms, then the Wait Until Next ms
Multiple function will wait until the millisecond timer has values like 3214500,
3214600, 3214700, and so on. If the other programming steps in the loop take 20 ms,
then the Wait Until Next ms Multiple function will add approximately 80 ms per
cycle, and the loop will cycle once every 100 ms.

If the other programming steps will be nearly instantaneous, then the Wait function
and the Wait Until Next ms Multiple function will both cause the While Loop to iterate
at approximately the same rate. But if you are trying to set the loop iteration time,
the Wait Until Next ms Multiple function will give you more control.

9.3.2 For Loop

A For Loop iterates a specified number of times. An example of a For Loop is
shown in Figure 9.34. In a For Loop, the “i” is the iteration terminal (also called the
iteration counter) and the “N” is the count terminal.The value of i changes each time

Figure 9.33
Using the Wait Until Next
ms Multiple function
to control loop timing.

Section 9.3 Structures 317

through the loop from 0 to N � 1. For the example in Figure 9.34, i will take on values
from 0 to 9.

For Loops are commonly used to build arrays. If the i value is wired to an array
indicator outside the loop, as shown in Figure 9.36, and when the VI is run, the array
is filled with values from 0 to 9, as shown in Figure 9.37.

Figure 9.34
For Loop, set to loop
ten times (i = 0 . . . 9).

Figure 9.35
For Loop with Iteration Pass
indicator added to monitor
iteration counter, i.

To see the value of i change as the For Loop iterates, we can connect the iteration
terminal to an indicator, as shown in Figure 9.35. The Wait function has been added
to slow the loop to allow the changes in i to be observed.

Figure 9.36
Using the For Loop iteration
counter to build an array.

318 Programming in LabVIEW

By using math functions with the iteration counter, it is possible to calculate
a wide range of array values. For example, the VI in Figure 9.38 creates an array
of X values between 0 and 2π, and an array of sin(X) values. The values are clus-
tered then sent into a XY Graph control for plotting. The result is shown in
Figure 9.39.

PRACTICE

Using For Loops to Build Arrays

Modify the block diagram shown in Figure 9.38 to build both sin(X) and cos(X) arrays,
and send those to an XY Graph.

The modified VI is shown in Figure 9.40, and the resulting XY Graph is shown in
Figure 9.41.

Figure 9.37
The array created by the VI
shown in Figure 9.36.

Figure 9.38
For Loop used to create X
and sin(X) arrays.

Section 9.3 Structures 319

Tunneling Into and Out of Loops
LabVIEW provides a way to get information across a loop boundary, called a
tunnel. Tunnels were used in the last example to send the array information out of
the For Loop to create the arrays. Tunnels can have indexing enabled or disabled.
Tunnels on For Loops have indexing enabled by default.

• When indexing is enabled, the calculated value in a wire is sent through the
tunnel with each loop iteration.

• When indexing is disabled, the calculated value in a wire is sent through the
tunnel only when the loop iteration is finished.

Figure 9.39
The X and sin(X) arrays created using a For Loop are plotted.

Figure 9.40
Modified VI to create sin(X)
and cos(X) arrays for
plotting.

320 Programming in LabVIEW

The VI illustrated in Figure 9.42 creates an array of X and sin(X) values from
the top For Loop, but only the final X value and sin(X) value leave the bottom For
Loop. The resulting front panel is illustrated in Figure 9.43.

Figure 9.41
The cos(X) and sin(X) arrays created using a For Loop are plotted.

Figure 9.42
Same For Loop, with and
without indexing enabled
on the tunnels.

Section 9.3 Structures 321

Auto-Indexing a For Loop
When working with arrays, it is often useful to work with each element in the array,
one at a time, one after the other. LabVIEW will do this automatically whenever
you wire an array to an input tunnel in a For Loop (see Figure 9.44)—if the tunnel is
enabled for indexing.

This is called auto-indexing the For Loop.

• When indexing is enabled on the input tunnel, the value of N is set to equal the
number of elements in the array, and one array element enters the For Loop each
time the loop cycles.

• When indexing is disabled on the input tunnel, the value of N is not set (this
generates an error if the value of N is not set in some other way) and the entire
array is sent into the For Loop immediately.

Note: Arrays can be wired to While Loops input tunnels too, but the While Loop is
not auto-indexed.

In the example VI shown in Figure 9.45, in each cycle of the For Loop, one
element of X Array enters the loop. The sine of that value is calculated, and then
one-twentieth of the current value of the iteration counter is added to the sine value.

Figure 9.43
Front panel after running
the For Loops shown in
Figure 9.42.

Figure 9.44
Connecting an array to a
For Loop tunnel (as input)
causes auto-indexing
if indexing is enabled.

322 Programming in LabVIEW

The result exits the For Loop and is added to the sin(X) � 0.05 i array.The result is a
tilted sine wave, as shown in Figure 9.46.

Figure 9.45
The X Array elements enter
the For Loop one at a time
(indexing enabled).

Figure 9.46
The tilted sine wave.

Rr

Figure 9.47
Defining the radius values
for the torus.

Creat ing a 3D Parametr i c Graph of a Torus

To help define terms, consider the torus shown in Figure 9.47.

E X A M P L E 9 . 1

Section 9.3 Structures 323

The surface of a torus can be described with the following equations:

Variables u and v are working variables that each range between 0 and 2π radians.
The number of increments used for u and v is arbitrary, but a smaller steps size
creates a smoother surface when the torus is plotted. In this example we will use
30 steps for both u and v.Variables x, y, and z will all be 2D arrays; they can be created
using two nested For Loops as shown in Figure 9.48. The plotted result is shown in
Figure 9.49.

z = r sin (v)

y = (R + r cos (u)) sin (v)

x = (R + r cos (u)) cos (v)

Figure 9.48
Nested For Loops used to generate 2D arrays x, y, and z for plotting.

9.3.3 Shift Registers—Accessing Values from the Previous Loop Iteration

There are times when the current calculation needs to include a value from the
previous iteration cycle. Shift registers give you that ability in LabVIEW. A shift
register sends the calculated value at the end of one iteration into the beginning of
the next iteration.

You add a shift register to a loop by right-clicking on the loop boundary and
selecting Add Shift Register from the pop-up menu. When a shift register is added,
indicators appear on both sides of the loop as shown in Figure 9.50.

324 Programming in LabVIEW

Shift registers can be given initial values or left uninitialized.

• An uninitialized shift register gets its starting value from the last output value at
the end of the previous execution (the last time the same VI was run).You can use
an uninitialized shift register to start the current loop where it left off last time.

• An initialized shift register is assigned a value before the loop begins to iterate.
The shift register in Figure 9.51 has been initialized with the value zero. The first
time the For Loop cycles, the shift register will have the value zero.

The data type associated with a shift register is assigned when the first connection to
any shift register terminal is made. In Figure 9.51 the data type of the constant was
double-precision floating point (DBL), so all connections to that shift register must
be compatible with the DBL data type.

Figure 9.49
The 3D parametric plot
of the torus.

Figure 9.50
A shift register allows you to
use previous loop values.

Section 9.3 Structures 325

1. The For Loop begins the first iteration.
a. The shift register receives the initial value, 0.
b. The 0 and 2 are added; the Calc Value is 2.
c. The shift register is assigned the Calc Value, 2.
d. The For Loop ends the first iteration.

2. The For Loop begins the second iteration.
a. The shift register still contains the value 2 from the end of the last loop.
b. The 2 (shift register) and 2 (constant) are added; the Calc Value is 4.
c. The shift register is assigned the Calc Value 4.
d. The For Loop ends the second iteration.

The process continues. In sum, the shift register receives the values 0, 2, 4, 6,
and 8. The Calc Value is 2, 4, 6, 8, and 10, and the Final Value has no value until
the For Loop terminates, and then it is assigned the final value of Calc Value,
which was 10.

Figure 9.51
Initializing a shift register.

Figure 9.52
Using a shift register
in a calculation.

In Figure 9.52 the shift register value is used in a calculation. The For Loop
cycles five times because of the “5” wired to the N terminal (loop count terminal).

326 Programming in LabVIEW

This example wasn’t good for much, except (hopefully) to demonstrate how a
shift register works. In the next example we’ll use a shift register to accomplish
something useful.

PRACTICE

Using a Shift Register—Exponential Growth

The VI shown in Figure 9.53 uses a shift register to demonstrate exponential growth.
At time zero, there is one cell input to the For Loop through the upper shift register.
The 60 ms Wait represents 60 minutes of real time, which is approximately the time
required for many types of microbial cells to divide.The For Loop runs for 48 cycles,
representing 2 days.

When the VI is run, the time and cell count are continuously updated for the
48 cycles through the For Loop. The final results are shown in Figure 9.54.

Figure 9.53
Shift registers used to
demonstrate exponential
growth.

Figure 9.54
Final cell count after
48 hours of growth.

Calcu lat ing S lopes f rom Arrays of X and Y Values

Slope can be approximated as

slope =
¢y

¢x
 =

yi - yi-1

xi - xi-1

E X A M P L E 9 . 2

Section 9.3 Structures 327

When we send an array into a For Loop through an indexed tunnel, the array
elements enter the loop one at a time. Therefore, yi and xi will be available to use in
a calculation, but we also need yi-1 and xi-1.Two shift registers will make the previous
y and x values available for the slope calculation.

The block diagram for the Slope VI is shown in Figure 9.55.

Figure 9.55
Using shift registers to calculate slope values.

The Delete From Array functions are used to strip the first element from the Y
and X arrays and use those values to initialize the shift registers.With the first element
of each array taken off (and sent in through the shift register), the second element
enters the For Loop as the “new” value and the “old” values comes in via the shift
register. Old values are subtracted from new values to calculate the Δy and Δx values,
which are divided to estimate the slope. The new y and new x values at the end of
the cycle are assigned to the shift register and become the “old” values for the next
loop. The process continues until all array values have been processed.

Stacking Shift Registers
One shift register provides access to the value of a variable at the end of the previ-
ous loop. If you need to go back more than one loop, you can stack shift registers on
the left (input) boundary of the For Loop.

To turn a shift register into a stacked shift register, right-click on the shift register
on the left boundary of the For Loop and select Add Element from the pop-up
menu. Each time you select Add Element, another stacked register will be added.
In Figure 9.56, the left boundary of the For Loop contains a stack of three shift
registers, providing access to values from the past three iterations.

Notice in Figure 9.56 that the shift registers stack on the input side of the For
Loop only, the output side is only used to assign the most recent calculated value.

9.3.4 Case Structures

Case structures are common features of modern programming languages; they allow
certain programming actions to take place depending on a variable’s value. The

328 Programming in LabVIEW

Case Structure is located on the Programming Group on the Functions Palette.
Drag the Case Structure icon to the block diagram as illustrated in Figure 9.57.

By default the Case Structure has two cases: True and False. These can be
changed as needed.

Figure 9.56
Three stacked shift registers
provide access to values
from past three cycles.

Figure 9.57
Placing a Case Structure on the block diagram.

Figure 9.58
Front panel showing results
returned by the True case.

Checking for Improper Operand

In this example we check to see if the user is attempting to take the logarithm of a
non-positive number.The user runs the VI (run continuous) and enters a value for X.
If the value of X is greater than 0, then the comparison generates a TRUE, which
causes the True case to be selected. The logarithm of X is calculated and displayed
(see Figure 9.58) along with a message indicating that there is no problem.

E X A M P L E 9 . 3

Section 9.3 Structures 329

But when the user enters a non-positive value, the greater than zero comparison
generates a FALSE, which causes the False case to be selected. The False case does
not calculate the logarithm, but instead sends a message that there is a problem (see
Figure 9.59).

Figure 9.59
Front panel showing results
returned by the False case.

Figure 9.60
Block diagram for the
True case.

The block diagram must be shown in two parts because only one case is visible
at a time. Figure 9.60 shows the True case, and Figure 9.61 shows the False case. Click
the down arrow on the right side of the Selector Label to choose a different case.

Figure 9.61
Block diagram for the
False case.

Notice that in the False case, the value of X is not used. Unused inputs are
allowed on Case boundaries, but all output tunnels must be wired. In this case NAN
(not a number) to the Log(X) indicator.

330 Programming in LabVIEW

PRACTICE

Using Case Structures

Create a VI that multiplies two numbers or divides two numbers depending on
whether a switch is open or closed. Use a Case structure that selects the multiply or
divide operation depending on the Boolean output from the switch.

A VI that accomplishes this is shown in Figure 9.62 (front panel) and Figure 9.63
(block diagram).

Figure 9.62
Front panel showing how
switch changes VI behavior.

Figure 9.63
Block diagram showing
the two cases.

Section 9.3 Structures 331

Figure 9.64
Using an Enum (enumerated)
control to select a case.

Figure 9.65
A Property Node has
been created on the block
diagram.

