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Abstract: Temporal-related features are important for improving land cover classification 

accuracy using remote sensing data. This study investigated the efficacy of phenological 

features extracted from time series MODIS Normalized Difference Vegetation Index 

(NDVI) data in improving the land cover classification accuracy of Landsat data. The 

MODIS NDVI data were first fused with Landsat data via the Spatial and Temporal Adaptive 

Reflectance Fusion Model (STARFM) algorithm to obtain NDVI data at the Landsat spatial 

resolution. Next, phenological features, including the beginning and ending dates of the 

growing season, the length of the growing season, seasonal amplitude, and the maximum 

fitted NDVI value, were extracted from the fused time series NDVI data using the TIMESAT 

tool. The extracted data were integrated with the spectral data of the Landsat data to improve 

classification accuracy using a maximum likelihood classifier (MLC) and support vector 

machine (SVM) classifier. The results indicated that phenological features had a statistically 
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significant effect on improving the land cover classification accuracy of single Landsat data 

(an approximately 3% increase in overall classification accuracy), especially for vegetation 

type discrimination. However, the phenological features did not improve on statistical 

measures including the maximum, the minimum, the mean, and the standard deviation values 

of the time series NDVI dataset, especially for human-managed vegetation types. 

Regarding different classifiers, SVM could achieve better classification accuracy than the 

traditional MLC classifier, but the improvement in accuracy obtained using advanced 

classifiers was inferior to that achieved by involving the temporally derived features for land 

cover classification. 
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1. Introduction 

Land cover information is important for climate change studies and understanding complex 

interactions between human activities and global change [1–6]. Remote sensing has long been an 

effective means for land cover mapping with its ability to quickly collect information on a large regional 

scale, and many land cover maps on global and regional scales have been produced in recent years using 

remote sensing data [7–12]. With the increased availability of regular multitemporal remote sensing 

data, the use of time series data and time series data-derived temporal features is becoming increasingly 

popular for improving regional and national scale land cover mapping accuracy [13–17]. For example, 

multitemporal curve characteristics from all available Landsat data were used in land cover change 

detection and classification [5,18]. In addition, phenological features are the important temporal features 

used for land cover classification. The phenological features-based approach uses time series vegetation 

index data to monitor the dynamic changes in vegetation growing cycles, and different vegetation types 

can be distinguished based on their unique phenological signature [19]. Phenological features such as 

the beginning and ending dates of the growing season and the season’s length can be extracted from time 

series vegetation index data, and the TIMESAT software is a popular tool for extracting phenological 

features from time series data [20,21]. The phenological features can then be used to improve land cover 

classification accuracy, especially for vegetation classification, because different vegetation types have 

unique growing characteristics. 

However, most phenological features-based classifications exhibit coarse spatial resolution because 

the acquisition of high spatial resolution remote sensing time series data is quite difficult due to frequent 

cloud contamination and tradeoffs in sensor design that balance spatial resolution and temporal  

coverage [22,23]. Considering that a substantial proportion of land cover changes have been shown to 

occur at resolutions below 250 m [24], coarse spatial resolution data are not sufficient for capturing 

detailed information regarding land cover changes; Landsat-like spatial resolution data are the most 

suitable choice for deriving fine-resolution land cover maps. However, land cover classifications of 

remote sensing data with Landsat-like spatial resolution usually use only a limited set of temporal data 

due to difficulties associated with data acquisition. Therefore, there is great potential to improve the land 
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cover classification accuracy of remote sensing data with Landsat-like spatial resolution if phenological 

features contained in time series coarse-resolution data are involved in the classification. 

