
LaLDPC: Latency-aware LDPC for Read
Performance Improvement of Solid State Drives

Yajuan Du∗†, Deqing Zou∗, Qiao Li‡, Liang Shi‡, Hai Jin∗ and Chun Jason Xue†
∗Service Computing Technology and System Lab, Cluster and Grid Computing Lab,
Big Data Technology and System Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, 430074, China
Email: dyjcityu2013@gmail.com, deqingzou@hust.edu.cn, hjin@hust.edu.cn

†Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
Email: jasonxue@cityu.edu.hk

‡College of Computer Science, Chongqing University, Chongqing, China
Email: qiaoli045@gmail.com, shiliang@cqu.edu.cn

Abstract—High-density Solid State Drives (SSDs) have to use
Low-Density Parity-Check (LDPC) codes to store data reliably.
Current LDPC implementations apply multiple read-retry steps
to find the appropriate set of multiple Reference Voltage (RVs) for
successful decoding. These appropriate RVs, number of which
is represented by read level, cannot be obtained in advance,
instead, an iterative read-retry LDPC process happens that
starts with the first read level with the smallest number of
RVs and then increases the level until that the data have been
successfully decoded. Only read-retry with the last read level,
called the appropriate read level, is necessary. Read latency can
be improved by avoiding read-retries. This becomes particularly
important in the late stage of SSD life when high read levels are
needed.

To avoid unnecessary read-retries, this paper proposes
Latency-aware LDPC (LaLDPC). We study read level charac-
teristics along with data retention and observe that a single read
level stays appropriate for a long time. During this time, all reads
in the same page have probably the same appropriate read level,
which we call the temporal read level locality. Using this value,
LaLDPC estimates the starting read voltage level, which we store
in the flash translation layer of the controller. As an example,
we show how to integrate LaLDPC into the Demand-based Flash
Translation Layer (DFTL). A new cache eviction algorithm is also
proposed to leave entries with high read levels in the cache as
long as possible. Experimental results show that LaLDPC saves
56% of read retries and improves SSD read performance by 18%
on average compared with the existing LDPC method.

I. INTRODUCTION

Flash memory based Solid State Drives (SSDs) have been
gradually replacing Hard Disk Drives (HDD) as the main stor-
age medium in some applications, such as mobile phones and
personal computers, with its characteristics of non-volatility,
shock resistance, high speed, and low energy consumption
[1]. In order to reduce the production cost, high-density flash
memories have been developed, such as Multi-Level per Cell
(MLC) flash [2], Triple-Level per Cell (TLC) flash [3] as well
as 3D NAND flash [4], [5]. Although with larger storage space
and lower price, these flash memories have worse endurance
[6], [7]. One way to improve the endurance is to strengthen
data reliability by Error Correction Codes (ECCs) [8], [9].

Corresponding author is Prof. Deqing Zou.

Traditional ECCs, such as BCH codes [10] cannot satisfy the
reliability need of the exacerbated endurance problem in high-
density flash memory. Advanced codes, Low-Density Parity-
Check (LDPC) codes [11]–[13], have been studied and imple-
mented to provide higher error correction capability. However,
LDPC codes often lead to long read latency, especially when
SSDs are in the late stage of life [14]. This paper strives to
improve read performance of flash-based SSDs that use LDPC
codes.

LDPC reads on flash memory involve three main processes:
flash sensing, data transferring, and decoding. Flash sensing
is first performed on flash cells. The sensed information is
then transferred to flash controller and taken as the input
of decoding. The long latency of LDPC reads comes from
two aspects. On one hand, flash sensing is time-consuming
because a set of multiple Reference Voltages (RVs) are applied
[15], [16], the number of which is represented as a read
level. As one sensing applies one RV, multiple sensing times
with a fixed read level containing multiple RVs have to be
performed to determine the threshold voltage states of flash
cells. Furthermore, for high Raw Bit Error Rates (RBERs)
caused by increased number of Program/Erase (P/E) cycles,
a larger read level with more RVs, providing higher error
correction capability, has to be applied to successfully decode
older flash with LDPC codes [14], [17], [18]. This, of course,
further increases the latency of flash sensing.

From the latency specifications of MLC flash [15], flash
sensing takes about 50µs with a low read level but more than
100µs with a high read level, which is much longer than the
other two processes in LDPC reads. In a word, LDPC with a
low read level is faster but can only correct errors in the early
stages of flash life, whereas in the latter stages of life, a higher
read level must be used at the cost of longer sensing latency.
One read level, that happens to successfully decode the data
and does not induce excessive sensing latency, is called the
appropriate read level.

On the other hand, in order to adapt error correction to the
RBERs over the entire lifetime of flash, that require varied
appropriate levels of RVs, current LDPC implementations

apply an iterative read-retry process, which starts with a low
level of RVs and increases until the appropriate read level
is found. This process accumulates read latencies of all read-
retries, which degrades read performance of SSDs with LDPC
codes. If one could know the appropriate read level from the
start, unnecessary read-retries can be avoided and SSD read
performance would be largely optimized.

This paper proposes Latency-aware LDPC (LaLDPC) to
estimate an appropriate level of RVs. In a preliminary ex-
periment, we observe that one read level can be appropriately
used to read a page for a long time. During this time, all
reads on this page have the same appropriate read level, which
we call the temporal read level locality. LaLDPC implements
two functions with marginal storage overhead. On one hand,
LaLDPC applies the level of RVs used in the last read on
one page as the start value of the read-retry iteration for the
next reads on the same page. On the other hand, LaLDPC
stores these read levels into Flash Translation Layer (FTL)
and timely updates the level information once a higher read
level happens. In this manner, unnecessary read-retries can
be significantly reduced. As an example, we show how to
integrate LaLDPC into the Demand-based Flash Translation
Layer (DFTL) [19]. By noticing that pages with high read
levels can achieve more performance benefits from LaLDPC,
a new mapping cache eviction algorithm is proposed to leave
these pages in the cache as long as possible, which can further
strengthen the performance improvements of LaLDPC.

In order to evaluate effectiveness of LaLDPC, we perform
a series of experiments on the simulation platform, Disksim
with SSD extensions [20], [21]. The read performance results
of LaLDPC as well as the existing LDPC method have been
collected from fifteen real workloads. The sensitivity of LaLD-
PC is studied on several parameters, such as cache size, and
stages of flash life. Experimental results show that LaLDPC
can improve read performance of the existing method. The
main contributions of this paper are as follows:

• Analyzes the read-retry process of existing LDPC imple-
mentations and shows the severe problem of LDPC read
latency accumulation, especially in the late stage of SSD
life;

• Presents the observation on temporal read level locality
that the appropriate RVs for reads on one page often last
for a long time;

• Proposes a new LDPC method, LaLDPC, to estimate
the appropriate RVs and significantly reduce unnecessary
read-retries. LaLDPC is intergraded into DFTL with
an improved cache eviction algorithm for further read
performance improvement;

• Evaluates the proposed LDPC method with fifteen real
workloads and shows that LaLDPC can reduce 56% of
read-retries and improve SSD read performance by 18%
on average compared with the existing LDPC method.