Sett ing a Control Proper ty Using an Enumerated Control

In this example the user is asked to choose the color of the “fluid” in the Tank control
by selecting one of three options on an Enum (enumerated) control: Blue, Red, or
Green. The front panel of the finished VI is illustrated in Figure 9.64.

E X A M P L E 9 . 4

To complete this VI, we will need to work through a few steps:

1. Create a property node for the Tank control’s fill color.
2. Determine color codes for blue, red, and green.
3. Add an Enum Control to the front panel.
4. Create a Case Structure with three cases: “Blue”, “Red” and “Green”.
5. Wire the Controls.
6. Run the VI.

Step 1. Create a Property Node for the Tank control’s fill color.
A Property Node is a node on the block diagram that can be used to determine
or set an object’s property value.

To create a property node for a Tank control, first place the Tank control
on the front panel.The Tank control is located in either the Modern or Express
Groups on the Controls Palette:

Controls Palette / Modern Group / Numeric Group / Tank
Controls Palette / Express Group / Numeric Indicators / Tank

On the block diagram, right-click on the Tank node and select Create /
Property Node/Fill Color from the pop-up menu.A Property Node for the Tank
fill color will be placed on the block diagram (see Figure 9.65). By default, the
Node will be set to output the fill color; that’s exactly what we want (for now.)

332 Programming in LabVIEW

Step 2. Determine color codes for blue, red, and green.
Right-click the Tank Fill Color output terminal and select Create / Indicator
from the pop-up menu. Now, when you run the VI, the code number for the
current tank fill color will be displayed in an indicator on the front panel (see
Figure 9.66).

We can use the Tank control’s properties dialog to change the fill color to
red and then run the VI to determine the color code (Red = 16711680, but it
depends on the selected shade of red). Repeat the process to get the color
code for green (Green = 6618880).

So far we have used the property node to output the current fill color;
now we want to use it to set the color code to change the fill color. First, delete
the Fill Color indicator, then right-click on the property node and select
Change to Write from the pop-up menu. The property node now displays an
input, as shown in Figure 9.67. If we send one of the color codes to the prop-
erty node input, we can change the Tank control’s fill color.

Figure 9.66
Run the VI to determine the
color code for the current
tank fill color (Blue =16860).

Figure 9.67
Property node changed
from Read to Write.

Step 3. Add an Enum Control to the front panel
An Enum (short for enumerated) control allows the user to select between
options. In this example, the options are blue, red, and green. Enum controls
are found in the Modern Group:

Controls Palette / Modern Group / Ring and Enum Group / Enum

Place the Enum control on the front panel.
The next step is to create the options for the Enum control to display.

Right-click on the Enum control and select Add Item After from the pop-up
menu. A vertical cursor will appear in the Enum control display, indicating that
you can type the option (or item) title into the field. Type “Blue” (without the
quotes), and then click outside the control to terminate text entry. Repeat the
process to add “Red” and “Green” options.The result is illustrated in Figure 9.68.

Note: Use the Increment/Decrement buttons to go through all of the options
on the Enum control. If there is a blank item, it must be deleted. Select the
blank item, then right-click and select Remove Item from the pop-up menu.

Section 9.3 Structures 333

Step 4. Create a Case Structure with three cases: “Blue”, “Red” and “Green”.
To create the three-case structure, first place a generic Case Structure on the
block diagram. The True and False cases will be included by default.

• Right-click on the Selector Label and select Add Case After from the
pop-up menu.

• Type in the Case name (e.g., Blue)—you do not need to include quotes,
LabVIEW will add them automatically.

The result is shown in Figure 9.69.

Repeat the steps to create the Red and Green cases.
After adding the Blue, Red, and Green cases, there are five cases in

the structure; the True and False cases (the defaults) are still present.
Click the down arrow on the right side of the Selector Label and choose
the True case. Right-click on the Selector Label and select Delete This
Case from the pop-up menu to delete the True case. Repeat to delete the
False case.

Step 5. Wire the controls
All the major pieces are now in place, we just need to do the following:

1. Wire the Enum control output to the Case Selector on the left border of
the Case structure.

2. Place a numeric constant inside the boundary and give the color code
corresponding to the appropriate case:
• Blue: 16860
• Red: 16711680
• Green: 6618880

Figure 9.68
The completed Enum
control.

Figure 9.69
Creating the “Blue” case.

334 Programming in LabVIEW

3. Wire the output of the numeric constant to the right boundary of the
Case structure. A tunnel will be created automatically.

4. Wire the tunnel output to the Tank Fill Color input.

Repeat steps 2 and 3 for the other two cases.

Step 6. Run the VI
When you run the VI, you can select a color on the Enum control, and the

Tank fill color changes to that color (see Figure 9.70). It doesn’t look like much in
a black and white text, but you can download the Tank Fill Color VI from the
text’s website (www.chbe.montana.edu/LabVIEW) to try it on your computer.

Figure 9.70
When the user picks a color,
the Tank fluid color is
changed.

E X A M P L E 9 . 5
Checking VI T iming

Programmers often want to know how long it takes to perform a certain set of
calculations. A sequence structure can be used for this task as shown in Figure 9.71.
The computational task is placed in the center of a three-frame sequence structure.
In this example, the task is to read a .txt file, generate two 1D arrays, and create an
XY Graph. A Wait function has been included to generate a measurable time lapse.

9.3.5 Sequence Structures

A Sequence Structure is used when something must be done in sequential order.
LabVIEW’s dataflow programming means that you cannot always control the order
of execution.As long as one calculation depends upon the result of a previous calcu-
lation (calculations in series), you can be sure that the calculations will occur in the
correct order. But when calculations are in parallel (and unconnected), you cannot
control the order in which the calculations take place. A sequence structure gives
you the ability to force calculations to take place in a defined sequence. Sequence
structures are available in the Programming Group:

Functions Palette / Programming Group / Structures Group / Flat
Sequence Structure
Functions Palette / Programming Group / Structures Group / Stacked
Sequence Structure

When you are tempted to use a sequence structure, first consider whether or not the
order of calculation matters. If it does, then see if there is a way to control the order
using data flow. In many situations sequence structures are not necessary, but they
are available for those instances when things have to happen in the right order.

www.chbe.montana.edu/LabVIEW

Section 9.3 Structures 335

Figure 9.71
Using a Sequence Structure to check program timing.

Figure 9.72
Front panel of timing check VI.

The frames before and after the computational frame are used to get before and
after times in two formats:

• Date/Time—showing the actual date and time
• Tick Count—showing the millisecond count on the clock

When the VI runs, the front panel (Figure 9.72) shows the start time, stop time, and
time difference in milliseconds. Even with the file access, the elapsed time for the
run was exactly equal to the Wait time: 500 ms.

336 Programming in LabVIEW

When this VI is run, the problem is shown for 2 seconds (see Figure 9.74).Then
the answer (see Figure 9.75) is displayed for 1 second.

The first solution works, but there is a slightly simpler solution. The block
diagram of the second solution is shown in Figure 9.76.

Figure 9.73
First solution to the Flash Cards problem.

Figure 9.74
The problem is displayed
for 2 seconds.

Ari thmet i c F lash Cards

We want to write a LabVIEW VI that presents two random integers to be added,
waits 2 seconds, shows the answer for 1 second, and then repeats the whole thing until
the student pushes the STOP button.

Showing random numbers and answers is easy; keeping the answer hidden for
2 seconds is a little trickier. The solution shown here uses a sequence structure, but
some enterprising individual may find a way to accomplish the same task without
the structure.

Two random integers between 1 and 10 are generated. The integers are
displayed in indicators A and B.

• In the first frame of the sequence structure, the Visible property node for the
answer indicator (A � B) is set to FALSE so that the answer is not visible.A Wait
of 2000 ms is in the first frame as well.

• When the first frame has completed execution (including the 2000 ms wait),
execution passes to the second frame of the sequence structure.The Visible property
is set to TRUE to display the answer. The answer is displayed for 1000 ms.

When the second frame has completed execution, the While Loop cycles and the
whole process repeats.

The block diagram for the first solution is shown in Figure 9.73.

A P P L I C AT I O N

Section 9.3 Structures 337

9.3.6 Formula Node

The Formula Node is a structure that allows the programmer to perform a series of
calculations using sequential statements that are similar to the C programming
language. The Formula Node is available in the Programming Group:

Functions Palette / Programming Group / Structures Group /
Formula Node

In Figure 9.77, a For Loop has been used to send array elements into the Formula
Node one at a time. Inside the Formula Node, the X input is used as the input to a
polynomial and the result (scalar) is output from the Formula Node to the For
Loop. The For Loop reassembles the final Y array. The calculated results are shown
in the front panel in Figure 9.78.

Figure 9.75
The answer is displayed
for 1 second.

Figure 9.76
Second solution to the Flash Cards problem.

In the second solution, the calculation and display of the numbers is outside of
the sequence structure.All the sequence structure does is control timing and visibility
of the answer (A � B) indicator.

In this example the Flat Sequence structure was used.The Flat Sequence struc-
ture shows all of the frames (steps) in the block diagram, but can take up a lot of
space if there are several frames. The alternative is the Stacked Sequence structure.
With the Stacked Sequence structure, the frames are still sequential, but they are
stacked one on top of the other (like the Case structure). You use the Selector Label
to choose the displayed frame.

338 Programming in LabVIEW

9.3.7 MathScript

A MathScript Node is a structure that allows the programmer to perform a series of
calculations using sequential Matlab-style statements. The MathScript Node is
available in the Programming Group:

Functions Palette / Programming Group / Structures Group /
MathScript Node

Note: The MathScript Node is not available in 64-bit LabVIEW 2009.
LabVIEW MathScript also includes the MathScript Window, which can be

opened from LabVIEW using menu options: Tools / MathScript Window . . . The
MathScript Window is shown in Figure 9.79.

The MathScript Window is designed to operate very much like Matlab®. You
can define variables and enter commands in the Command Window, and see the
results in the Output Window. The right side of the MathScript Window includes a
script editor. In Figure 9.79 a function named polyScript has been created and
saved as polyScript.m. Like Matlab, user-written functions must be saved with file
names that match the function name, plus the .m extension, called an m-file.

The polySolve function:

function y = polySolve(x)
A = 3.5;
B = 1.2;
C = 0.25;
y = A + B * X + C * X. ^ 2;

Once you save a user-written function, it can be used in a MathScript node inside a
LabVIEW VI—as long as LabVIEW knows where to find your m-files. To tell
LabVIEW where you are storing your m-files, use the LabVIEW menu options

Figure 9.78
Results from the Formula
Node inside the For Loop.

Figure 9.77
Formula Node used to
evaluate a polynomial.

Section 9.3 Structures 339

Figure 9.79
The MathScript Window with function polyScript displayed.

Tools / Options . . . Then select the category MathScript: Search Paths as shown in
Figure 9.80. If the folder in which you are storing your m-files is not included in the
Search path list, add it.

Figure 9.80
Telling LabVIEW where your m-files are stored.

340 Programming in LabVIEW

Figure 9.81
Using a user-written
MathScript function
inside a MathScript
node.

Figure 9.82
The results from the
MathScript node (array Y).

Figure 9.83
Using MathScript
commands to step through
the X array and create
the Y array.

Once LabVIEW can find your user-written m-files, any of your m-files can be
used inside of a MathScript node inside a LabVIEW VI. One example is shown in
Figure 9.81. The front panel after the VI is run is shown in Figure 9.82.

In the VI shown in Figure 9.81, LabVIEW’s For Loop feeds in one x value
each time the loop cycles, and the polySolve function calculates one y value.
Alternatively, we can eliminate the LabVIEW For Loop and use MathScript
programming statements to loop through the arrays, as shown in Figure 9.83.

Section 9.3 Structures 341

1Barnsley, M. Fractals Everywhere, 2nd ed., Boston, MA,Academic Press, 1993, pp. 86, 90, 102 and Plate 2,
193. As reported by Weisstein, Eric W., “Barnsley’s Fern.” From MathWorld—A Wolfram Web Resource,
http://mathworld.wolfram.com/BarnsleysFern.html, accessed October 15, 2009.

Using Loops and Case S t ruc ture to Create a Frac ta l

A fractal is an image created mathematically that has a high degree of repetition, or
self-similarity.The fractal generated in this Application is called the fern fractal, and
was initially created by M. Barnsley.1 The fractal is created using a lot of iteration
and a series of four attractors, called fern functions:

Case 1 (r � 0.93)

Case 2 (r � 0.93)

Case 3 (r � 0.86)

Case 4 (r � 0.05)

The output of the Fern Fractal VI is shown in Figure 9.84. The block diagram is
large and shown in two images in Figures 9.85 and 9.86. The portion in Figure 9.85
generates the fractal, and the rest (Figure 9.86) just prepares the fractal informa-
tion for graphing.

y = 0.16y
x = 0

y = -0.04x + 0.85y + 1.60
x = 0.85x + 0.04y

y = 0.23x + 0.22y + 1.60
x = 0.20x - 0.26y

y = 0.26x + 0.24y + 0.44
x = -0.15x + 0.28y

A P P L I C AT I O N

Using MathScript within LabVIEW:
MathScript adds another approach to solving problems using LabVIEW, but there
are a couple of things to watch out for:

• Notice that MathScript array indexing starts at 1, while LabVIEW array indexing
starts at 0.