Thus, the main issue becomes how to extract phenological features from time series coarse resolution 

vegetation index data to improve the land cover classification accuracy of remote sensing data with 

Landsat-like spatial resolution. The land cover classification approach of finer resolution remote sensing 

data integrating temporal features from coarser resolution time series data was developed and indicated 

that fusing observations from multiple sensors with different characteristics was a feasible way to  

obtain time series vegetation index data with Landsat-like spatial resolution for extracting temporal  

features [25]. However, only basic statistical temporal features, such as the maximum, minimum, mean, 

and standard deviation values of the time series NDVI dataset, were investigated for improving the land 

cover classification accuracy of Landsat data. That is to say, phenology-related features with a physical 

meaning for the characterization of vegetation growth, such as the beginning and ending dates of the 

growing season and the length of the growing season, were not involved. In addition, advanced  

non-parametric classifiers such as the support vector machine (SVM), which have been widely used in 

remote sensing data classification [26], were not investigated. Phenological features and advanced 

classifiers might have the potential to further improve land cover classification accuracy. Therefore,  

the main objective of this study was to investigate the efficacy of using phenological features extracted 

from time series MODIS NDVI data in improving land cover classification accuracy of Landsat data, 

and to compare the efficacies of different classifiers on further improving classification accuracy.  

2. Study Area and Remote Sensing Data 

Beijing covers an area of approximately 16,800 km2, from latitude 39°26'N to 41°03'N and from 

longitude 115°25'E to 117°30'E (Figure 1). The city is located in the north of the Northern China Plain, 

and belongs to the temperate climatic zone, which has an average annual temperature of approximately 

12 °C and an average annual precipitation of approximately 664 mm. The geography of Beijing is 

characterized by alluvial plains in the south and east, whereas hills and mountains dominate the northern, 

northwestern, and western regions. The diverse land cover types that occur in the area, including forest, 

grass, cropland, urban regions, and water, make land cover classification in Beijing a suitable focus for 

this study. 

The Landsat dataset was one of the most valuable datasets for understanding the global land cover 

status and freely provided by the United States Geological Survey (USGS) over the Internet [27]. In this 

study, two Landsat 8 [28,29] Operational Land Imager (OLI) images covering the study area (path/row: 

123/32 and 123/33), were downloaded from the USGS website [30]. The OLI data were mostly not 

affected by cloud and the quality of the multispectral data was good (Figure 1). The OLI data were 

atmospherically corrected using FLAASH tools provided by ENVI version 5.0 to convert the DN value 

of the raw data to surface spectral reflectance. In the FLAASH tools, the atmospheric model, aerosol 

model, aerosol retrieval, and initial visibility were set to Sub-Arctic Summer, Urban, 2-band (K-T),  

and 40 km, respectively. Finally, the mosaic and subset tools were used to extract the surface spectral 

reflectance of OLI data to cover the study area. 
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Figure 1. The location of the study area and the Landsat OLI data acquired on 12 May 2013 

(presented in false color image: R = NIR, G = red, B = green). 

 

MODIS 16-day composited NDVI data (MOD13Q1, L3 Global 250 m version 5) in HDF format 

covering the study area from October 2012 to September 2013 were acquired from the National 

Aeronautics and Space Administration (NASA) of the United States Warehouse Inventory Search Tool. 

MOD13Q1 provides data every 16 days at a spatial resolution of 250 m in a sinusoidal projection.  

The Savitzky-Golay (S-G) filter was used to smooth the time series MODIS NDVI data, specifically for 

removing the noise caused primarily by cloud contamination and atmospheric variability [31,32].  

The smoothed MODIS NDVI data were reprojected to the same projection with OLI data, and the spatial 

resolution was resampled to 30 m. Finally, the same columns and lines of MODIS NDVI data were 

extracted to maintain consistency with OLI data for further analysis. 

3. Methods 

The flowchart of this study is presented in Figure 2. First, the time series MODIS NDVI data were 

fused with NDVI derived from OLI data using the Spatial and Temporal Adaptive Reflectance Fusion 

Model (STARFM) [33]. Statistical temporal features were calculated and phenological features were 

extracted from the fused time series NDVI data using the TIMESAT toolbox, a well-established program 

for extracting the seasonality of satellite time series data [20,21]. Finally, the phenological features and 

the statistical temporal features combined with OLI spectral bands were used for land cover classification 

with supervised classifiers, and an accuracy assessment was conducted to investigate whether the 

phenological features could significantly improve the land cover classification accuracy of Landsat data. 

