

Lancair IVP

- General
 - 4 place Experimental AB category
 - +4.4 / -2.2 G's utility
 - NOT Aerobatic category
 - GWT established by builder (3400# rec. by Lancair)

Lancair IVP

- 98 square foot wing/ 108 w. winglets
- 80-110 gallons of fuel for IV/ IVP's
- 5 PSID cabin pressurization
- Continental TSIO 550 (350 hp) engine

- Engine
- Fuel
- Hydraulic
- Electrical
- Landing Gear
- Flaps
- Flight Controls
- Pressurization

• Engine

- TCMTSIO 550B, E or C
- 350 hp
- 6 cylinder
- Twin turbo charged
- 3 Intercoolers

- Fuel flow <45 gph at WOT
- >48 gph will flood engine on T/O

• Engine

- Cooling air is extremely important
- Max 400 degrees F
 CHT climb
- 380 degrees F cruise
- Affected by baffling

• V8 applications

- Engine
 - Bed Mount system

- Turbocharger
 - Keep FOD free
 - Cool down period not nec. (OWT)
 - Support bracket check at 100 hr/ annual for cracks
 - Oil lines check for leaks& chafing

- Engine/ Exhaust
 - check oil air sep line at exhaust for coking at annual

- Engine Limits from TCM (except where noted)
 - 2700 RPM
 - 38.5 inches MP (E), 38.0 (B)
 - 10 psi oil press (min)
 - 30-60 psi oil press (normal)
 - 240 deg F max oil temp.
 - 100 deg F min oil temp for takeoff
 - 160-200 deg F normal oil temp
 - 380 max cruise CHT / 400 max climb CHT per GAMI
 - 350 max continuous HP

• Fuel System

- TCM Continuous flow (fuel returns to tank selected)
- 80-110 gallons wet wings
- Gravity fed
- Duke electric boost
- Primer boost for start
- 2-4 quick drains
- Fuel filter/ sump on firewall

- Fuel System
 - Fuel filter/ sump on firewall

- Fuel System
 - Fuel Selector Valve
 - Left/ Right/ OFF
 - Can leak internally or suck air

- Fuel System
 - Dukes fuel pump
 - Can fail internally
 - Overboard line should be vented out

• Hydraulics

- 1100 psi
- Oildyne (Parker)
 Electro-hydraulic res./
 pump assy.
- Accumulator
- Operates flaps & gear
- Service system with Mil H 5606 fluid

- Hydraulics
 - Controlled by hydraulic valve on panel

Hydraulics

- Emergency hand pump
- Pumps down mains only
- Nose gear is pushed down by 110 psi gas strut
- Check operation inflight annually

- Hydraulics
 - Accumulator
 - Check flap operation with pump off to determine if accumulator is airworthy

- Electrical
 - Battery on firewall
 - Electrical control panel
 - Starter solenoid
 - Battery solenoid
 - CB panel

- Electrical
 - Battery/ master switch
 - #2 batt/ master

• Electrical

- 12 or 24 volt battery(s) on firewall or elsewhere
- 14v or 28 v system
- 60 -100 amp alternator
- Standby electrical system?

• CB Panel

• Main battery

• Standby battery

Landing Gear

- Mains hydraulically actuated
- Internal downlock
- Held up by hyd pressure (no uplock)
- Rack and pinion operation
- Grease rack at annual/ 100 hour
- SB on nylaflow brake lines

- Landing Gear
 - SB on nylaflow brake lines

- Cleveland wheels and brakes
- Gear door clearance is an issue

• Flight Controls

- Ailerons
 - Counterweighted with lead on leading edge
 - Travel +14/-20 degrees

- Rudder
 - Mass balanced with lead counterweight
 - Trim pocket

- Rudder
 - Mass balanced with lead counterweight
 - Trim pocket

- Flight Controls
 - Elevator & aileron pushrods
 - Rudder cables
 - All pass through pressure vessel

- Flight Controls
 - Rudder cables

- Flight Controls
 - Full Slotted FowlerFlaps
 - Vented

- Flight controls
 - Flap actuator
 - Hydraulically operated
 - Flow control valve controls flap speed

- Flight Controls
 - Elevator bell crank

- Flight Controls
 - Compensator

 Compensator system with elevator boots

 Non compensator system

• Speed brake pocket

- Autopilot
 - Servo locations
 - brands
 - malfunctions

- Autopilot servos
 - Trutrak pitch and yaw servos

- Pressurization
 - 5 psid
 - Inflow valve
 - Mechanical via push pull cables
 - Dumps inflow
 - Regulates temperature

- Pressurization
 - Dukes Controller
 - Set +500' for takeoff and landings
 - Set for cruise altitude in flight
 - Monitor cabin altitude in flight
 - Can dump cabin quickly via door seal

- Pressurization
 - Dukes outflow valve
 - Electrically operated
 - Regulates Pressure
 - Dumps cabin
 - Located under rear seat
 - Service annually per SB

- Pressurization
 - Intercooler
 - Conditions pressurized
 "bleed" air

 Panels / Instrumentation

 Panels/ Instrumentation

 Panels/ Instrumentation

 Panels/ Instrumentation

- Air Conditioning
 - Airflow Systems

- Air Conditioning
 - Condenser
 - Belly mounted or aft bay mounted

- Air Conditioning
 - evaporator

- Air Conditioning
 - Refrigerant lines

- Air Conditioning
 - Compressor
 - Engine mounted belt driven
 - Or, aft bay mounted electrically driven

- Air conditioning
 - Bracket failure

Lancair Systems Quiz

- The hydraulic system operates the landing gear and flaps via:
 - electric gear and flap switches on the control pedestal
 - hydraulic control valves on control pedestal for normal gear and flaps
 - mechanical levers that connect via push pull cables to the landing gear and flaps
- The fuel system on your aircraft has _____ gallons useable fuel.
- You must use what type of hydraulic fluid to service the hydaraulic reservoir?
 - Skydrol

•

- Mil H 5606
- Automatic transmission fluid
- The brake reservoir is located _____ ?
- The turbo charger has a TIT limit is?
 - 1725 C
 - 1750F
 - 1650F

- Manifold pressure limit is
 - 38.5 inches
 - 38 inches
 - 29.5 inches
- How much supplemental O2 is required by 91.211?
 - 1 hour for each passenger
 - 10 minutes for each occupant
 - 30 minutes for the pilot
 - none
- The outflow valve is located ______ and must be serviced how frequently?
- Explain Lean of Peak operation
- The nose gear strut is extended by—
 - The hydraulic nose gear cylinder
 - The emergency gear down hand pump
 - The gas strut