• The y output on the MathScript node (in the right border) had to be explicitly
declared to be a 1D array of doubles. To do this, right-click on the variable in the
border and select Choose Data Type from the pop-up menu.

http://mathworld.wolfram.com/BarnsleysFern.html

342 Programming in LabVIEW

Figure 9.84
The Fern Fractal.

This fractal VI incorporates the following programming features:

• Two nested For Loops
• Formula Node
• Case Structure
• Shift registers
• Auto-indexed tunnels
• Loop tunnels (auto-indexing disabled)
• Intensity Graph Control

Section 9.3 Structures 343

Figure 9.85
Fern Fractal block diagram, part 1.

Figure 9.86
Fern Fractal block diagram, part 2.

344 Programming in LabVIEW

More LabVIEW Basics

Adjust the display format of displayed values

• Right-click on the control and select Display Format . . . from the pop-up menu.
• Numeric Properties dialog, Display Format panel.

• Select floating point or scientific notation.
• Number of displayed Digits (six is the default).
• Change the Precision Type between “Significant digits” and “Digits of precision”.
• Show or hide trailing zeroes.

Restrict allowed data entry values

• Right-click on the control and select Data Entry . . . from the pop-up menu.
• Numeric Properties dialog, Data Entry panel.

Change the data type associated with a control

• Right-click on the control, select Representation, and then select desired
data type.

Use a logarithm scale

1. Place the control on the front panel.
2. Change the minimum and maximum scale values (if desired).
3. Right-click on the control and select Scale / Mapping / Logarithmic.

Set default initial values

1. Place the control on the front panel.
2. Enter desire values.
3. Right-click on the control and select Data Operations / Make Current

Value Default.

Minimize Wiring

Place the function on the block diagram first, and then

• Right-click on the function inputs and select Create / Control.
• Right-click on the function outputs and select Create / Indicator.

Benefits

• Data type set correctly
• The wiring is automatic
• Automatic labeling

S U M M A RY

KEY TERMS (loop) count terminal
(loop) iteration terminal
auto-indexing (For Loop)
automatic wiring
Case Selector
Case Structure
enumerated control
For Loop
Formula Node

indexing (tunnel, enabled
or disabled)

iteration counter
logarithm scale
MathScript Node
MathScript Window
project
property node
Sequence Structure

shift register
Structure
SubVI
tunnel
Wait function
Wait Until Next ms
Multiple function
While Loop

Summary 345

Remove broken wires

• Edit / Remove Broken Wires, or [Ctrl-B]

Creating SubVIs

1. Get a VI working without using a SubVI.
2. Select the portion of the VI that will become the SubVI.
3. Use menu options Edit / Create SubVI.
4. Double-click default SubVI icon to open SubVI for editing.
5. Edit SubVI icon.

(a) Right-click on the icon in the top-right corner of the SubVI and select
Edit Icon . . . from the pop-up menu.

(b) Change the icon as desired.
(c) Click OK when finished to close the Icon Editor.

6. Save the SubVI—the file name will be used to label the SubVI
on block diagrams.

LabVIEW Projects
A project is a collection of all of the VIs and SubVIs needed to make an application
work.

• To create a project, use menu options Project / New Project . . .

Benefits

• Organization—collect all the required VIs and SubVIs
• Access control—projects help you keep track of who is editing what
• Revision control—projects help you keep track of changes to VIs
• Compilation—projects are used to compile stand-alone program

Programming Structures

While Loop

• Loops until a condition is met.
• Functions Palette / Programming Group / Structures Group / While Loop
• Functions Palette / Express Group / Execution Control Group / While Loop
• Loop condition can be set. Right-click on Loop Condition indicator to change.

• Stop if True (default).
• Continue if True.

For Loop

• Loops a specified number of times.
• Functions Palette / Programming Group / Structures Group / For Loop
• Iteration terminal “i” provides the iteration number (starts at 0).
• Count terminal “N” receives the number of desired iterations.
• Auto-Indexing—when an array output is wired to For Loop input tunnel with

indexing enabled, the For Loop will cycle once for each value in array.

Controlling the Timing of Loops

• Wait function—adds a defined wait period
• Wait Until Next ms Multiple function—causes VI execution to wait for the

remainder of a specified period

346 Programming in LabVIEW

Tunnels

• Wires crossing loop boundaries create tunnels.
• Tunnels can have indexing enabled or disabled:

• Input tunnel, indexing disabled—value (or all values, if array) passes into loop
when loop starts

• Input tunnel, indexing enabled—one value of array enters loop each cycle—
For Loop is autoindexed; loop cycles once for each element in array

• Output tunnel, indexing disabled—value (or all values, if array) passes out of
loop when loop terminates

• Output tunnel, indexing enabled—values built into array at tunnel; array gets
released when loop terminates

Shift Registers

• Sends the calculated value at the end of one iteration into the beginning of the
next iteration.

• Right-click on the loop boundary and select Add Shift Register from the pop-up
menu.

• An uninitialized shift register gets its starting value from the last output value at
the end of the previous execution (the last time the same VI was run).You can use
an uninitialized shift register to start the current loop where it left off last time.

• An initialized shift register is assigned a value before the loop begins to iterate.
• Use stacked shift registers to store results from earlier iterations:

• One shift register—access to i - 1 iteration values, where i is current iteration
number

• Two shift registers—access to i - 1 and i - 2 iteration values.
• Three shift registers—access to i - 1, i - 2, and i - 3 iteration values

Case Structures

• Allow program actions to vary depending on a variable’s value.
• Functions Palette / Programming Group / Structures Group / Case Structure
• Default: Two cases; True and False—right-click on case selector to change

Sequence Structures

• Used to force operations to be done in sequential order.
• Functions Palette / Programming Group / Structures Group / Flat Sequence

Structure

Functions Palette / Programming Group / Structures Group / Stacked Sequence
Structure

Formula Node

• Allows the programmer to perform a series of calculations using sequential
statements that are similar to the C programming language.

• Functions Palette / Programming Group / Structures Group / Formula Node
• Right-click on left boundary to add an input; type variable name in input field.
• Right-click on right boundary to add an output; type variable name in output field.

MathScript Node

• Allows the programmer to perform a series of calculations using sequential
Matlab-style statements. [not available in 64-bit LabVIEW]

• Functions Palette / Programming Group / Structures Group / MathScript Node
• Right-click on left boundary to add an input; type variable name in input field.
• Right-click on right boundary to add an output; type variable name in output field.

Self-Assessment 347

S E L F - A S S E S S M E N T

1. How do you change the display format used to display numbers on the front
panel?
ANS: Right-click on the control and select Display Format . . . from the pop-up
menu. This opens a properties dialog to the Display Format tab.

2. How do you restrict the values that a user can enter into a control?
ANS: Right-click on the control and select Data Entry . . . from the pop-up
menu.This opens a properties dialog to the Display Format tab. Set the minimum
and/or maximum allowed values.

3. On controls that show a scale, how do you specify that the scale should be linear
or logarithmic?
ANS: Right-click on the control and select Scale / Mapping / Linear (or
Logarithmic).

4. Most people first place controls and indicators on the front panel, and then
go to the block diagram to wire them. What are the benefits of right-clicking
on terminals and creating controls and indicators on the block diagram
instead?
ANS:

• The correct data type for the terminal is automatically set.
• The wiring is automatic.
• The control or indicator is automatically labeled.

5. How can you remove all broken wires from a block diagram?
ANS: Press [Ctrl B]

6. What is a SubVI?
A SubVI is a VI that has inputs and or outputs, and has been saved separately
so that it can be used inside another VI. SubVIs act like the functions used in
other programming languages.

7. What are the benefits of using LabVIEW projects?
ANS: They keep all files needed for a particular application together so that
they are easy to find and work with.

8. What type of loop structure is used to keep a VI running until a STOP button
is pressed?
ANS: A While Loop

9. How can you slow down a While Loop?
ANS: Use a Wait function or a Wait Until Next ms Multiple function.

10. What kind of loop structure is used to populate arrays with values?
ANS: For Loop

11. What is a “tunnel” in LabVIEW?
A tunnel allows information to flow into or out of a loop structure.

MathScript Window

• Open from LabVIEW using the menu options Tools / MathScript Window . . .
• Define variables and enter commands in the Command Window.
• View results in the Output Window.
• Create scripts and functions using the script editor.
• Functions must be saved with file names that match the function name, plus the .m

extension.

348 Programming in LabVIEW

12. Tunnels can have auto-indexing enabled or disabled. What’s the difference?
ANS: Auto-indexing (when enabled) causes array values to be passed through
the tunnel one at a time, one for each cycle through the loop structure. At an
input, this has the effect of passing array elements into the loop one at a time
for processing.At an output, this has the effect of building up an array, element
by element, each time the loop cycles.

When indexing is disabled on an input tunnel wired to an array, the entire
array is passed through the loop boundary (through the tunnel) at one time.
When indexing is disabled on an output tunnel, only the final value of a
calculation is passed through the tunnel.

13. What does a shift register do?
ANS: A shift register sends a value calculated within a loop back to the beginning
of the next loop. Shift registers make the results of previous calculations available
for the next iteration.

14. Why are shift registers sometimes stacked?
ANS: Stacked shift registers provide access to results calculated more than
one loop cycle earlier.

15. How does a Case Structure work?
ANS: A Case Structure causes the program to respond differently depending
on the value of the Case selector.

16. What are Sequence Structures used for?
ANS: Sequence structures are used to force LabVIEW to carry out calculations
in sequence.

17. What is a Formula Node?
ANS: A Formula Node is a programming structure that allows you to build
some sequential programming statements into a LabVIEW program. The
required syntax is somewhat like the C programming language.

18. What is a MathScript Node?
ANS: A MathScript Node is a programming structure that allows you to use
Matlab-style statements in a LabVIEW program.

P R O B L E M S

1. Some programs have a feature that allows you to quickly prepare a plot of a
function over a standard range, such as �10 to �10.This can be handy when you
need to select a function for some purpose such as modeling or curve fitting.We
can create a VI in LabVIEW that does the same thing because LabVIEW allows
you to replace one function with another without breaking all the wires.

Create a Function Plot VI for the Sine function that uses a For Loop to
evaluate the function over the range �10 to �10, with at least 200 points (for
creating a smooth plot). Send the X and sin(X) values to an XY Graph control.
Your VI should look something like Figure 9.87 (front panel) and Figure 9.88
(block diagram). Once your VI is working with the Sine function, replace the
Sine function with the following:

a. Sin(X)/X function—what is the minimum value in the range �10 to �10?
b. Asec(X) function—how does the VI respond to undefined values, such as

Asec(0)?
c. Bessel Function jn—why is half the plot missing?

2. Use a For Loop to create an array containing 100 elements between 0 and 500.

Problems 349

Figure 9.87
Function Plot VI, front panel.

Figure 9.88
Function Plot VI, block diagram.

3. Use a For Loop to create an array of 50 elements ranging between �20 and 80.
4. Use a For Loop to create arrays for plotting a cosine wave between �π and �π

using 300 points. Send the X and cos(X) arrays to an XY Graph control for
plotting.

5. Extend the previous problem by using a Case Structure and Enum control to
select between sine, cosine, and tangent plots. Add your own case that creates
a different function plot.

6. In solving problems in fluid mechanics, the friction factor is a necessary value
for determining pressure losses in piping systems due to fluid friction. The
equation used to calculate friction factor depends on the type of fluid flow.