The remainder of this paper is organized as follows. Back-
ground and motivation are presented in Section II. The detailed
design of LaLDPC is illustrated in Section III. Experiment

setup is presented in Section IV, and results and analysis are
shown in Section V. Related work and conclusion of this paper
are presented in Section VI and Section VII, respectively.

II. BACKGROUND AND MOTIVATION

This section first reviews the architecture of SSDs. Then,
the read process with LDPC is analyzed. At last, the problem
of read latency accumulation is studied.

A. Basics of Solid State Drives

Solid state drives consist of two main components: con-
troller and NAND flash, as shown in Figure 1. The controller
receives requests from host and decides how to organize data
in flash. Several components are implemented in controller
for better utilization of flash, such as FTL [22], [23], garbage
collection, wear leveling, and LDPC encoder/decoder. FTL
translates logical addresses requested by host into physical
addresses with a mapping table. The mapping cache proposed
in DFTL [19] keeps part of mapping entries with recently
accessed pages while the whole mapping table is stored in
translation blocks of flash. When the mapping cache runs out
of space, one entry in the table has to be selected to evict
and flush to translation blocks in NAND flash. Due to the
out-of-place update characteristics of flash, data can not be
directly overwritten but have to be programmed into other
blocks. Garbage collection and wear leveling are responsible
to reclaim blocks with invalid data and balance wears of
blocks [24], [25]. LDPC encoder and decoder [26] ensure
data reliability of flash. The raw data are first encoded into
codewords and then stored in flash during write operations
while codewords are decoded when they are read. Details of
the encoder and decoder are presented in Section II-B.

Host

LDPC Decoder

Garbage

Collection

NAND Flash

Wear

Leveling

Translation blocks Data blocks

Entry

eviction

Mapping Cache

(FTL)

LDPC Encoder

Controller

Fig. 1. The architecture of solid state drives (SSDs). Several components are
integrated into the controller for better utilization of flash.

B. Read Process with LDPC
This section introduces the process of LDPC read: flash

sensing, data transferring, and LDPC decoding. After FTL
finds the physical addresses requested by host, flash sensing
happens with multiple RVs. In this paper, the read level of
LDPC is defined as the number of RVs between a pair of
adjacent threshold voltage states of flash memory. An example
of these RVs is shown in Figure 2, in which Vth in the x-
axis represents threshold voltages while]cells in the y-axis
represents the number of cells. Based on threshold voltages
in programming shown in Figure 2(a), the 3rd read level is
applied with three RVs between two adjacent flash states, as
shown in Figure 2(b). There are overall nine RVs applied
in flash sensing. After flash sensing, the sensed data are
transferred to controller by flash-to-controller bus. As the bus
can only transfer a fixed amount of data for one time, the
transfer latency is related to size of flash data. LDPC decoding
happens after data are transferred to controller.

Vth

(b) Flash Sensing with Multiple Reference Voltages

P1

10

P2

01

P3

00

 Erased Partially Programmed Fully Programmed

Vth

(a) Threshold Voltage Distribution of MLC Flash

ER

11

#
c
e
lls

#
c
e
lls

Fig. 2. MLC flash sensing with different read levels. (a) MLC flash states
with the RVs of the first read level. (b) Flash sensing with the 3rd read level,
in which three RVs exist between each pair of adjacent flash states.

LDPC decoding has a large difference with traditional ECCs
and involves a complex process. The sensed data are first
transferred into log-likelihood ratio (LLR) information [27],
[28], the input of LDPC decoder. The decoding iteratively
passes messages through the tanner graph [29] generated from
a parity-check matrix [30], as shown in Figure 3. Once a
codeword is found, the decoding process finishes. The iteration
counts are related to RBERs of data. As LDPC codes can be
implemented by hardware, the decoding often takes small time
cost.

In current LDPC implementations, three stages can happen
multiple times when LDPC decoding fails, as shown in the
left part of Figure 4. For the read-retry in the ith read level
with i ranging from 1 to the maximum iteration N, sensed
data are transferred to LDPC decoder to perform the message
passing decoding. When the decoding fails, i is incremented.
With more reference voltages in a higher read level, the LDPC

H =

1 1 0 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 1 1

Check nodes

(rows of H)

Bit nodes

(columns of H)
LLR

Fig. 3. An example of parity-check matrix and tanner graph [29]. LLR
information from flash sensing is taken as the input of tanner graph in bit
nodes and a message passing algorithm is performed to find the codeword for
successful decoding.

capability to correct errors is increased. The read-retry phase
ends when LDPC decoding succeeds or the maximum read
level is reached.

R1

R2

RL

TL

T2

T1

Memory sensing (Si)

Transfer (Ri)

LDPC decoding (Di)

Level increase

 (i = i + 1) until N

DL

D2

S1

S2

SL

＋

＋

Initialization: i=1

Successful read

＋

Fail

D1

Fig. 4. The read process and latency of existing LDPC [15]. The symbols
Si, Ri and Di for read level i (1 ≤ i ≤ 7) represent the latency in each sub-
process of LDPC read shown in the left part of this figure and Ti represents
the overall flash read latency.

C. The Problem of Read Latency Accumulation

This section analyzes the latency involved in each part
of current LDPC implementation. The decoding process and
latency details are presented in Figure 4. As the first step
of LDPC read, flash sensing detects flash cell states with
given RVs of the first read level. Then, the sensed data
are transferred to flash controller by flash-to-controller bus.
Subsequently, LDPC decoder performs the decoding algorithm
on the data. The latencies of flash sensing, data transferring,
and LDPC decoding with level i are denoted as Si, Ri, and Di,
respectively. Thus, the read latency Ti with level i is computed
as Ti = Si + Ri + Di. When decoding fails with the ith

read level, the sensing with read level i + 1 is retried with
incremented RVs. The read-retry process does not finish until
the appropriate RVs are found. Assuming the read level with
appropriate RVs on one flash page is L, overall read latency
of current LDPC method [15] is computed as

∑L
i=1 Ti, which

is the accumulation of read latencies in all read-reties.
From above analysis, if the appropriate RVs are known in

advance, only the latency TL happens and the read perfor-
mance is optimal. For the case with L > 1, latencies with read
levels from 1 to L−1 are redundant. In order to investigate the
read latency accumulation, quantitative analysis is performed

TABLE I
BASIC LATENCIES IN FLASH READ WITH LDPC

Steps in LDPC read Read latency
The first level sensing 50µs

Sensing one extra level 14µs
Data transfer of the first level 20µs

Data transfer of one extra level 10µs
Decoding latency on average 15µs

to show latency differences between the current LDPC and
the optimal case with known RVs. According to the basic
latencies listed in Table I [31], the latency results are shown
in Figure 5(a). It can be found that there exists a large latency
gap between current LDPC and the optimal case, especially
for large read levels. The proposed technique in this paper
aims to narrow this gap and solve the latency accumulation
problem.