3.1. Fusion of Time Series MODIS NDVI and OLI NDVI Data 

STARFM was selected to fuse high temporal resolution information from MODIS NDVI data and 

high spatial resolution information from Landsat OLI data. STARFM predicts pixel values based on the 

spatially weighted difference computed between the Landsat and the MODIS NDVI data acquired at T1 

and one or more MODIS scenes of the prediction day (T2), respectively [33]. Ideally, in the fusion 

process, if Landsat data from multiple dates are being used, one would expect higher fidelity for the 
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predicted finer resolution NDVI data using the MODIS NDVI and STARFM methods. However, only 

one cloudless Landsat 8 OLI data of high quality was acquired in this study, further illustrating the 

difficulty in obtaining time series high spatial resolution remote sensing data. Thus, it was hypothesized 

that land cover types did not change in the Landsat image across the temporal MODIS NDVI data. Land 

cover types generally change little over one year. Therefore, the spatially weighted difference in the 

STARFM method should not be changed significantly using the single Landsat data in the fusion 

process, and the predicted time series NDVI data could reflect the actual change trend of NDVI.  

Figure 2. The flowchart of land cover classification of Landsat data with phenological 

features extracted from time series MODIS NDVI data. 

 

In this study, the OLI NDVI data were scaled to 0–10,000 and designated the Landsat T1-scene data. 

The same scaled and spatially resampled (30 m) MODIS NDVI data (acquired on Julian day 129 of 

2013) that were nearest to the OLI data were designated the MODIS T1 data. The time series MODIS 

NDVI data acquired from October 2012 to September 2013 were then scaled to 0–10,000 and used to 

produce Landsat-like NDVI data. Finally, fused NDVI time series data gathered over a 16-day interval 

at a spatial resolution of 30 m were generated for further analysis. 
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3.2. Phenological Features Extraction 

Phenological features were obtained using the TIMESAT toolbox. Because one year of fused NDVI 

time series data were gathered and the vegetation season peaks were near the middle of the time series, 

for this study the time series data could be duplicated to produce an artificial time series spanning three 

years to extract the seasonality parameters using the TIMESAT toolbox [20]. In the TIMESAT toolbox,  

the NDVI time series data were first fitted to a double-logistic function, and then phenological features 

were extracted [20,21]. The extraction of phenological features over one year of NDVI time series data 

was recommended to improve land cover classification accuracy because one year of data would better 

reflect the actual phenological features in the study period. Data gathered over a greater number of years 

may cause confusion in phenological features extraction; for example, cropland may be fallow in  

one year, or crop types may vary between different years. Such variations could lead to changes in 

phenological features. The phenological features extracted for improving land cover classification 

accuracy in this study included the beginning and ending dates of the growing season, the length of the 

growing season, the seasonal amplitude, and the maximum fitted NDVI value. The beginning and ending 

dates of the growing season were defined as the times at which the fitted NDVI curve reached 50% of 

the seasonal amplitude measured from the left and right minimum values, respectively. More 

information about the definition of the phenological features used in this study can be found in [20].  

To compare the classification results obtained using phenological features, four statistical temporal 

features of the time series fused NDVI data—the maximum, minimum, mean, and standard deviation 

values—were also extracted for land cover classification.  

3.3. Supervised Classifiers 

The widely used maximum likelihood classifier (MLC) and SVM classifier were selected for land 

cover classification in this study [34–36]. The SVM classifier is the most widely used advanced  

non-parametric statistical learning classifier, usually performing well in land cover classification  

studies [37,38]. Because the coastal aerosol and blue bands of OLI data are significantly correlated and 

the coastal aerosol band is mainly designed for monitoring coastal waters and aerosol levels, the coastal 

aerosol band was removed from the input variables of the supervised classifiers. Similarly, the cirrus 

band was also removed from the classification because it was designed for cloud identification and 

contained limited land surface information. Finally, bands 2, 3, 4, 5, 6, and 7 of the OLI data and the 

composite OLI spectral bands with phenology features and statistical temporal features were separately 

used for land cover classification with the MLC and SVM classifiers to investigate the efficacy of 

phenological features and non-parametric classifiers on improving classification accuracy. 