350 Programming in LabVIEW

(The two types of flow are called “laminar” and “turbulent” flow, but you don’t
need to know that to solve this problem.) The Reynolds number is used to
determine if the flow is laminar or not; if Reynolds number is less than 2100,
the flow must be laminar. If not, we will assume the flow is turbulent.
The Reynolds number for a pipe flow is defined as

Where
D is the pipe diameter (m)
Vavg is the flow velocity (m/s)
ρ is the fluid density (kg/m3)
μ is the fluid viscosity (kg/m s)

If the flow is laminar (Re < 2100), the friction factor is calculated as

But if the flow is turbulent, the friction factor is calculated in a variety of ways
depending on the Reynolds number and the type of pipe. One way to calculate
friction factor for low-Re turbulent flow in smooth pipes is

Create a VI that accepts D, Vavg, ρ, and μ as inputs, calculates Reynolds number,
and then uses a Case Structure to solve for friction factor using the appropriate
equation.
Test your VI with these values (slow, room temperature water flow):

D � 0.02 m
Vavg � 0.1 m/s
ρ � 1000 kg/m3

μ � 0.001 kg/m s
Re � 2000
f � 0.032

Then, use your VI to find the friction factor for the following flows:

a. Fast room temperature water flow

D � 0.02 m
Vavg � 2 m/s
ρ � 1000 kg/m3

μ � 0.001 kg/ms

b. Flowing honey

D � 0.02 m
Vavg � �0.01 m/s
ρ � 1400 kg/m3

μ � 7 kg/m s

7. A classic example of the use of a While Loop is calculating factorials. The
factorial of X (an integer) is the product of X and all smaller integers, down to 1.
The factorial of 4 is

4 * 3 * 2 * 1 = 24

f = 0.184 Re-0.2

f =
64
Re

Re =
DVavg r

m

Problems 351

To calculate a factorial using a While Loop (see Figure 9.89), you

• Send the initial value of X into a shift register that keeps track of the
Current Value.

• Use a second shift register to keep track of the increasing product value
(initialize with a value of 1).

• Multiply by the current X value and the product from the previous cycle
• Decrement the current X value.
• Loop until the current X value is less than or equal to 1.

Write a VI that calculates factorials using a While Loop. Set the Representation
of the controls, indicators, and constants to integer (I32, for example).

a. What is the maximum initial value of X that will work with I32 controls and
indicators?

b. What is the maximum initial value of X that will work with I64 controls and
indicators?

c. What happens if someone tries to use an initial value of X that is too large?
d. Modify the control for the initial value of X to restrict the allowable values

that the user can enter to integers between 1 and the maximum possible
value from part b.

8. The PRACTICE problem in Section 8.3.3 used a For Loop to demonstrate
exponential growth. Modify the VI from that PRACTICE problem to use
a While Loop to determine how long it takes for the number of cells to exceed
1 × 105 if single cell divides once each hour.

Figure 9.89
A block diagram for
calculating a factorial.

Looking Forward:
Advanced Math Using
LabVIEW VIs

10.1 INTRODUCTION

The target audience for this text is freshmen and sophomore engineering
students, and the topics in this chapter are well beyond the expected skill level
of that audience. But freshmen engineering students turn into juniors and
seniors, and LabVIEW has capabilities that may be useful for upper division
engineering students too.

The goal of this chapter is to let you know about some of the more
advanced math capabilities that are available in LabVIEW, and hopefully
pique your interest in what lies ahead.

Note: Most of the features presented in this chapter are not available in
LabVIEW’s base package; the student, full, or professional packages are
required.

In this chapter we present some VIs built to demonstrate LabVIEW’s
abilities in the following areas:

• Working with Polynomials
• Statistics: Hypothesis Testing
• Integration
• Differentiation
• Runge–Kutta Integration of Differential Equations
• Exponential Filter
• Spectral Analysis
• Monte Carlo Simulation
• PID Controller

10.2 WORKING WITH POLYNOMIALS

LabVIEW provides a wide range of polynomial functions in the Mathematics
Group:

Functions Palette / Mathematics Group / Polynomial Group

O b j e c t i v e s
This chapter is intended to give
you a preview of more advanced
LabVIEW applications, including:

how to use LabVIEW
functions to work with
polynomials (to find
roots, for example)
how to use LabVIEW’s T-Test
VI to perform hypothesis
testing on a data set
how to perform numerical
differentiation on data set
values
how to integrate data set
values
how to use LabVIEW’s ODE
Runge-Kutta 4th Order VI to
integrate sets of differential
equations
how to create an exponen-
tial filter VI using LabVIEW
how to perform a spectral
analysis using a
LabVIEW VI
how to create a Monte
Carlo simulation using
LabVIEW
how to use a PID controller
with a LabVIEW data
acquisition system

10C H A P T E R

The polynomial functions include the following:

• Order of Polynomial
• Polynomial Evaluation
• Polynomial Plot
• Polynomial Roots
• Roots Classification
• Remove Zero Coefficients
• Polynomial Real Zeros Counter
• Polynomial Eigenvalues and Vectors
• Add Polynomials
• Multiply Polynomials
• Divide Polynomials
• Partial Fraction Expansion (PFE)
• Create Polynomial From PFE
• Create Polynomial From Roots
• GCD of P(x) and Q(x)
• LCM of P(x) and Q(x)
• nth Derivative of Polynomial
• Indefinite Integral of Polynomial
• Integral of Polynomial over [a,b]

The VI shown in Figure 10.1 uses several of these functions.

Section 10.2 Working with Polynomials 353

Figure 10.1
Working with polynomials.

354 Looking Forward: Advanced Math Using LabVIEW VIs

• Polynomial Plot
• Polynomial Roots
• Polynomial Real Zeros Counter
• Roots Classification

The polynomial is described by the coefficient array P(x), with coefficients in
ascending order of power.

• The Polynomial Roots function was used to find all roots (real and imaginary),
and file the Roots array.

• The Polynomial Real Zeros Counter function was used to determine the number
of roots in the specified range (–5, 50 in Figure 10.1).

• The Roots Classification function was used to sort the roots into Real Roots,
Complex Pair roots, and Pure Complex Roots.

• The Polynomial Plot function was used to prepare the data arrays for plotting.

The block diagram is shown in Figure 10.2.

Figure 10.2
Using the polynomial
functions.

10.3 STATISTICS: HYPOTHESIS TESTING

LabVIEW provides a good collection of functions for ANOVA (analysis of variance)
and hypothesis testing. The functions include the following:

• T-Test
• Z-Test
• Correlation Test
• 1D, 2D, 3D ANOVA

Section 10.4 Differentiation 355

The functions are located in the Mathematics Group:

Functions Palette / Mathematics Group / Probability & Statistics /
Hypothesis Testing

Functions Palette / Mathematics Group / Probability & Statistics /
Analysis of Variance

As an example of the use of these functions, some circumference and diameter data
values were collected. These values were used to calculate π, and the experimental
value of π was tested against the known value. The test failed; the experimental
value of π was deemed to not be equal to the known value.

The T-Test results are shown in Figure 10.3. The block diagram is shown in
Figure 10.4.

Figure 10.3
Results of a T-Test.

10.4 DIFFERENTIATION

LabVIEW provides one function for performing numerical differentiation of a data
set, Derivative x(t).VI. The function is located in the Mathematics Group:

Functions Palette / Mathematics Group / Integration & Differentiation /
Derivative x(t)

356 Looking Forward: Advanced Math Using LabVIEW VIs

The Derivative x(t) function will approximate a derivative using four methods:

• Second-order central difference
• Fourth-order central difference
• Forward difference
• Backward difference

In this example, a sin(x) signal was numerically differentiated using the second-order
central difference. Since the derivative of sin(x) is cos(x), the numerical derivative of
sin(x) was plotted with cos(x) in the front panel shown in Figure 10.5.The results are
very similar except right at the boundaries.

Figure 10.4
T-Test VI.

Figure 10.5
Comparing numerical
differentiation result (line)
with analytical result
(points).

Section 10.5 Integration 357

The VI used to perform the numerical integration is shown in Figure 10.6.

Figure 10.6
Numerical differentiation VI.

10.5 INTEGRATION

LabVIEW provides a number of functions for numerical integration.These functions
are located in the Mathematics Group:

Functions Palette / Mathematics Group / Integration & Differentiation

• Integral x(t)
• Numeric Integration
• Quadrature
• Uneven Numeric Integration
• Time Domain Math

The Integral x(t) function is similar in design to the Derivative x(t) function used
in Figure 10.6. We should be able to integrate cos(x) to get sin(x). The numerical
integration was carried out by the Integral x(t) function in the block diagram
shown in Figure 10.7. The result is shown in Figure 10.8. There is a significant lag in

Figure 10.7
Numerical Integration VI.

358 Looking Forward: Advanced Math Using LabVIEW VIs

the numerical result caused by the relatively small number of data points in the
array sent to the integration function. With more closely spaced data points, the
lag is less noticeable.

The other type of numerical integration is solving for the area beneath a curve.
The result is a single value, the area. The Numerical Integration function performs
this type of integration.

We know that the area under a sine curve between 0 and 2π radians should be 0
because the positive portion is counterbalanced by the negative portion. The block
diagram shown in Figure 10.9 performs this integration. The result is shown in
Figure 10.10.

Figure 10.8
Comparing the numerical
integration of cos(x) with
analog result.

Figure 10.9
Numerical integration for area beneath a sine curve.

Section 10.6 Runge–Kutta Integration 359

It’s not a very interesting result, except that the zero value was so “exact” that
it was suspect. Showing the result to a lot of decimal places confirmed the area is
really close to zero.

To see a non-zero result, let’s modify the VI to integrate from 0 to π.The modified
VI is shown in Figure 10.11 and the results in Figure 10.12.

The analytic result is 2. The numerical result is close at 1.9993, but not perfect.

10.6 RUNGE–KUTTA INTEGRATION

A commonly used set of routines for integrating sets of linear, first-order ordinary
differential equations (ODEs) is the Runge–Kutta methods. The fourth-order
method is the most common, and it is available using LabVIEW’s ODE Runge
Kutta 4th Order.VI.

Figure 10.10
Results of sine integration.

Figure 10.11
Numerical integration for area beneath a sine curve between 0 and π.

Figure 10.12
Results of sine integration
between 0 and π.

360 Looking Forward: Advanced Math Using LabVIEW VIs

One set of linear ODEs can be developed from the equation for a harmonic oscillator:

This one, second-order ODE can be rewritten as two, first-order ODEs as

To integrate, we need initial conditions or starting values for each variable; x and y
at t � 0. Variable x represents the location of the harmonic oscillator; x � 0 initially
just puts the oscillator at a point when the oscillations begin. Variable y represents
the velocity of the harmonic oscillator; assigning an initial velocity value (say, y � 0.5)
is like giving the harmonic oscillator a kick in the positive direction (up). Assigning
a negative value (y � �0.5 is used in this example) is like giving the harmonic oscillator
a kick down.

The system parameters are k, the spring constant, and m, the mass of the oscil-
lator. We will choose arbitrary values of (k � 1, m � 5) for these variables. The VI
used to solve the ODEs is shown in Figure 10.13 (front panel) and Figure 10.14
(block diagram).

dy

dt
 = -

k
m

 x

dx

dt
 = y

d2x

dt2
 = -

k
m
x

Figure 10.13
Front panel of Runge–Kutta VI.

1. The variable names that will be used in the ODE definitions are entered.
2. The initial values of each variable are entered.
3. The right-hand sides of each ODE are entered.
4. The solutions to the integrated ODEs are plotted when the VI is run.

What is interesting about this VI is not the solution—this is a complicated way to
plot sine waves—but the flexibility of LabVIEW’s approach to integrating ODEs
using the ODE Runge Kutta 4th Order.VI. By using arrays of variable names and

Section 10.7 Exponential Filter 361

defining the equations on the front panel, this VI can be used for a wide range of
integration problems.

Note: The variable names must be single-character, lower case.

10.7 EXPONENTIAL FILTER

The VI in this example (Figure 10.15) uses an Exponential Filter SubVI to filter a
composite signal made up of a sine wave and random noise.

Figure 10.14
Block diagram of the Runge–Kutta VI.

Figure 10.15
Filtering a composite
waveform.

An exponential filter uses the current signal value and the previous signal
value to reduce signal noise. The equation is

Where α is the filter coefficient, which is reduced to increase the extent of filtering.
The block diagram of the Exponential Filter SubVI is sown in Figure 10.16.

xfiltered = 11 - a2 # xprevious + a # xcurrent

362 Looking Forward: Advanced Math Using LabVIEW VIs

The use of the filter is shown in the front panel graphs in Figure 10.17.

Figure 10.16
Exponential Filter SubVI.

Figure 10.17
Exponential Filter VI.

Section 10.8 Spectral Analysis 363

10.8 SPECTRAL ANALYSIS

LabVIEW offers a number of tools for analyzing waveforms. In this example,
LabVIEW’s Amplitude and Phase Spectrum.vi has been used to identify the major
frequency components of a waveform. In Figure 10.18, the input waveform has
frequency components at 20 Hz and approximately 150 Hz, with a low noise level.

Figure 10.18
Spectral Analysis VI.

The block diagram for the spectral analysis portion of the VI is shown in
Figure 10.19.

Figure 10.19
The spectral analysis portion
of the VI.

This VI actually generates the input waveform too. The waveform genera-
tion portion of the VI is shown in Figure 10.20 (front panel) and Figure 10.21
(block diagram).