1 2 3 4 5 6 7
0

500

1000

1500

Read Level

R
ea

d
 L

at
en

cy
 (

µs
)

Current LDPC
Optimal

(a) Read latency comparison

100 200 300 400 500
1

2

3

4

5

6

7

Retention (day)

A
p

p
ro

p
ri

at
e

R
ea

d
 L

ev
el

P/E=12000

P/E=10000

P/E=8000

(b) Read level characteristics

Fig. 5. The illustration of read latency accumulation problem and read
level characteristics. Temporal read level locality can be observed from the
characteristics.

D. Exploiting Temporal Read Level Locality

In order to propose an accurate estimation of the appropriate
read level, we investigate read level characteristics for different
P/E cycles and retention time. The appropriate read level of
one page with given P/E cycles and retention is obtained by
two steps. In the first step, RBERs are computed according to
the error model of Gaussian noises [32], described in Equation
1, considering random telegraph noises [33] and retention
errors [8], [34]. In the model, N and t represent P/E cycle
and retention time, respectively, while x and x0 represent
the threshold voltage of the programmed states and that of
the erased state, respectively. Other parameters are referenced
from the settings in [32]: K0 = 0.333, K1 = 4 × 10−4,
K2 = 2× 10−6 and x0 = 1.4.{

µ = K0K1(x− x0)ln(1 + t/t0)N
0.5

σ2 = K0K2(x− x0)ln(1 + t/t0)N
0.6

(1)

In the second step, appropriate read levels for RBERs
computed in the first step are estimated from the result of
decoding failure probability presented in [15]. For example,
data with RBERs between 0.006 and 0.008 can be corrected
by LDPC codes with the 3rd read level with a decoding failure
probability smaller than 10−15. Thus, the appropriate read
level of RBERs in this range is 3. The correspondence between
RBERs and the appropriate read levels is shown in Table II.

Based on above simulation method, appropriate read levels
of LDPC codes along with retention for different P/E cycles,
are shown in Figure 5(b). It can be found that read level
changes with retention and keeps appropriate for a long time
ranging from several days to several months. The step size
of a read level jumping to the next level is related to P/E
cycles. For all P/E cycles, the read level changes infrequently
in the studied period. From this result, it can be concluded that
one read level applied in the last read is probably appropriate
for successive reads, which we call the temporal read level
locality. By exploiting this characteristic, the proposed method,
LaLDPC, takes the read level applied in the last read as the
start read level of the next read. We present details of LaLDPC
in the next section.

III. LATENCY-AWARE LDPC
This section presents the design of our proposed Latency-

aware LDPC (LaLDPC), as shown in Figure 6. One storage
module and two functional modules are developed in LaLDPC:
read level storage, mapping cache management, and LDPC
assistant. The read level storage module stores the level
information of each page while cache management module
manages the value of read levels. The LDPC assistant module
applies the information in read level storage module to assist
LDPC decoding process. LaLDPC can be applied in all kinds
of flash translation layers. This paper implements LaLDPC
into DFTL as an example. In order to further strengthen the
advantage of LaLDPC, a new mapping cache eviction algo-
rithm is proposed and implemented in the cache management
module.

Host

Mapping Cache

Management

Flash Controller with LaLDPC

 LDPC Assistant

LDPC Encoder/

Decoder

Garbage

Collection

NAND Flash

Wear

Leveling

LPN

0 100

1 210

2 30

0001

Level Bits

0010

0001.
..

.
..

.
..

PPN

Translation blocks Data blocks

Entry

eviction

Mapping cache (FTL)

Fig. 6. System architecture of LaLDPC. There are three components in
LaLDPC: one storage component to store read levels in mapping cache and
two functional components to manage read levels and assist LDPC decoding.

A. The Storage of Read Levels

LaLDPC stores the last read levels applied in LDPC for
all pages into the mapping cache entries in the controller. As
one entry in the cache represents one page mapping, the read
level is added into the end of each entry, as shown in Figure
6. For alignment consideration, four bits are used to represent

the level. In our implementation, the read level ranges from
1 to 7. In LaLDPC, the information of read levels is only
stored in the mapping cache but not in translation blocks based
on DFTL. There are several reasons for this design. First,
for timeliness consideration on read requests, the levels used
by recent reads has high reference value, and mapping cache
keeps these recent reads. Second, as translation blocks store
the mapping entries for all addresses, large storage overhead
has to be paid on the read levels. Third, read levels have to
be updated when read failure happens with lower read levels.
If these updates happen in translation blocks, extra writes will
be induced and impact read performance.

B. Read Level Management and Utilization

This section introduces the functional modules in LaLDPC,
read level management and utilization. The mapping cache
management module of LaLDPC, as shown in Figure 6,
estimates the read level of each page by leveraging the read
level of the last read to this page. There are four management
scenarios to initialize and update the read levels. The first
scenario is that when one entry is added to the mapping cache
because of a first read, the read level is stored into level bits
of the corresponding page as the initial read level. The second
scenario is the update of read levels. When the new read level
of the page is different from the stored read level, level bits
are updated to the new one. The third scenario is that when
one entry is added to the mapping cache because of a recent
write, level bits of the corresponding page are initialized to
be the first read level as data have not been kept. The fourth
scenario involves page migration in garbage collection (GC)
and wear leveling, the read levels of pages in new addresses
are reset to be the first read level. We further introduce GC in
Section III-D.

The LDPC assistant module in LaLDPC assists the decoding
process of LDPC decoder, as shown in Figure 6. It contains
two sub-modules, read level determination and level difference
detection, as shown in Figure 7. Read levels applied in LDPC
decoder are determined and level difference detection assists
the management of mapping cache in LaLDPC. As read level
has to jump to the next level when LDPC decoding failure
happens, the stored level bits should be updated to a newer one.
The detailed read process with LaLDPC is listed as follows:

Step 1: Read request to mapping entries enters read level
determination module;

Step 2: Read levels are determined to be different values
in three cases. The first case is that when mapping
cache hit happens, the starting level of read-retry steps
in decoding is decided as the value of level bits.
The second case is that when mapping cache miss
happens, the starting level is set as the first read level.
The third case is that when decoding failure happens
in LDPC decoder, one extra level is added to perform
memory sensing again;

Step 3: LDPC decoding failure happens and be back to the
read level determination module to obtain the next

read level. When the maximum read level is reached,
read failure is returned to the host;

Step 4: Level difference detection module collects the read
level from LDPC decoder and compares it with the
stored read level to detect difference;

Step 5: No read level difference is detected and read result is
directly returned to the host;

Step 6: Read level difference is detected and level bits of
corresponding mapping entries are updated.