364 Looking Forward: Advanced Math Using LabVIEW VIs

10.9 MONTE CARLO SIMULATION

Monte Carlo simulations are used to determine the likelihood of certain events
when the events have a certain extent of randomness associated with them.A common
example is rolling dice. There is a randomness associated with each roll, but there
are certain outcomes that are more probable than others. For example, with three
dice there are several ways to roll a 9 and only one way to roll a 3—the probability
of rolling a 9 is higher than the probability of rolling a 3. A Monte Carlo simulation
of the dice throws would build the dice throws (based on a random number generator)
into a loop and simulate throwing dice a few thousand times.Then, the results would
be sorted out to see which outcomes occur most frequently.

Figure 10.20
Waveform generation portion of Spectral Analysis VI (front panel).

Section 10.9 Monte Carlo Simulation 365

This example does not simulate throwing dice—that’s been done elsewhere.
Just for fun, we’ll look at the probabilities of how long it takes to tour Yellowstone
Park.The author lives just north of Yellowstone and often takes visitors through the
park. How long will the trip take? With experience, we have found that it takes
about four hours to drive across the park if there are no stops. Beyond the driving
time, the additional trip time depends on several factors:

• Elk—Elk don’t slow the traffic too greatly, because they are very common. On
any given trip there is a 90% chance that you will spend 20 minutes watching elk
and a 10% chance you will spend 45 minutes.

• Bears—Bears are not common, so there is an 85% chance that they will not slow
you down at all. However, there is a 10% chance that you will see one, and it will
slow you down by an hour. There is a 5% chance that you will see more than one
and be slowed down by two hours.

• Bison—Bison (a.k.a. buffalo) are very common, and they have a habit of walking
down the road that you are trying to drive down. On any given trip there is a 60%
chance you will spend 20 minutes watching bison and a 40% chance that you will
spend one hour waiting for them to get out of the way.

• Wolves—Wolves are rarely seen (50% chance of not seeing one), and when they
are spotted, they are often far off (25% chance of spending 15 minutes watching).
Occasionally, you see a wolf up close doing something interesting (15% chance of
watching for 50 minutes).

• Old Faithful Geyser—It takes about 10 minutes to watch Old faithful erupt, plus
some random fraction of an hour waiting for the eruption to start.

• Lower Falls of the Yellowstone River—With most trips (80%) it takes about 30
minutes to visit one of the viewing platforms. Less frequently (20%) the visitor
wants to hike to the brink of the falls, which takes 2.5 hours.

• Mammoth Hot Springs—Most of the time (80%) a quick stop is enough (20 minutes);
sometimes (20%) the visitor wants to take a lot of pictures (one hour).

Figure 10.21
Waveform generation
portion of Spectral
Analysis VI (block
diagram).

The VI shown in Figures 10.22 and 10.23 builds these random factors into a
Monte Carlo simulation of the likely time required to tour Yellowstone. About

366 Looking Forward: Advanced Math Using LabVIEW VIs

Figure 10.22
Monte Carlo simulation—calculating times.

Figure 10.23
Monte Carlo simulation—
analyzing results.

Section 10.9 Monte Carlo Simulation 367

Figure 10.24
Monte Carlo simulation—results.

Figure 10.25
Two Option Select SubVI.

10,000 simulations are performed before the results are determined. The results
are shown on the front panel, in Figure 10.24.

The results indicate that the minimum time required is 5.7 hours (the 4 hours
of straight driving, plus at least 1.7 hours of sightseeing). The average trip takes
7.5 hours, and the maximum time (due to multiple bear sightings, a visitor who
wants to hike, and bison on the road) is 12.1 hours. About 75% of trips take less
than 8.2 hours.

This is a silly little example, but the surprising outcome is that the results agree
well our experience taking many visitors through Yellowstone Park.

The block diagram shown in Figure 10.22 makes us of two SubVIs. The Two
Option Select SubVI (Figure 10.25) chooses between two possible event durations
depending on whether or not a random number (between 0 and 1) is less than or
greater than the probability assigned to event A.

The N Option Select SubVI shown in Figure 10.26 uses a Formula Node to
determine the event duration from arrays of event probabilities and durations.

10.10 PID CONTROLLER

We conclude this chapter with a VI that can be used to add PID (Proportional,
Integral, and Derivative) control to a signal obtained via data acquisition. This
example (Figure 10.27) simulates a heat control situation in which the controller is
trying to keep the process measurement constant at 20°C. Notice that when
something caused the temperature to drop suddenly, the controller responded by
quickly increasing the controller output to add energy to the process (by opening a
valve carrying a heat transfer fluid).

368 Looking Forward: Advanced Math Using LabVIEW VIs

Figure 10.26
N Option Select SubVI.

Figure 10.27
PID Controller VI.

Section 10.10 PID Controller 369

The PID Controller VI block diagram is shown in Figure 10.28. It uses a velocity form
of the PID algorithm:

where
CO is the controller output
E is the error (i is current time step, i – 1 is previous time step)
Δt is the sample interval
PM is the process measurement
KC is the controller gain
τ1 is the integral time constant
τD is the derivative time constant

-
tD

¢t
 (PMi - 2PMi-1 + PMi-2) d

COnew = COold + KC c(Ei - Ei-1) +
¢t
t1

 Ei

Figure 10.28
PID Controller VI, block diagram.

In a classical programming language, printing the program meant printing a listing
of the programming statements. Because LabVIEW is a graphical programming
environment, printing the program is a little different, and generally involves printing
some combination of the following:

• The front panel
• The block diagram
• Information about the controls on the block diagram
• Names of any SubVIs (none have been used in any examples yet)

If you just want a printout of the current window (either the front panel or the block
diagram), use menu options File /Print Window . . . This approach does not allow
you to select options, but it is the quickest way to get a picture of your block diagram
or front panel to a printer.

Opening the Print dialog by selecting Print . . . from the File menu (from
either the front panel or the block diagram) gives you a lot of control over:

• what is printed
• in what format
• to what destination

For most situations the File /Print Window . . . approach is adequate.

1.1 USING THE PRINT DIALOG

To choose from the many print options involved in printing a LabVIEW program,
selecting Print . . . from the File menu (from either the front panel or the block
diagram):

File /Print . . .

These menu options open the Print dialog shown in Figure 1.1.

Appendix: Printing VIs

Figure 1.1
Print dialog, page 1.

370

Appendix: Printing VIs 371

Figure 1.2
Print dialog, page 2: Print Contents.

The first page of the Print dialog collects information on which VI(s) you want
to print. The first option (selected by default) is the VI from which the Print dialog
was opened (“Example 1 Power Indicator.VI in Figure 1.1).
The buttons along the bottom of the Print dialog provide some options:

• < Back—Returns to the previous page of the Print dialog to allow you to make
changes.

• Next >—Moves to the next page of the Print dialog.
• Print . . .—Skips the remaining pages of the Print dialog and allows you to select

a printer.
Printing without going through all of the pages of the Print dialog causes
LabVIEW to use the output options specified the previous time the Print dialog
was used. This can be very handy if you make a small change and simply want to
reprint a VI.

• Cancel—Closes the Print dialog without printing.
• Help—a—Opens the LabVIEW Help system to information on the Print

Dialog Box.

The most common printing need is to print the VI from which the Print dialog
is opened. This is the default selection on the first page of the Print dialog.

Click Next > to move to the second page of the Print dialog, shown in
Figure 1.2.

The second page of the print dialog collects information on what you want to
print. The options on the second page are as follows:

• Complete front panel—even if only a portion is visible when the Print dialog is
opened. A large front panel may be scaled down significantly when printed.

• Visible portion of front panel—prints exactly what is visible when the Print
dialog is opened. This allows printing a small portion of the front panel in a
larger image.

Figure 1.3
Print dialog, page 3: Destination.

372 Appendix: Printing VIs

• Icon, description, panel and diagram—prints both the front panel and the block
diagram. (This is a commonly used option.)

• VI documentation—allows you to select exactly what you want to have printed.

The Preview . . . button will allow to see what the printout is going to look like.
What happens when you click the Next > button depends on which option

you have selected on page 2:

• If you have selected VI documentation, the next page allows you to select
exactly what you want to have printed.

• If you select any of the other options, the next page allows you to specify the
destination for the printout, as illustrated in Figure 1.3.

The Destination page of the Print dialog allows you to choose from several options:

• Printer—send the printout to a printer.
• HTML file—create an HTML file (including images) suitable for use as a web

page.
• Rich Text Format (RTF) file—create a file (including images) suitable for importing

into a word processor.
• Plain text file—create a text file (no images) describing the VI.

The first three options create virtually identical outputs in various formats.
Because the Plain text file option cannot include images, it provides much less
information about the VI.

Note: You can type in a description of a VI as one of the VI’s properties (File / VI
Properties). If you have not provided a description of the VI, the Plain text file
option provides little beyond the VI’s title and file location.

In this example we will select the Printer option and click Next > to move to
the Print dialog’s Page Setup page shown in Figure 1.4.

The Page Setup page of the Print dialog allows you to set margins and indicate
whether or not to include a Print Header. The defaults are shown in Figure 1.4. By

Appendix: Printing VIs 373

Figure 1.4
Print dialog, page 4: Page Setup.

default, no margins are included on the printouts. This maximizes the area available
for graphics, but margins may be useful. You can change the margins for the current
printing on the Page Setup page of the Print dialog. However, if you want to change
margins for all of your printouts, change the LabVIEW options using the following
menu options:

Tools / Options / Category: Printing : set Margins

Click Next > to move to the Print dialog’s Printer options page, shown in
Figure 1.5.
The Print dialog’s Printer options page allows the following options:

• Scale front panel to fit—if not checked, a large front panel will be printed on
multiple pages.

• Scale block diagram to fit—if not checked, a large block diagram will be printed
on multiple pages.

• Page breaks between sections—when checked, each section (heading, front panel,
block diagram) will start on a separate page.

• Print section headers—when checked, LabVIEW will draw a line between each
section and add headings (e.g., “Front Panel”, “block diagram”) to each section.

• Surround panel with border—when checked, LabVIEW includes a thin line
border around the image of the front panel.

The Printer Setup button allows you to access your computer’s Printer Setup
dialog to select a printer and set printer properties (such as printing landscape, or
double-sided printing).

374 Appendix: Printing VIs

Figure 1.6
The Print dialog is used to
select a printer and print
the document.

The Next > button is not enabled on the Print dialog’s Printer options page
because there are no more pages. Instead, click the Print . . . button to open your
computer’s Print dialog (Figure 1.6).

Use the Print dialog to select a printer, and then click the Print button to
(finally) send the printout to the printer.

Figure 1.5
Print dialog, page 5: Printer options.

There were a lot of steps involved in printing a VI. Fortunately, the defaults can
be used on most of the dialog pages to speed up the printing process. Also, once you
are familiar with LabVIEW’s Print dialog pages, you can use the Print . . . button
(see the bottom of Figure 1.5) to skip pages and get your printout to the printer more
quickly.

Appendix: Printing VIs 375

This page intentionally left blank

Index

A

Abort Execution button, 19, 20, 35–36
Add function, 27–28
Adding arrays, 111–112
Adding two numbers, 64
Advanced math using LabVIEW VIs, 352–369.