Read level

determination

Iterative

decoding
Level difference

detection

Output buffer

LDPC DecoderLDPC Assistant

Read

request

Read

result

Updated

level

1

2

3

45

Memory sensing

and transfer

LLR generator

6

Fig. 7. Architecture of the LDPC assistant component and the process to
perform LDPC decoding with the component.

C. Latency-aware Mapping Cache Eviction

As traditional least recently used (LRU) cache eviction
policy in DFTL can not be aware of the LDPC read latency
of pages, this section presents a new cache eviction algorithm,
as shown in Algorithm 1, to strengthen the performance
advantage of LaLDPC. There are two considerations when
choosing the item to evict in the proposed algorithm. From
the analysis in Section II-C, the pages with high read levels
induce more redundant read latency, which has larger space to
be improved by LaLDPC. Thus, the first consideration prefers
to evict pages with lower read levels, which ensures that high-
read-level pages can exist in the cache as long as possible.
This method can improve the hit rate of pages with high read
levels but may sacrifice the overall access locality. In order
to reduce this side effect, the second consideration is to make
quite recently accessed entries fixed and not be evicted. Then,
the cache is partitioned into two parts: the part with fixed
entries and the part with unfixed entries. In this way, a part of
locality can be reserved.

There are two possible cases in the proposed cache eviction
algorithm, as shown in Figure 8. The first case is that there
are entries that exist in the unfixed part and with the smallest
read level of all stored levels. The last appearance of the entry
of this kind is chosen to evict, which makes the choice by the
first consideration suboptimal, as shown in Case 1 of Figure
8. The second case is that entries with the smallest read level
all exist in the fixed part. Only entries in the unfixed part and
with a larger read level can be chosen to evict. In this case, the
algorithm chooses the last appeared entry with a read level as

2 2 1 2 1 2 1 3

Fixed entries

Entry to evict

3 2 2 1 3 2 1 2

Fixed entries

Entry to evict

Case 1:

Case 2:

Less

recent
More

recent

Fig. 8. Examples of two cases in the proposed cache eviction algorithm. The
number in each box represents the stored read level in each mapping cache
entry.

small level as possible, as shown in Case 2 of Figure 8. This
case integrates the partial locality in the second consideration.
The chosen entry is not optimal to be aware of read latency
but can benefit cache hit ratio.

In summary, the proposed algorithm searches the last cache
entry with the lowest read levels within unfixed entries for
eviction, as shown in Lines 6-12 of Algorithm 1. With the
proposed algorithm, mapping cache can be aware of the
LDPC latency of pages and keeps a part of locality in some
degree, which ensures that the read levels can be utilized more
efficiently in LDPC.

D. Garbage Collection

The connection between the proposed LaLDPC and garbage
collection is two-fold. On one hand, LaLDPC can improve the
performance of garbage collection by reducing read latency
of valid pages in victim blocks. The valid pages in garbage
collection are often cold data kept for long and have high
error rates. Thus, valid pages often require high read latency.
The situation can be relieved when the migrated pages hit the
mapping cache in LaLDPC. Redundant read retries can be
avoided and garbage collection performance can be improved.
On the other hand, garbage collection changes the read levels
of valid pages. As valid pages in victim blocks are decoded
by LDPC in garbage collection, the error-free data can be
obtained. Then, the read levels stored for these pages have to
be reset to the initial read level when they are written to new
blocks. Garbage collection decreases the read latency of future
reads on valid pages.

E. Analysis of Performance and Overhead

This section analyzes read performance and overhead of
LaLDPC with DFTL. Suppose the appropriate read level for
current read is L1 and that applied in the last read and stored
in mapping cache is L0 with L0 ≤ L1. Read latency of the
two reads are T1 and T0, respectively. The cache hit rate is
denoted as r. Read latency involved in LaLDPC is computed
as TLaLDPC = r ·

∑L1

j=L0
Tj + (1 − r) ·

∑L1

j=1 Tj while
that of existing LDPC is TLDPC =

∑L1

j=1 Tj . Then, the
latency difference between LaLDPC and the existing LDPC

Algorithm 1 Read Latency-aware Mapping Cache Eviction
Algorithm
INPUT: logical address requested LPN , initial mapping

cache list InitMC, maximum length of mapping cache
list LenMC , the length of fixed items in mapping cache
Lenfix, read level RLj of the jth cache item, the maxi-
mum read level Lmax;

OUTPUT: physical address requested PPN , updated cache
list UpdatMC, the index of cache item to evict ind;

1: while SSD is running do
2: if request to LPN comes to mapping cache then
3: search LPN in initial cache list InitMC;
4: if LPN is not found and InitMC is full then
5: decide the item to evict and flush to flash;
6: for i = 0 to Lmax and j = LenMC to 1 do
7: if RLj ≤ i and j ≥ Lenfix then
8: found = 1;
9: ind = j;

10: break;
11: end if
12: end for
13: remove the indth item of InitMC, insert LPN

into InitMC by LRU rule and return UpdatMC;
14: else
15: directly insert LPN into InitMC by LRU rule

and return UpdatMC;
16: end if
17: end if
18: end while

method is computed as Tdiff = TLDPC − TLaLDPC =

r · (
∑L1

j=1 Tj −
∑L1

j=L0
Tj) = r ·

∑L0

j=1 Tj . Read performance
benefits of LaLDPC are decided by two factors: the cache hit
rate and the difference between the stored level L0 and the
appropriate level L1. For reads with higher cache hit rate and
smaller difference, more redundant read-retries of LDPC can
be reduced and read performance can be improved.

Overhead of LaLDPC comes from the storage componen-
t and the functional components. The storage overhead in
LaLDPC is taken by the read levels in mapping cache entries.
Assuming the size of one mapping cache entry is 8 Bytes, the
portion of space taken by the four level bits is 4

8∗8 ∗ 100% =
6.25%. For mapping cache with the size of 256MB, level bits
take 16MB storage space. As operations in controller are much
faster than flash device, extra computational overhead caused
by LaLDPC functional components can be ignored.

IV. EXPERIMENT

In order to evaluate effectiveness of the proposed technique,
this paper simulates flash storage system using Disksim [21]
with SSD extensions [20]. Experimental setup and parameters
are presented in this section. The SSD system with the total
size of 32GB is configured with eight packages, each of which
has eight planes. Each plane contains 1024 blocks and each
block has 64 pages. The page size is set to be 4KB. The

write latency for one page and block erase latency are set to
be 900µs and 3.5ms for MLC flash, respectively [31]. Read
latency for seven read levels in LDPC decoding are computed
according to analysis in Section II-C and presented in Table
II based on the latency of Table I. Statistics and performance
results of fifteen real workloads from MSR [35], [36] and
UMass [37] are collected. Specifications of the workloads
including read/write ratio and duration time are listed in Table
III.

TABLE II
RELATIONSHIP BETWEEN RBERS AND THE APPROPRIATE READ LEVEL.

read level RBER read latency (µs)
1 < 0.005 85
2 [0.005, 0.006) 109
3 [0.006, 0.008) 133
4 [0.008, 0.009) 157
5 [0.009, 0.01) 181
6 [0.01, 0.012) 205
7 [0.012, 0.013] 229

The performance results for four methods are collected,
LDPC-in-SSD, Ideal, LaLDPCLRU , and LaLDPCnew, the
implementations of which are listed as follows.

• LDPC-in-SSD is the current fine-grained progressive LD-
PC method [15];

• Ideal assumes that the appropriate RVs are known in
advance and directly applied for LDPC read;

• LaLDPCLRU is the proposed LaLDPC method imple-
mented into DFTL with LRU cache eviction algorithm;

• LaLDPCnew is the proposed LaLDPC method imple-
mented into DFTL with the proposed cache eviction
algorithm.

The evaluation contains two aspects: the basic experiment
and sensitivity study. In the basic experiment, parameters
are set as follows. The cache size in LaLDPCLRU and
LaLDPCnew is set to be 64MB. The fixed entry length of
mapping cache in the eviction algorithm is set to be 2000.
SSD is assumed to be in the middle stage of flash life with
P/E cycle of 10000 and data retention of one year, which can
reach RBERs that require LDPC read levels around 3 and
4 based on the model in Section II-D. In order to generate
high RBERs that require LDPC soft sensing, the technique of
programming speedup [38] is used to accelerate wears of flash
cells. The programming step size is set to be 0.38V.

In order to comprehensively investigate read performance of
these methods, sensitivity study is performed on more settings
of three parameters: mapping cache sizes, fixed entry lengths
in the new cache eviction algorithm, and stages of SSD life.
Besides the parameters in the basic experiment, the cache size
is set to be two extra values of 32MB and 128MB. The fixed
entry length is set to be 500 and 5000 as additional values. The
SSD lifetime is set to be in two extra stages of early and late,
with P/E cycles of 8000 and 12000 and the same retention as
the basic experiment.

TABLE III
STATISTICS OF WORKLOADS.

workload reads writes read ratio days
wdev0 5172477 13153463 28% 6
rsrch2 1090912 605720 64% 6.6
proxy0 545985 4604603 11% 0.5

prn1 6966661 18265525 28% 1.3
prn0 19136490 5691238 77% 0.7
ts0 3976632 14127647 22% 4.7

rsrch1 1110 334365 3% 5.7
F1 6508016 130648 98% 0.5
F2 4312858 100684 97% 0.5

hm0 1167249 1932058 37% 0.4
hm1 6444861 775983 89% 4.8
proj1 773087 5594270 12% 0.1
proj3 3471062 65402 98% 0.6
proj4 1301436 824502 61% 3.9
web1 7992543 1422974 85% 7

V. RESULTS AND ANALYSIS

This section presents experimental results for the four meth-
ods: LDPC-in-SSD, Ideal, LaLDPCLRU , and LaLDPCnew.
As different workloads have varied SSD read patterns and
cache characteristics, which closely relate to the performance
benefit of LaLDPCLRU and LDPCnew, we first present
statistical results of the fifteen workloads to provide references
for performance results. Then, read performance results of
the basic experiment are presented. The read performance
metrics include flash read latency and SSD read response
time. Flash read latency computes the overall latency taken
by flash sensing, data transferring, and LDPC decoding. SSD
read response time is the time from that the reads are issued in
host to that read results are returned to the host. Then, results
of system response time are presented to show the overall im-
pact of LaLDPCLRU and LDPCnew on SSD performance.
System response time computes the average response time of
both reads and writes. Lastly, results of sensitivity study are
presented on the three parameters mentioned in Section IV.

A. Statistics of Workloads

This section presents three statistics of workloads. The first
statistic is the distribution of the appropriate read levels, as
shown in Table IV. We define hard read as the read with
read level equal to one and soft read as that with read level
larger than one. The difference between hard and soft reads
is decided by the data retention patterns in workloads. As we
assume one-year initial retention, data need soft reads at the
beginning of workloads. When data are updated, read levels
are reset to be one and become hard reads. This statistic
reflects the potential performance improvement of workloads
because only performance of soft reads can be improved.

The second statistic is the ratio of soft-start reads, which
indicates the LDPC reads that begin from soft read levels.
Only with the assistant of LaLDPCnew and LaLDPCLRU ,
LDPC read can start from soft read levels. The ratio of soft-
start reads reflects that how many reads in the workloads
benefit from the two LaLDPC methods. From the result in

TABLE IV
THE SOFT READ RATIOS OF WORKLOADS.

workload soft read ratio workload soft read ratio
wdev0 36% F2 100%
rsrch2 0.2% hm0 41%
proxy0 17% hm1 21%
prn1 4% proj1 0.5%
prn0 22% proj3 58%
ts0 36% proj4 5%

rsrch1 91% web1 46%
F1 99% - -

Figure 9, LaLDPCnew has higher soft-start read ratio than
LaLDPCLRU , which indicates that the proposed new cache
eviction algorithm in LaLDPCnew can make more reads
benefit from read-retry reduction, which we further explain
in Section V-B.

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 s
of

t−
st

ar
t r

ea
d

nu
m

be
r

wdev0
rsrch2

proxy0
prn1

prn0 ts0
rsrch1 F1 F2

hm0
hm1

proj1
proj3

proj4
web1
Average

LaLDPC
new

LaLDPC
LRU

Fig. 9. The comparison of soft-start read number among all reads. The results
are normalized to LaLDPCLRU .

The third statistic is the cache hit ratio of workloads, as
shown in Figure 10. It can be observed that LaLDPCnew

shows decreased cache hit ratios than LaLDPCLRU . This
is because that the new cache eviction algorithm in
LaLDPCnew keeps a part of access locality, which sacri-
fices the original locality in LRU cache eviction algorithm
of LaLDPCLRU . However, the overall performance can be
improved, which we further explain in Section V-C.