See also Differentiation; Exponential filter;
Integration; Monte Carlo simulations;
Runge–Kutta integration

hypothesis testing, 354–355
ANOVA (analysis of variance), 354
Correlation Test, 354
1D, 2D, 3D, 354
T-Test, 354–356
Z-Test, 354

PID controller, 368–369
polynomials, working with, 352–354

polynomial functions, 353–355
Polynomial Plot function, 354
Polynomial Real Zeros Counter function, 354
Polynomial Roots function, 354
Roots Classification function, 354

spectral analysis, 363–364
Aliasing, 147
Amplification, 151
Analog input, 153
Analog output, 154
Analog to digital converters, 155–157
Analysis of variance (ANOVA), 265, 354
AND function, 82

Append to file, spreadsheet file, 184
Arithmetic flash controls, 336–337
Array building using For Loop, 318
Array plotting, 219–221. See also under

Waveform charts
Arrays with LabVIEW, 103–106

Add Dimension array, 105
adding arrays, 111–112
array container, 104
array functions, 105
array inverse with checks VI

block diagram., 121
front panel, 121

array of numeric controls, creating, 104
arrays or matrices, question of, 103–106
multiplying an array by scalar, 113–114
subarray extraction from a larger array

or matrix, 106–111
descriptive nomenclature, 108
LabVIEW nomenclature, 108
number of columns (all), 108–109
number of rows (all), 108
starting column index (0), 108
starting row index (0), 108

transpose array, 112–113
Assumptions, LabVIEW, 2–3

target audience, 2–2
versions, 3

Auto-indexing, 127
For Loop, 321–323

377

Automatic array maker, 131
DeltaX, 131
Edit/Create subVI, 131
icon editor, 131

Automatic Tool Selection Button
(top of Tools Pallete), 12

Automatic Tool Selection mode, 18
Automatic wiring, 303–304
AutoScale, graph modification, 237

B

Backward difference, 356
Barnsley, M., 341n1
Base LabVIEW package, 3
Basic math functions, 62–74

adding two numbers, 64
body mass index calculator, 66–69
Boolean functions, 80–86
comparison functions, 80–86

to check tank status, 85
degrees to radians convertion, 75
dividing two numbers, 65
exponential function, 77–80
first-order response, 77
Functions Palette with mathematics group

expanded, 63
integer multiples of π, calculating, 68–69
less commonly used numeric functions, 70–74

Formula Express VI, 72–73
quotient and remainder function, 70–71
random number function, 71–72

logarithm function, 77–80
Numeric Group, 63
safety interlock switches, status checking, 81–82
trigonometric functions, 74–77
View /Functions Palette, 63
volume in a cylindrical tank, 84
Window/ Show Block Diagram, 62

Basics, LabVIEW, 26–58
basic math using functions, 26–37. See also Math

functions in LabVIEW
controls and indicators, difference between, 28
Difference box, 28
Minuend box, 28
opening VI, 26
saving the work, 49–51
Subtrahend box, 28

Bears, 365
Binary files, 181

378 Index

Bins, 268–269
Bison, 365
Bisquare, 280
32-Bit signed integer numeric data type, 41
Block diagram part, LabVIEW VI, 4
Block Diagrams, 297
Body mass index (BMI) calculator, 66–69
Boolean data type, 41
Boolean functions, 80–86
Boston, M. A., 341n1
Breakpoints, 87, 90–91

Clear Breakpoint, 90
Set Breakpoint, 90

Broken Run Button, 87–88
Broken wires, 42, 87
Burns, G. W., 152n1

C

Calibration, sensor, 153
Caption, 242
Case structures, 314, 327–330

in fractal creation, 341
Charts, 216. See also Intensity chart;

Waveform charts
chart history, 217–218
Scope Chart, 219
Strip Chart, 219
Sweep Chart, 219

Circuit analysis, matrix math using
LabVIEW, 123–125

Classic set, 9
Clifford, Gari, 149
Closing VI, 51

File/Close, 51
Clusters, 41, 104
Coefficient matrix, 125
Coefficient of determination, 281
Column index, 108, 110
Comments, 80
Comparison functions, 80–86
Complementary metal-oxide-semiconductor

(CMOS), 154
Condition number, matrix, 117–118

when one coefficient is changed slightly, 118
when the rows are clearly distinct, 118

Connect Wire Tool (Spool), 12
Connector pane, sub VI, 309–310
Context help, 65–66
Context sensitive help, 33–34

Control names convention, 4
Controls and indicators in LabVIEW,

difference between, 28
Controls palette, 8–9
Conventions in text, 3–4

control names, 4
function, 4
keywords, 3
literals, 3
menu selections, 4

Correlation Test, 354
Count terminal, 127

For Loop, 316–317
Create Task . . ., 160
Creating a VI, 12–21

assumptions, 13
blank VI from the Getting Started window, 14
block diagram for, 13
dragging the toggle switch to front panel, 16
Express group

buttons and switches available through, 15
in Controls Palette, 15

front panel, 13
mouse clicks to get the toggle switch, 15
power indicator VI, 13–14
Step 1 (create a blank VI), 14
Step 2 (add a toggle switch control

to the front panel), 14
Step 3 (add an LED Indicator

to the front panel), 16
Step 4 (wire the toggle switch output

to the LED indicator input), 16–19
Abort Execution button, 19
adding round LED indicator

to the front panel, 17
Automatic Tool Selection mode, 18
power switch output wired to
LED input, 17
Power Switch wired to LED indicator, 18
Run button, 18–19
Run Continuously button, 19
‘spool’ mouse icon dragging, 18

Step 5 (save the VI), 19
Step 6 (test the VI), 19

Croarkin, M. C., 152n1
2–Cubic spline, 273–279
3–Cubic Hermite, 273–279
Cubic spline interpolation, 272
Cursor, activation, 245–247

Free cursor, 245

Index 379

Multi-Plot cursor, 245
Single-Plot cursor, 245

Cursor Legend, 243
Curve fitting, 276–279

block diagram, 278
front panel of, 278
general approaches, 276–277

Method 1, 276
Method 2, 277
ntimes input, 277

Lagrange, 279
spline fit to data set, 279

D

1D arrays, 235
for graphing, 240–242

1D Data, spreadsheet file, 184
2D Data, spreadsheet file, 184
2D plotting, 248–254
3D graphing, 254–257

presenting indicators, 254
Data acquisition and Waveforms, 234–236
Data acquisition hardware (DAQ)

assistant, 142, 166–167
acquiring data using, 168–169
inputs, 168

Error In, 168
Number of Samples, 168
Rate, 168
Stop, 168
Timeout, 168

outputs, 167
Data, 167
Error Out, 167
Task Out, 167

Data acquisition with LabVIEW, 142–180
acquiring data with LabVIEW, 168–173

using DAQ assistant, 168–169
using data as it is collected, 171–173
using saved tasks, 170–171

aligning sensor output to a data
acquisition system input, 151–152

amplification, 151
data collection, 158–173

Create Task . . ., 160
Data Neighborhood node, 158
Device Pinouts, 160
Devices and Interfaces node, 158
Reset Device, 160

Data acquisition with LabVIEW (continued)
Self-Test, 160
Test Panels, 160

hardware, 153–157. See also Hardware, data
acquisition

installing, 157
measurement and automation explorer

assigning a task name, 164
basic information, 163
configuring tasks using, 158–168
DAQ assistant, 166–167
data acquisition tasks creation from, 162–166
data channel, 164

offset, 151
range, 151
sensors, 144–153
signal conditioning, 143–153.

See also individual entry
signals, 144–153
span, 151
testing data acquisition device, 160–162

Analog Input panel, 161
Analog Output test panel, 160
continuous option, 161
differential option, 162
finite option, 161
input configuration, 162
NRSE option, 162
pseudodifferential option, 162
RSE option, 162

using waveform chart, 221–223
zero, 152

Data analysis using LabVIEW VIs, 264–296.
See also under Virtual instrument (VI),
LabVIEW

Data type selector, 195
Data types and conversions, 40–44

32-bit signed integer numeric, 41
Boolean, 41
cluster, 41
DBL (double-precision real values), 40
double-precision floating point numeric, 41
TF (True/False or Boolean values), 40
waveform, 41

Dataflow programming, 38–40
Indexing Disabled, 38
Indexing Enabled, 39

Debugging, 87–91
breakpoints, 87, 90–91
broken Run button, 87–88

380 Index

broken wires, 87
Error List, 88
execution highlighting, 87–89
fixing broken wires, 87
probes, 87, 89–90
Show Error button, 88
single-step execution, 87, 89

Default labeling, 71
Degrees to radians convertion, 75
Delimiter (\t), spreadsheet file, 184
DeltaX, 131
Desktop shortcut icon for LabVIEW, 6
Determinant, matrix, 118–120

of an array, 119
determinant VI, 119

Device Pinouts, 160
Dial Numeric Control, 61
Difference box, 28
Differential inputs, 154–155
Differential option, 162
Differentiation, 355–357

second-order central difference, 356
fourth-order central difference, 356
forward difference, 356
backward difference, 356
numerical differentiation result

and analytical result, comparing, 356
Digital indicator, 42
Digital input (DI), 154
Digital output (DO), 154
Digits of precision, graph modification, 238
Display format of displayed values,

adjusting, 298
Dividing two numbers, 65

Add function replacing with Divide function, 65
block diagram modified to handle, 65
context help for the Divide function, 66
solving division problem, 66

Documenting VIS, 44–49
descriptive information, 46–48

adding description to VI, 47
Quad Solve subVI, 48
subVIs, descriptions with, 48–49
VI properties dialog, 47

documented block diagram, 45
labeling VIs, 45–46
minimally labeled front panel, 46
thoroughly labeled front panel, 46
undocumented block diagram, 45
unlabeled front panel, 46

Double-precision (DBL) floating
point values, 41, 301

Double-precision (DBL) real values , 40

E

Edit menu, 22–23
Copy, 22
Create SubVI, 23
Create VI Snippet from Selection, 23
Cut, 22
Make Current Values Default, 22
Paste, 22
Redo, 22
Reinitialize Values to Defaults, 22
Remove Broken Wires, 22
Select All, 22
Undo, 22

Edit Text Tool (A with cursor), 12
Editing environment, LabVIEW, 7–11

block diagram, 8
controls palette, 8–9

Classic set, 9
Express category, 8
Modern set, 9

Express VIs, 9
front panel, 8
functions palette, 9–10

express category, 9
programming category, 9

Getting Started window, 8
Element by element multiplication, 116–117
Elk, 365
Engineering notation, 184
Enthalpy, 271
Entropy, 271
Enumerated control, 331–334

Step 1 (create a property node for the tank
control’s fill color), 331

Step 2 (determine color codes for blue, red,
and green), 332

Step 3 (add an Enum control
to the front panel), 332

Step 4 (create a case structure with
three cases: ‘Blue’, ‘Red’ and ‘Green’), 333

Step 5 (wire the controls), 333
Step 6 (run the VI), 334

Error List, 88
Excel® workbook, 181–185. See also

Spreadsheet file, LabVIEW
with extraneous information, 192

with extraneous information
removed, 192

general process for getting data from, 191
all rows, 195
delimiter (\t), 194
EOF?, 195
file path, 194
first row, 195
format, 194
inputs, 194–195
mark after read (chars.), 195
max characters/row (no limit: 0), 194
new file path, 195
number of rows, 194
start of read offset, 194
Step 1 (get the data values into an Excel

worksheet), 191
Step 2 (save the Excel file as a .txt file), 192
Step 3 (place a read from spreadsheet

file function on a LabVIEW
block diagram), 194

Step 4 (select the data type of the values to be
read from the file), 195

Step 5 (use a string constant to specify
the format string), 195

Step 6 (use a string constant to specify
the path name), 195

Step 7 (add an indicator to the block diagram
to display the read values), 195

transpose?, 194
spline interpolation of Excel values, 200

adding to DecayOsc VI, 202
completed DecayOsc VI with interpolated

values sent to .txt file, 203
DecayOsc VI (block diagram), 202
DecayOsc VI (front panel), 202

Exclusive Or function, 81
Execution highlighting, 87–89
Exponential filter, 361–362

composite waveform, filtering, 361
SubVI, 361–362

Exponential function, 77–80
Exponential growth, shift registers, 326
Export, 258
Express category, 8
Express VIs, 9, 185–190

F

False case, 328–329
Fern functions, 341–343

Index 381

File menu, 21–22
Close All, 21
Close, 21
Exit, 22
New Project, 22
New VI, 21
Open, 21
Print, 22
Recent Files, 22
Revert, 22
Save, 21
Save All, 22
Save As, 22
Save for previous version, 22
VI Properties, 22

File path, spreadsheet file, 183
Filtering, signal, 146

band-pass filters, 147
high-pass filters, 146

to remove baseline drift, 149
low-pass filters, 146

First-order response, 77
Flash Cards, 336–337
Flat sequence structure, 314
Floating point notation, 184
For Loop, 314, 316–323

in arrays building, 318
auto-indexing a, 321–323
count terminal, 316–317
iteration terminal, 316–317
programming structure, 127–133

auto-indexing, 127
count terminal, 127
indexing disabled, 128
indexing enabled, 128
input tunnel, 127
iteration terminal, 127
tunnel, 127

tunnels on, 319
indexing enabled on, 319–320

Format string, 183
spreadsheet file, 184–185

Format, spreadsheet file, 183
Formatting, graph modification, 237
Formula Express VI, 72–73

block diagram, 74
configure formula dialog, 73
in formula solver VI, 74
icon for, 73

382 Index

Formula Node, 337–338
inside the For Loop, 338
in polynomial evaluation, 338

Forward difference, 356
Fourth-order central difference, 356
Fractal creation, loops and case structure to, 341
Front Panel, 297

for basic math VI, 61
controls, 297–303
data entry values, restricting, 298–299
display format of displayed values, adjusting, 298
display options, 298
indicators, 297–303
part, LabVIEW VI, 4

Full LabVIEW package, 3
Functions, 26–37. See also Math functions in

LabVIEW
convention, 4

Functions Palette, 9–10
with mathematics group expanded, 63–64
While Loops on, 37

G

Gaussian fit, 284–286
Get Color Tool (Dropper), 12
Getting data into and out of LabVIEW, 181–215

to measurement file, 185–189. See also
Measurement file, LabVIEW

reading the first row or column
from a text file, 204–208

Step 1 (place the Read From Spreadsheet
function on the block diagram), 205

Step 2 (connect a 1D array indicator
to the first row terminal), 206

Step 3 (send true to the transpose
terminal), 206

Step 4 (Run the VI), 206
spline interpolation of Excel values, 200–203
to spreadsheet file, 181–185. See also