0

0.2

0.4

0.6

0.8

1

C
ac

he
 re

ad
 h

it
ra

tio

wdev0
rsrch2

proxy0
prn1

prn0 ts0
rsrch1 F1 F2

hm0
hm1

proj1
proj3

proj4
web1
Average

LaLDPC
new

LaLDPC
LRU

Fig. 10. The comparison of cache read hit ratios between LaLDPCLRU

and LaLDPCnew .

B. Read Performance
This section shows and analyzes read performance results

of the four evaluated LDPC methods for the fifteen workloads.

The read performance is evaluated in two aspects, flash read
latency and SSD read response time, and the results are shown
in Figure 11. We first analyze the performance benefits brought
by LaLDPCnew and LaLDPCLRU compared with LDPC-
in-SSD and then present the comparison of read performance
results with LaLDPCnew and LaLDPCLRU .

Read performance comparison between LDPC-in-SSD
and the proposed LaLDPC methods. Read latency benefits
from LaLDPCnew and LaLDPCLRU , shown in Figure
11(a), are affected by two factors: the ratio of soft appropriate
read levels and cache hit ratio, statistics of which are shown
in Section V-A. The first factor decides how many latencies
can be improved and decided by access patterns of workloads.
For the workloads with high ratios, such as rsrch1, F1, and
F2, there are a lot of redundant read latencies compared with
the Ideal results, as shown in Figure 11(a). The read latency
of LDPC-in-SSD is significantly improved by LaLDPCnew

and LaLDPCLRU for these workloads. On the contrary, for
workloads with low ratios, such as rsrch2 and prn1, neither
redundant read latencies nor latency improvements caused by
LaLDPCnew and LaLDPCLRU are obvious. This is because
that only reads that require soft read levels have the problem
of read latency accumulation. The two proposed methods can
bring latency benefits on these reads. For the second factor to
affect read latency, workloads with high hit ratios can benefit
more improvements by the two LaLDPC methods. We analyze
the workloads with similar ratios of soft read levels, such
as wdev0, ts0, hm0, and web1. Among these workloads,
web1 has the highest cache hit ratio as well as the most
significant read latency improvement by LaLDPCnew and
LaLDPCLRU compared with LDPC-in-SSD.

SSD read response time, as shown in Figure 11(b), is also
effected by read ratios of workloads besides the two factors
mentioned above. Among workloads with similar values in
above two factors, such as wdev0, ts0, and hm0, workloads
wdev0 and hm0 with higher read ratios achieve more read
performance benefits from LaLDPCnew and LaLDPCLRU

compared with LDPC-in-SSD.
Read performance comparison between LaLDPCLRU

and LaLDPCnew. Based on LaLDPC, the main difference
between LaLDPCLRU and LaLDPCnew exists in cache hit
ratios because of different cache eviction algorithms. From
the results in Figure 10 and Figure 11, it can be concluded
that LaLDPCnew leads to lower cache hit ratios but can im-
prove flash read performance compared with LaLDPCLRU .
However, for the workload F2 with little writes, the read per-
formance of LaLDPCnew is no better than LaLDPCLRU .
This may be because that LaLDPCnew decreases the read
locality, which affects performance improvement because of
the special access pattern of this workload. This performance
degradation can be relieved by keeping more fixed entries in
mapping cache.

In summary, the proposed two methods can achieve more
performance benefits for workloads with higher read ratios,
higher ratios of soft reads, and higher cache hit ratios. On
average, LaLDPCnew can remove 56% of redundant read

0

0.2

0.4

0.6

0.8

1

Fl
as

h
re

ad
 la

te
nc

y

wdev0
rsrch2

proxy0 prn1 prn0 ts0
rsrch1 F1 F2 hm0 hm1

proj1 proj3 proj4web1
Average

LaLDPC
new

LaLDPC
LRU

Ideal
LDPC−in−SSD

(a) Flash read latency comparison.

0

0.2

0.4

0.6

0.8

1

Re
ad

 re
sp

on
se

 ti
m

e

wdev0
rsrch2

proxy0 prn1 prn0 ts0
rsrch1 F1 F2 hm0 hm1

proj1 proj3 proj4web1
Average

LaLDPC
new

LaLDPC
LRU

Ideal
LDPC−in−SSD

(b) Read response time comparison.

Fig. 11. Read performance results of four methods normalized to LDPC-in-SSD.

performance by comparing with the Ideal results and can
improve read performance of LDPC-in-SSD by 18%.

C. System Response Time

This section presents and analyzes the results of SSD
response time, as shown in Figure 12. As read latency to flash
affects on the latency of other parts in SSD, such as the request
queuing time in controller and the write latency because of
utilization of DFTL and the new cache eviction algorithm, the
overall SSD response time may also be affected. From Figure
12, it can be observed that improvements of SSD system
response time by LaLDPCLRU and LaLDPCnew are similar
with flash read performance but have small differences for
some workloads, such as ts0 and hm1, which is decided by the
access patterns of workloads. LaLDPCnew shows improved
system performance of these workloads than LaLDPCLRU .
On average, about 24% of system response time in LDPC-
in-SSD can be improved. Above results verify that LaLDPC
is effective on improving not only read performance but also
system performance of SSDs.

D. Sensitivity Study

This section analyzes the sensitivity of read performance
improvement by LaLDPCnew on three parameters: mapping
cache size, fixed entry length of mapping cache and stages
of flash life. The experimental results are shown in Figure
13. From the results of different cache sizes, it can be found
that when a larger mapping cache is used, more performance
benefits of LaLDPCnew and LaLDPCLRU can be achieved.
This is because that read levels of more mapping entries can
be stored in the larger cache, which brings higher cache hit
rates for soft reads and more read latency reductions. From the

0

0.2

0.4

0.6

0.8

1

S
ys

te
m

 r
e

sp
o

n
se

 t
im

e

wdev0
rsrch2

proxy0 prn1 prn0 ts0
rsrch1 F1 F2 hm0 hm1

proj1proj3proj4web1
Average

LaLDPC
new

LaLDPC
LRU

Ideal
LDPC−in−SSD

Fig. 12. SSD system response time of four LDPC methods normalized to
LDPC-in-SSD.

results of different fixed cache lengths, it can be found that
when more entries are fixed in mapping cache, advantages of
the new cache eviction algorithm LaLDPCnew are decreased.
This is because that with larger fixed entry length, long-latency
reads stay in the mapping cache for a shorter time, which
decreases benefits of LaLDPCnew. However, the differences
among three fixed entry lengths are not obvious, which means
that read performance are not sensitive to this parameter. From
the results of different stages of flash life, it can be found
that for SSDs in the late life stage, high performance im-
provements can be achieved. This is because that when SSDs
are in this stage, latency accumulation becomes more severe.
And LaLDPCnew and LaLDPCLRU have the capability to
remove more redundant latencies. Compared with the other
two parameters, LaLDPC is more sensitive to this parameter.