Spreadsheet file, LabVIEW
without data acquisition, 181–215

Graphing with LabVIEW, 216–263.
See also Charts; Waveform Graphs, using

1D arrays generation for, 240–242
3D graphing, 254–257
getting graphs onto paper and into reports, 258
LabVIEW function generator, building, 225

connection pane for, 226

VI front panel, 226
Square Wave Duty control, 227

modifying graph features, 236–240
AutoScale, 237
Digits of precision or Significant figures, 238
Formatting, 237
Loose Fit, 238
Mapping, 237
Marker Spacing, 237
options for the X axis, 237
Properties, 237
Properties dialog, 238
right-click, 236
Style, 237
trailing zeroes, 238
Visible Scale Label, 238

putting graphs to work, 242–247
activate a cursor, 245–247
Caption option, 242
Cursor Legend, 243
Graph Palette option, 242
Label option, 242
Plot Legend option, 242
Scale Legend option, 242
Single-Plot cursor, 246
X Scrollbar, 243
Zoom In, 245
zoomed graph, 246

XY graphs–2D plotting, 248–254
Graph Palette, 242
Ground loop errors, 154–155
Guthrie, W. F., 152n1

H

Hardware, data acquisition, 153–157
analog input, 153
analog output, 154
analog to digital converters, 155–157
differential inputs, 154–155
digital input (DI), 154
digital output (DO), 154
ground loop errors, 154–155
sample rate, 157
signals types, 153–154
single-ended inputs, 155

Heat transfer coefficients, 288–290
Help menu, 24

Search the LabVIEW Help, 24
Show Context Help, 24

Help path, 47
Help tag, 47
Histograms, creating, 265, 268

definition, 268
functions for, 268

Create Histogram.vi, 268
General Histogram.vi, 268
Histogram.vi, 268

HTML file option, 372
Hyperbolic trigonometric functions, 74–77
Hypothesis testing, 265, 354–355

I

Improper operand, 328–329
False case, 328–329
True case, 328–329

Increment/decrement controls, hiding, 30–37
Indexing, 38, 319

disabled, 38, 128
enabled, 128

Indicators and controls in LabVIEW,
difference between, 28

Initialized shift register, 324
Input fields, 28
Input tunnel, 127
Inputs, spreadsheet file, 183–184
Integer multiples of π, calculating, 68–69
Integer quotient, 70
Integration, 357–359

numerical integration VI, functions, 357
and analog result, comparing, 358
for area beneath a sine curve, 358
for area beneath a sine curve

between 0 and π, 359
integral x(t), 357
numeric integration, 357
quadrature, 357
time domain math, 357
uneven numeric integration, 357

Intensity chart, 216
Internal energy, 271
Interpolation, 269–276

cubic spline interpolation, 272
descriptive statistics VI with histogram, 270
enthalpy of saturated steam at 230°C, 271–272
linear interpolation, 272
method terminal used, 273

0–nearest, 273
1–linear, 273

Index 383

Interpolation (continued)
2–cubic spline, 273
3–cubic Hermite, 273
4–Lagrange, 273

monotonic input, 273–274
ntimes input, 274
xi used output, 274

sine data, 275–276
VI, using linear method, 274

Inverse hyperbolic trigonometric
functions, 74

Inverse matrix, 120–121
Inverse trigonometric functions, 74
Involute, 241–242
Iteration terminal, 127

For Loop, 316–317

K

Kaeser, M. G., 152n1
Keywords convention, 3
Knob control, 68

L

Label, 30, 242
Labeling VIs, 45–46
LabVIEW

description, 1–2
parts of, 5
uses, 1

4–Lagrange, 273–279
Latch actions, 20

Latch When Pressed, 20
Latch When Released, 20
Latch Until Released, 20

Least Absolute Residual, 280
Least Square, 280
Less commonly used numeric

functions, 70–74
default labeling, 71
quotient and remainder function, 70–71

1–Linear, 273
Linear fit, 281–284
Linear interpolation, 272

interpolation VI using, 274
Linear regression, 280–281
Literals convention, 3
Logarithm function, 77–80
Logarithm scale, 301

384 Index

Loops
in fractal creation, 341
Loop structures, 314. See also

For Loop; While Loop
Loose Fit, graph modification, 238
Lower Falls of the Yellowstone River, 365

M

Mammoth Hot Springs, 365
Mapping, graph modification, 237
Marker Spacing, graph modification, 237
Math functions in LabVIEW, 26–37, 60–102. See also

Advanced math using LabVIEW VIs;
Basic math functions; Matrix math
using LabVIEW

Add function, 27–28
basic math VI, front panel for, 61
creation, steps, 61

add a dial numeric control
for the first input, 61–62

add a dial numeric control
for the second input, 62

add a flat frame around the controls and
indicator, 62

add a numeric indicator for the result, 62
add the math function, 62
create blank VI, 61
draw a While Loop, 62
move the While Loop STOP button, 62
wire the add function output, 62
wire the dial control outputs, 62

Getting Started window, 27
simple math Vis, block diagram for, 61
subtraction VI, 28–29. See also

indivdual entry
MathScript, 338–343

MathScript Node, 338–340
MathScript Window with function polyScript

displayed, 339
user-written MathScript function, 340
using within LabVIEW, 341

Matrices, 104, 106
Matrix control, using spreadsheet data

to initialize, 199–208
Step 1 (read the text file and show

the results in an array indicator), 199
Step 2 (change the array indicat

or to a control), 199

Step 3 (delete the Read From Spreadsheet
File function), 199

Step 4 (make the current data the default
data for the control), 200

Matrix math using LabVIEW, 103–141. See also
Arrays with LabVIEW; Determinant,
matrix; Simultaneous linear
equations, solving

arrays, working with, 103–106
circuit analysis, 123
coefficient matrix, 125
condition number, 117–118
element by element multiplication, 116–117
For Loop programming structure, 127–133
inverse matrix, 120–121
matrices, working with, 103–106
multiplication, 114–115
non-singular matrices, 120
programming application, 131
right-hand-side vector, 125
square matrices, 120
value collection, ways, 104

arrays, 104–106
clusters, 104
matrices, 104, 106

McSharry, Patrick, 149
Mean, 264–265
Measurement and automation explorer,

configuring tasks using, 158–168
Measurement file, LabVIEW, 185–189

Configure Write to Measurement
File dialog, 186

Action, 186
in compact forms, 187
Delimiter, 186
in expanded forms, 187
File Format, 186
File Name, 186
front panel, 188
Segment Headers, 186
X Value Columns, 186

opened in Excel, 188
reading, 189–190
saving an .lvm file, 189

Mechanical actions for switches, 20
changing, 20
Switch Until Released, 20
Switch When Pressed, 20
Switch When Released, 20

Median, 264–265
Menu selections convention, 4
Menus, LabVIEW, 21–24. See also Edit menu;

File menu; Help menu; Operate menu;
Project menu; Tools menu; View menu;
Window menu

Meter Indicator, 68
Minuend box, 28, 30, 35
Modern set, 9
Monotonic input, 273–274
Monte Carlo simulations, 364–368

analyzing results, 366–367
calculating times, 366
N Option Select SubVI, 367–368
trip time, factors affecting, 365

Bears, 365
Bison, 365
Elk, 365
Lower Falls of the Yellowstone River, 365
Mammoth Hot Springs, 365
Old Faithful Geyser, 365
Wolves, 365

Two Option Select SubVI, 367–368
Multi-curve XY graphs, bundling and (array)

building for, 251
create two XY graphs (Part 1), 251
create one XY graph with two curves

(Part 2), 252
Multiple curves displaying on a

waveform chart, 223–228.
See also under Waveform charts

Multiple curves plotting using
waveform graphs, 233–234

Multiplication
element by element, 116–117
matrix, 114–115

N

N Option Select SubVI, 367–368
National Instruments LabVIEW, 5–6
Natural Logarithm, 77
0–Nearest, 273
New file path, spreadsheet file, 184
NI developer suite, LabVIEW, 3
Nodes, 13, 16–18, 33, 303–304
Nomenclature, LabVIEW, 7
Non-linear regression, 280–281
Non-singular matrices, 120
NRSE (non-referenced single-ended) option, 162

Index 385

ntimes input, 274, 277
Numeric control, hiding the increment / decrement

controls on, 30
Numeric Group, 63–64
Numerical differentiation VI, 356–357
Numerical integration, functions, 357

O

Object Shortcut Menu Tool (Menu icon), 12
Offset, 151
Old Faithful Geyser, 365
Operate menu, 23

Abort Execution button, 23
Run, 23
Step Into, 23
Stop, 23

Operate Value Tool (finger), 12
Output, spreadsheet file, 184
Overlay plots, 223

P

Packages, LabVIEW, 3
base package, 3
full package complete, 3
NI developer suite, 3
professional package, 3
student edition, 3

PI Controller VI, 3
block diagram, 4

Plain text file option, 372
Plot Legend, 242
Point-by-point plotting, 217–219
Pointer Slide controls, 66
Polynomial regression, 286–290

connection pane for the general
polynomial fit function, 287

heat transfer coefficients, 288–290
VI, block diagram, 288
VI, front panel, 287

Polynomials, working with, 352–354
polynomial functions, 353–354

Polynomial Plot function, 354
Polynomial Real Zeros Counter

function, 354
Polynomial Roots function, 354
Roots Classification function, 354

Position/Size/Select Tool (arrow), 12
Predefined constants, 64

386 Index

Printing VIs, 49, 370–374
destination page, options, 372

HTML file, 372
Plain text file, 372
Printer, 372
Rich Text Format (RTF) file, 372

page 4, 373
page 5, 373
Print button, 374
Print. . . button, 374
print dialog, 370–374

buttons, 371
Print dialog’s Printer options, 374

Page breaks between sections, 374
Print section headers, 374
Scale block diagram to fit, 374
Scale front panel to fit, 374
Surround panel with border, 374

Printer Setup button, 374
second page, options, 371

complete front panel, 371
icon, description, panel and diagram, 371
VI documentation, 371
visible portion of front panel, 371

Probe Data Tool (Probe symbol: yellow
circle, arrow, P character), 12

Probes, 87, 89–90
Professional LabVIEW package, 3
Programming in LabVIEW, 297–351. See also

Structures; SubVIs
automatic wiring, 303–304
basics, 297–314
block diagrams, 297, 303–304
data type of the output value, changing, 301
default values setting on controls, 302
front panel, 297–303. See also

individual entry
logarithm scale, 301
nodes, 303–304
projects, 297
set default initial values, 301–302
subVIs, 297
terminals, 303–304
user inputs, controlling, 299

Project, 7
Project menu, 23

Add to Project>, 23
Close Project, 23

New Project, 23
Open Project, 23
Save Project, 23

Projects, LabVIEW, 297, 313–314
Project Explorer

Files view, 314
Items view, 313

Properties, graph modification, 237–238
Property node, 331
Proportional, Integral, and Derivative (PID)

control, 368–369
block diagram, 369

Pseudodifferential option, 162
Pushbutton Control, 21

Q

Quotient and remainder function, 70–71

R

Random number function, 71–72
Range, 151
Reading

LabVIEW measurement file, 189–190
LabVIEW spreadsheet file, 190–198

Referenced single-ended (RSE)
option, 162

Regression, 280–290. See also
Polynomial regression

Bisquare, 280
coefficient of determination, 281
Gaussian fit, 284–286
Least Absolute Residual, 280
Least Square, 280
least squares regression, working, 280
linear fit, 281–284
linear regression, 280–281

for a linear fit, 282
non-linear regression, 280
quick explanation, 280–281

Reset Device, 160
Resistance temperature devices (RTDs), 143
Rich Text Format (RTF) file option, 372
Root (of polynomial), 242
Row index, 108, 110
Run button, 18–19, 35–36
Run Continuously button, 19, 35–36, 60
Runge–Kutta integration, 359–361

block diagram, 361
front panel, 360
ODE Runge Kutta 4th Order.VI., 359

S

Sample rate, 157
Saving the work, 49–51

create unopened disk copy, 50
open additional copy, 51
Save, 49
Save <VI name> As dialog, 49–51
Save All, 49
Save As, 49
Save for Previous Version, 49
substitute copy for original, 50

Sawtooth wave, 225
Scalar multiplication of arrays, 113–114
Scale Legend, 242
Scan Value function, 42
Scientific notation, 184
Scroll Window Tool (Cupped Hand), 12
Second-order central difference, 356
Self-Test, 160
Sensors, 142, 144–153

analog signal, 144
calibration, 153
digital signal, 144
thermocouples, 143

Sequence structures, 314, 334–337
to check program timing, 335

Set Color Tool (Paintbrush), 12
Set/Clear Breakpoint Tool (Stop sign), 12
Setpoint, 1
Shift registers, 323–327

accessing values from the previous
loop iteration, 323–327

exponential growth, 326
initialized, 324
stacking, 327
uninitialized, 324

Signal conditioning, data acquisition
with LabVIEW, 143–153

with external signal conditioning, 143
noisy signals, dealing with, 144
pros and cons for, 147
signal filtering, 146

band-pass filters, 147

Index 387

Signal conditioning, data acquisition (continued)
high-pass filters, 146
low-pass filters, 146

thermocouple, 152
Signals, 144–153, 223

analog signal, 144
digital signal, 144

Significant figures, graph modification, 238
Simultaneous linear equations, 120

solving, 121–126
block diagram, 122
front panel, 122
using solve linear equations

function, 122–123
Sine data, interpolating, 275–276
Sine waves, 253
Single-ended inputs, 155

requirements for, 155
Single-step execution, 87, 89

Step Into, 89
Step Over, 89

Snippet, 23
Span, 151
Spectral analysis VI, 363–364

waveform generation portion of, 364–365
Spline interpolation of Excel values, 200

adding to DecayOsc VI, 202
completed DecayOsc VI with interpolated

values sent to .txt file, 203
DecayOsc VI (block diagram), 202
DecayOsc VI (front panel), 202

Spreadsheet file, LabVIEW, 181–185.
See also Excel® workbook

block diagram to send data
array values, 182

connection pane, 182
data in the Write Test.txt file, 183
format strings, 184–185

for writing floating point
numbers, 184–185

front panel, 182
to initialize matrix control, 199–208.