Besides, there is a tradeoff between performance and over-
head in LaLDPC methods. For example, larger cache size
takes more space overhead although with better performance.

These parameters should be comprehensively considered in
real SSDs.

0

0.2

0.4

0.6

0.8

1

32M 64M
128M

R
ea

d
 P

er
fo

rm
an

ce

LaLDPC
new

LaLDPC
LRU

LDPC−in−SSD

(a) Cache size.

0

0.2

0.4

0.6

0.8

1

500
2000

5000

R
ea

d
 P

er
fo

rm
an

ce

LaLDPC
new

LaLDPC
LRU

LDPC−in−SSD

(b) Fixed entry length.

0

0.2

0.4

0.6

0.8

1

early mid late

R
ea

d
 P

er
fo

rm
an

ce

LaLDPC
new

LaLDPC
LRU

LDPC−in−SSD

(c) Flash lifetime.

Fig. 13. Read performance results of sensitivity study on three parameters
normalized to LDPC-in-SSD.

VI. RELATED WORK

Existing work to optimize read performance with LDPC
in flash-based SSDs can be mainly categorized into three
groups. The first group decreases the RBERs of data, as lower
RBERs require less read latency. EC-Cache [39] proposes to
store errors detected in last reads into an error correction
cache. In the next read, these errors can be corrected before
LDPC decoding. Li et al. [38] analyzed the cost models in
flash reads and writes and proposed to obtain low RBERs of
pages by applying fine-grained programming steps in writes.
FlexLevel [40] optimizes read performance by strengthening
error-tolerant capability of flash cells with less states. Only
three states rather than traditional four states are used to store
raw data in MLC flash, which can lower RBERs of flash pages.
The refresh methods [41]–[43] are proposed to periodically
correct data with long retention and reprogram them into new
blocks, which can reduce retention-induced errors.

The second group optimizes the flash sensing process by
searching the appropriate RVs for decoding. LDPC-in-SSD
[15] proposed to progressively apply fine-grained levels in
LDPC reads. When the read with a lower level fails, the
next level with several extra RVs is applied for flash sensing.
This technique improves the read performance in the early
stage of SSD life. In order to read out correct data with BCH
codes, Cai et al. [34] proposed to record the optimal threshold
voltages (OPTs) of the last programmed page in each block
into the DRAM buffer of flash controller. The stored OPTs
are applied on all page reads in the block, which largely
reduces the response time for successful reads. Peleato et al.
[44] presented a mathematical model based on the RVs in last
read to adaptively estimate the appropriate RVs of current read.
This paper belongs to this ground. Different from above works,
the proposed LaLDPC method exploited the read level locality
characteristics for LDPC read performance improvement.

The third group optimizes LDPC decoding algorithm. Sun
et al. [45] exploited intra-cell error characteristics to speed
up LDPC decoding by reducing overall error probability and
decoding latency. REAL [46] incorporates numeric-correlation
characteristic of different error patterns in most significant
bit and least significant bit of MLC flash into the message
passing process of the decoding. LDPC decoder can achieve

successful decoding faster with the extra information provided
by this characteristics. Aslam et al. [47] proposed a two-round
LDPC decoding process by reusing the read-back voltages
and the decoded results for flash cells from retention-induced
failure, which can improve the decoding success probability
and further read performance. In this paper, we did not change
the design of LDPC decoder but optimized the communication
mechanism between LDPC decoder and NAND flash with
little overhead to improve read performance.

VII. CONCLUSION

In order to solve the latency accumulation problem caused
by existing LDPC methods, this paper proposes LaLDPC
aiming at reducing redundant read-retries that cause latency
accumulation. LaLDPC stores RVs in last read into FTL and
apply them in future reads. LaLDPC has been implemented
into DFTL as an example. In order to further strengthen the
capability of LaLDPC, a new cache eviction algorithm is
proposed. Experimental results show that the proposed method
significantly improves read performance of SSDs compared
with the existing LDPC method.

ACKNOWLEDGEMENT

The authors would like to thank Thomas Schwarz and
all anonymous reviewers for their helpful feedbacks. This
work is supported by National High-tech Research and De-
velopment Program of China (863 Program) under grant
No.2015AA015303. and is partially supported by National
Science Foundation of China under grant No. 61572411 and
No. 61402059, and National 863 Program 2015AA015304.

REFERENCES

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502,
2003.

[2] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2013. IEEE, 2013, pp. 1285–1290.

[3] S.-H. Shin, D.-K. Shim, J.-Y. Jeong, O.-S. Kwon, S.-Y. Yoon, M.-H.
Choi, T.-Y. Kim, H.-W. Park, H.-J. Yoon, Y.-S. Song, C. Yoon-Hee,
S.-W. Shim, Y.-L. Ahn, K.-T. Park, J.-M. Han, K. Kye-Hyun, and
J. Young-Hyun, “A new 3-bit programming algorithm using SLC-to-TLC
migration for 8MB/s high performance TLC NAND flash memory,” in
Symposium on VLSI Circuits (VLSIC). IEEE, 2012, pp. 132–133.

[4] H.-T. Lue, T.-H. Hsu, Y.-H. Hsiao, S. Hong, M. Wu, F. Hsu, N. Lien,
S.-Y. Wang, J.-Y. Hsieh, L.-W. Yang, T. Yang, K. C. Chen, K.-Y. Hsieh,
and C.-Y. Lu, “A highly scalable 8-layer 3D vertical-gate (VG) TFT
NAND flash using junction-free buried channel BE-SONOS device,” in
Symposium on VLSI Technology (VLSIT). IEEE, 2010, pp. 131–132.

[5] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito,
Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka et al., “Bit cost scalable
technology with punch and plug process for ultra high density flash
memory,” in Symposium on VLSI Technology. IEEE, 2007, pp. 14–15.

[6] P. Huang, G. Wu, X. He, and W. Xiao, “An aggressive worn-out flash
block management scheme to alleviate SSD performance degradation,”
in Proceedings of the Ninth European Conference on Computer Systems
(EuroSys). ACM, 2014, p. 22.

[7] K. Zhou, S. Hu, P. Huang, and Y. Zhao, “LX-SSD: Enhancing the
lifespan of NAND flash-based memory via recycling invalid pages,” in
International Conferenceon Massive Storage Systems and Technology
(MSST). IEEE, 2017.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: measurement, characterization, and analysis,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012, pp. 521–526.

[9] P. Huang, P. Subedi, X. He, S. He, and K. Zhou, “FlexECC: Partially
relaxing ECC of MLC SSD for better cache performance.” in USENIX
Annual Technical Conference, 2014, pp. 489–500.