See also under Matrix control
reading, 190–198

graphing the data read from
text file, 198
pulling single columns or rows from

2D arrays, 196–198
using data read from text file, 198

388 Index

terminals, 183–184
1D data, 184
2D data, 184
append to file, 184
delimiter (\t), 184
file path, 183
format, 183
inputs, 183–184
new file path, 184
output, 184
transpose?, 184

Square matrices, 120
Square wave, 227–228

Square Wave Duty, 226–228
Stacked Plots, 223, 225
Stacked sequence structure, 314
Stacking shift registers, 327
Standard deviation, 264–265
Starting LabVIEW, 5–12. See also Editing

environment, LabVIEW;
Tools Palette

Getting Started window, 6, 8
nomenclature, 7
start menu / all programs / National Instruments

LabVIEW, 5–6
title screen, 7

Statistics, 264–269
STOP button, 60
Strouse, G. F., 152n1
Structures, 314–343. See also Shift registers

case structures, 314, 327–330
Formula Node, 337–338
loop structures, 314

For Loop, 314
While Loop, 314–316

MathScript, 338–343. See also individual entry
sequence structures, 314, 334–337

Flat, 314
Stacked, 314

Student edition, LabVIEW, 3
Style, graph modification, 237
Subarray extraction, 106–111. See also under

Arrays with LabVIEW
Subtraction VI, 28–29

adding While Loop to, 37–39
context sensitive help, 33–34
front panel after stopping the While Loop, 40
front panel immediately after starting, 39
front panel while the While Loop is running, 40

increment/decrement controls,
hiding, 30–31

renaming the controls, 30
steps required to create, 29
Step 1 (create a blank VI), 29
Step 2 (add two numeric controls to the front

panel, and set their properties), 29
Step 3 (add a numeric indicator to the front

panel, and set its properties), 31
Step 4 (add two labels to show the subtraction

operator and equal sign), 31
Step 5 (place a subtract function

on the block diagram), 32
Step 6 (wire the subtract function

to the controls and indicator), 33
Step 7 (save the VI), 35
Step 8 (Run and test the VI), 36
wired block diagram, 35

Subtrahend box, 28, 30, 35
SubVIs, 9, 297, 304–313

descriptions with, 48–49
exponential filter, 361–362
finishing, steps, 306

Step 1 (change the icon), 306
Step 2 (save the SubVI), 308
Step 3 (review connections on the connector

pane), 309–310
with generic icon, 306
read text column subVI, creating, 311–312
simple arrays, 305
XY graph with two curves, 304

Sum of the squared error (SSE), 280

T

Target audience assumption, LabVIEW, 2–3
Task, 158
Terminals, 303–304
Terminals on the Write to Spreadsheet File

function, 183–184. See also under
Spreadsheet file, LabVIEW

Test Panels, 160
Text files (.txt), 181
Text Settings button, 32
Thermocouples, 143

thermocouple signal conditioning, 152
Title screen, LabVIEW, 7
Tools menu, 23–24

Build Application (EXE) from VI, 24

Measurement & Automation Explorer, 23
Options, 24

Tools Palette, 11–12
Automatic Tool Selection Button

(top of Tools Pallete), 12
automatic tool selection, 11
Connect Wire Tool (Spool), 12
Edit Text Tool (A with cursor), 12
Get Color Tool (Dropper), 12
Object Shortcut Menu Tool

(Menu icon), 12
Operate Value Tool (finger), 12
Position / Size / Select Tool (arrow), 12
Probe Data Tool (Probe symbol: yellow circle,

arrow, P character), 12
Scroll Window Tool (Cupped Hand), 12
Set Color Tool (Paintbrush), 12
Set/Clear Breakpoint Tool (Stop sign), 12
View/Tools Palette, 11

Torus, 254–257
Trailing zeroes, graph modification, 238
Transducer, 142
Transistor–transistor logic (TTL), 154
Transpose array, 112–113
Transpose?, spreadsheet file, 184
Triangle wave, 225, 227
Trigonometric functions, 74–77
True case, 328–329
True/False or Boolean values (TF), 40
T-Test, 354–356
Tunnel, 127
Tunneling into and out of Loops, 319–321
Tunnels, 38
Two Option Select SubVI, 367–368

U

Uninitialized shift register, 324
Update mode, 219–220
User inputs, controlling, 299

V

Variance, 264
Versions, LabVIEW, 3
View/Functions Palette, 63
View menu, 23

Breakpoint Manager, 23
Controls Palette, 23
Error List, 23

Index 389

View menu (continued)
Functions Palette, 23
Getting Started Window, 23
Probe Watch Window, 23
Quick Drop, 23
Tools Palette, 23

Virtual instrument (VI), LabVIEW, 4–5. See also
Advanced math using LabVIEW VIs;
Closing VI; Creating a VI; Documenting
VIS; Printing VIs; SubVIs

block diagram part, 4
data analysis using, 264–296. See also Curve fitting;

Interpolation; Regression
analysis of variance (ANOVA), 265
basic statistics, 264–269
bins, 268–269
descriptive statistics VI, 266–267
histograms, creating, 265
hypothesis testing, 265
maximum, 264–265
mean, 264–265
mean of a data set, 267–268
median, 264–265
minimum, 264–265
standard deviation of a data set, 267–268
standard deviation, 264–265
statistic values, 264
variance, 264–265

Express VIs, 9
front panel part, 4
opening, 26
parts, 4
for PI controller, 2–3
SubVI, 9
timing, checking, 334–335

Visible Scale Label, graph
modification, 238

Voltage divider, 43

W

Wait function, 315–316
Wait Until Next ms Multiple

function, 316
Waveform charts, 217–228. See also

Waveform Graphs, using
array plotting, 219–221

display, 220–221

390 Index

chart history, 217–218
data acquisition, 221–223

acquired data plotting, 222
batch mode, 222
point-by-point data acquisition

and plotting, 221–222
for Loop interrupted, 217
multiple curves displaying on, 223–228

Overlay Plots, 223
Stacked Plots, 223, 225
using arrays, 224

one complete for Loop, 218
point-by-point plotting, 217–219
running VI again continues

the curve, 218
update mode, options, 219

Scope Chart, 219
Strip Chart, 219
Sweep Chart, 219

update mode, selection, 219
Advanced / Update Mode, 219
Appearance Panel / Update Mode, 219
Properties, 219

Waveform Graphs, using, 228–236
data acquisition and, 234–236

1D Array, 235
Waveform, 235

front panel
after one cycle through the While Loop, 232
after two cycles through the While Loop, 232
after five cycles through the While Loop, 233
before running VI, 231

multiple curves plotting using, 233–234
polynomial VI, 229–231
Waveform Charts and, comparing,

231–233
Waveform in LabVIEW, 41, 143,

185, 234–235
Weisstein, Eric W., 341n1
While Loop(s), 37–38, 60, 314–316

actions, 38
adding to subtraction VI, 37
on Functions Palette, 37
timing control, 315

Window menu, 24
Full Size, 24
Show Block Diagram, 24

Show Front Panel, 24
Show Project, 24
Tile Left and Right, 24
Tile Up and Down, 24

Window/ Show Block Diagram, 62
Wired block diagram,

subtraction VI, 35
Wires, 303–304
Wolves, 365

X

X Scrollbar, 243
XY graphs–2D plotting, 248–254

spinning sine waves, 253–254

Z

Zero, 152
Z-Test, 354

Index 391

	Cover Page
	Title Page�����������������
	Copyright Page
	CONTENTS
	1 INTRODUCTION
	1.1 What is LabVIEW
	1.2 Assumptions
	1.3 Conventions in the Text
	1.4 LabVIEW VIs
	1.5 Starting LabVIEW
	1.6 Creating a VI
	1.7 LabVIEW Menus
	Key Terms
	Summary
	Self-Assessment

	2 LABVIEW BASICS
	2.1 Opening a VI
	2.2 Basic Math in LabVIEW—Using Functions
	2.3 Programming Preview: While Loops
	2.4 Dataflow Programming
	2.5 Data Types and Conversions
	2.6 Documenting VIs
	2.7 Printing a VI
	2.8 Saving Your Work
	2.9 Closing a VI
	Key Terms
	Summary
	Self-Assessment
	Problems

	3 LABVIEW MATH FUNCTIONS
	3.1 Introduction
	3.2 Basic Math Functions
	3.3 Trigonometric and Hyperbolic Trigonometric Functions
	3.4 Exponential and Logarithm Functions
	3.5 Boolean and Comparison Functions
	3.6 Programming Preview: Debugging
	Key Terms
	Summary
	Self-Assessment
	Problems

	4 MATRIX MATH USING LABVIEW
	4.1 Working with Matrices and Arrays in LabVIEW
	4.2 Extracting a Subarray from a Larger Array or Matrix
	4.3 Adding Arrays
	4.4 Transpose Array
	4.5 Multiplying an Array by a Scalar
	4.6 Matrix Multiplication
	4.7 Element by Element Multiplication
	4.8 Condition Number
	4.9 Matrix Determinant
	4.10 Inverse Matrix
	4.11 Solving Simultaneous Linear Equations
	4.12 Programming Preview: For Loops
	Key Terms
	Summary
	Self-Assessment
	Problems

	5 DATA ACQUISITION WITH LABVIEW
	5.1 Overview of Data Acquisition
	5.2 Sensors, Signals and Signal Conditioning
	5.3 Data Acquisition Hardware
	5.4 Using LabVIEW to Collect Data
	Key Terms
	Summary
	Self-Assessment
	Problems

	6 GETTING DATA INTO AND OUT OF LABVIEW WITHOUT DATA ACQUISITION
	6.1 Introduction
	6.2 Writing LabVIEW Data to a Spreadsheet File
	6.3 Writing LabVIEW Data to a Measurement File
	6.4 Reading a LabVIEW Measurement File
	6.5 Reading a Spreadsheet File in LabVIEW
	6.6 Using Spreadsheet Data to Initialize a Matrix Control
	Key Terms
	Summary
	Self-Assessment
	Problems

	7 GRAPHING WITH LABVIEW
	7.1 Introduction
	7.2 Using Waveform Charts
	7.3 Using Waveform Graphs
	7.4 Modifying Graph Features
	7.5 Generating 1D Arrays for Graphing
	7.6 Putting LabVIEW Graphs to Work
	7.7 Using XY Graphs—2D Plotting
	7.8 3D Graphing
	7.9 Getting Graphs onto Paper and into Reports
	Key Terms
	Summary
	Self-Assessment
	Problems

	8 DATA ANALYSIS USING LABVIEW VIS
	8.1 Introduction
	8.2 Basic Statistics
	8.3 Interpolation
	8.4 Curve Fitting
	8.5 Regression
	Key Terms
	Summary
	Self-Assessment
	Problems

	9 PROGRAMMING IN LABVIEW
	9.1 Introduction
	9.2 LabVIEW Programming Basics, Expanded
	9.3 Structures
	Key Terms
	Summary
	Self-Assessment
	Problems

	10 LOOKING FORWARD: ADVANCED MATH USING LABVIEW VIS
	10.1 Introduction
	10.2 Working with Polynomials
	10.3 Statistics: Hypothesis Testing
	10.4 Differentiation
	10.5 Integration
	10.6 Runge–Kutta Integration
	10.7 Exponential Filter
	10.8 Spectral Analysis
	10.9 Monte Carlo Simulation
	10.10 PID Controller

	APPENDIX: PRINTING VIS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