[10] G. D. Forney, “On decoding BCH codes,” Information Theory, IEEE
Transactions on, vol. 11, no. 4, pp. 549–557, 1965.

[11] D. J. MacKay, “Good error-correcting codes based on very sparse
matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[12] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” IPN progress report, vol. 42, no. 154, pp. 42–154, 2003.

[13] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic LDPC codes for fast
encoding,” Information Theory, IEEE Transactions on, vol. 51, no. 8,
pp. 2894–2901, 2005.

[14] “Samsung 750 EVO SSD review 2016,”
http://www.tomshardware.com/reviews/samsung-750-evo-
ssd,4467.html, accessed: 2016-11.

[15] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “LDPC-
in-SSD: making advanced error correction codes work effectively in
solid state drives,” in Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST), 2013, pp. 243–256.

[16] Q. Li, L. Shi, C. J. Xue, Q. Zhuge, and E. H.-M. Sha, “Improving LDPC
performance via asymmetric sensing level placement on flash memory,”
in Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2017, pp. 560–565.

[17] L. Shi, K. Wu, M. Zhao, C. J. Xue, and H. Edwin, “Retention trim-
ming for wear reduction of flash memory storage systems,” in Design
Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[18] Y. Di, L. Shi, K. Wu, and C. J. Xue, “Exploiting process variation for
retention induced refresh minimization on flash memory,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 391–396.

[19] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings,” in ASPLOS, 2009.

[20] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance.” in USENIX
Annual Technical Conference, 2008, pp. 57–70.

[21] “The disksim simulation environment (v4.0),”
http://www.pdl.cmu.edu/DiskSim/, accessed: 2016-11.

[22] Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou, “An efficient
page-level FTL to optimize address translation in flash memory,” in
Proceedings of the Tenth European Conference on Computer Systems
(EuroSys). ACM, 2015, p. 12.

[23] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for CompactFlash systems,” Consumer
Electronics, IEEE Transactions on, vol. 48, no. 2, pp. 366–375, 2002.

[24] M. Murugan and D. H. Du, “Rejuvenator: A static wear leveling algo-
rithm for NAND flash memory with minimized overhead,” in Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, 2011, pp.
1–12.

[25] C.-W. Tsao, Y.-H. Chang, and M.-C. Yang, “Performance enhancement
of garbage collection for flash storage devices: an efficient victim block
selection design,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 165.

[26] K. Gunnam, “LDPC decoding: VLSI architectures and implementa-
tions,” Invited presentation at Flash Memory Summit, Santa Clara
[Online]. Available: http://sites.ieee.org/scv-pace/files/2014/08/FMS14-
LDPC-Module2.pdf., 2013.

[27] J. Wang, T. Courtade, H. Shankar, and R. D. Wesel, “Soft information for
LDPC decoding in flash: Mutual-information optimized quantization,” in
Global Telecommunications Conference (GLOBECOM). IEEE, 2011,
pp. 1–6.

[28] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 58, no. 2, pp. 429–439,
2011.

[29] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,” Information Theory, IEEE
Transactions on, vol. 51, no. 1, pp. 386–398, 2005.

[30] R. Smarandache and P. O. Vontobel, “Quasi-Cyclic LDPC codes:
Influence of proto-and tanner-graph structure on minimum hamming
distance upper bounds,” Information Theory, IEEE Transactions on,
vol. 58, no. 2, pp. 585–607, 2012.

[31] “Open NAND flash specification,” http://www.onfi.org/specifications,
accessed: 2016-11.

[32] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile SSD: Trading
flash memory nonvolatility to improve storage system performance for
enterprise applications,” in International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2012, pp. 1–10.

[33] M. Luo, R. Wang, S. Guo, J. Wang, J. Zou, and R. Huang, “Impacts
of random telegraph noise (RTN) on digital circuits,” Electron Devices,
IEEE Transactions on, vol. 62, no. 6, pp. 1725–1732, 2015.

[34] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data retention
in MLC NAND flash memory: Characterization, optimization, and
recovery,” in International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2015, pp. 551–563.

[35] “MSR cambridge traces,” http://iotta.snia.org/tracetypes/3, accessed:
2016-11.

[36] D. Narayanan, A. Donnelly, and A. I. T. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” in FAST, 2008.

[37] “UMass trace repository,” http://traces.cs.umass.edu/index.php/Storage/Storage,
accessed: 2016-11.

[38] Q. Li, L. Shi, C. J. Xue, K. Wu, C. Ji, Q. Zhuge, and E. H.-M.
Sha, “Access characteristic guided read and write cost regulation for
performance improvement on flash memory,” in USENIX Conference on
File and Storage Technologies (FAST). USENIX, 2016, pp. 125–132.

[39] R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li, K.-C. Ho, and H.-P. Li,
“EC-cache: Exploiting error locality to optimize LDPC in NAND flash-
based ssds,” in Design Automation Conference (DAC). ACM, 2014,
pp. 1–6.

[40] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, “Flexlevel: a
novel NAND flash storage system design for LDPC latency reduction,”
in Design Automation Conference (DAC). ACM, 2015, p. 194.

[41] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and
K. Mai, “Flash correct-and-refresh: Retention-aware error management
for increased flash memory lifetime,” in International Conference on
Computer Design (ICCD). IEEE, 2012, pp. 94–101.

[42] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving
NAND flash memory lifetime with write-hotness aware retention man-
agement,” in Symposium on Massive Storage Systems and Technologies
(MSST). IEEE, 2015, pp. 1–14.

[43] Q. Li, L. Shi, C. Gao, K. Wu, C. J. Xue, Q. Zhuge, and E. H.-M. Sha,
“Maximizing IO performance via conflict reduction for flash memory
storage systems,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2015, pp. 904–907.

[44] B. Peleato, R. Agarwal, J. M. Cioffi, M. Qin, and P. H. Siegel, “Adaptive
read thresholds for NAND flash,” Communications, IEEE Transactions
on, vol. 63, no. 9, pp. 3069–3081, 2015.

[45] H. Sun, W. Zhao, M. Lv, G. Dong, N. Zheng, and T. Zhang, “Exploiting
intracell bit-error characteristics to improve min-sum LDPC decoding for
MLC NAND flash-based storage in mobile device,” VLSI System, IEEE
Transactions, vol. 24, pp. 2654–2664, 2016.

[46] M. Zhang, F. Wu, X. He, P. Huang, S. Wang, and C. Xie, “REAL:
A retention error aware LDPC decoding scheme to improve NAND
flash read performance,” in Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2016.

[47] C. Aslam, Y. Guan, and K. Cai, “Retention-aware belief-propagation
decoding for NAND flash memory,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, 2016.