Based on the knowledge of land cover type distribution in the study area, six classes—water, crop, 

bare land, impervious, grass, and forest—were identified as the final classification categories. Samples 

(Table 1) were randomly selected from known areas using the “region of interest” (ROI) tools provided 

by ENVI version 5.0 software, with the help of the researchers’ experiential knowledge on the actual 

distribution of land cover types and their characteristics presented in remote sensing images. The Google 

Earth tool was also employed to help identify land cover types. Half of the sample pixels were randomly 

selected as training samples, and the remaining half were selected as validating samples. 
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Table 1. Number of ROIs and pixels used for training and validating the classifiers. 

Sample Types Water Crop Bare Land Impervious Forest Grass 

Number of ROIs 22 86 51 33 107 81 
Number of pixels 6046 6860 7922 7046 13,390 4730 

3.4. Classification Accuracy Assessment 

The classification accuracy of the MLC and SVM classifiers using only OLI spectral data, OLI 

spectral data integrating phenological features, and OLI spectral data integrating statistical temporal 

features were assessed via quantitative classification accuracy indicators, including overall classification 

accuracy, producer’s accuracy, user’s accuracy, and Kappa statistics [39–42]. The reference data used 

to support the accuracy assessment consisted of randomly selected samples that included 3023 pixels for 

water, 3430 pixels for crop, 3961 pixels for bare land, 3523 pixels for impervious, 6695 pixels for forest, 

and 2365 pixels for grass. Furthermore, a Z-test was performed to assess significant differences between 

the accuracy measurements of different classification results [40]. The Z-test is a statistical test of the 

difference in accuracy values; it involves comparing the accuracy of a new classifier against one derived 

from the application of a standard classifier. Because one of the most widely used means of comparing 

classification accuracy in remote sensing is the comparison of kappa coefficients, the statistical 

significance of the difference between two independent kappa coefficients derived from different 

classifications is evaluated by calculating the Z-test value: z = ෠݇ଵ − ෠݇ଶටߪො௞భଶ + ො௞మଶߪ  
(1)

where ෠݇ଵ and ෠݇ଶ represent the estimated kappa coefficients for the classification derived from two 
different classifications, and ߪො௞భଶ  and ߪො௞మଶ  represent the corresponding variances [40]. Assuming a 

normal distribution, a difference is considered to be statistically significant if |z| > zα/2, where zα/2 

represents the value cutting off the proportion α/2 in the standard normal curve’s upper tail and can be 

determined from statistical tables. Thus, if α = 0.05 the Z-test will yield z > 1.96 or z < −1.96;  

the difference can be declared significant at the 5% significance level. Therefore, |z| > 1.96 will indicate 

that the two compared classifications are significantly different at the 5% significance level. 

4. Results and Discussions 

The land cover classification results (Figure 3) show that spatial distribution of land cover types is 

consistently achieved using MLC and SVM classifiers with only OLI spectral data, the OLI spectral data 

integrated with phenological features and statistical temporal features extracted from time series MODIS 

NDVI data. The distribution of forests, crops, bare land, water, and impervious surfaces reflects the 

actual land cover situation in the study area, based on visual observation and experts’ knowledge. Forests 

and grasses are mainly distributed in the northern, northwestern, and western mountain regions, whereas 

the impervious surfaces are primarily distributed in urban regions. Preliminary observation shows that 

the classification results for different configurations are reasonable. The main improvement achieved by 

using phenological features or statistical temporal features was that vegetation types could be more 
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effectively identified. Regarding different classifiers, the SVM classifier performed slightly better than 

the MLC classifier.  

Figure 3. Land cover classification results of MLC and SVM classifiers with 

different configurations. 

 

The confusion matrices and kappa statistics for quantitatively assessing the performance of land cover 

classification results of the MLC and SVM classifiers using only OLI spectral data, combined OLI 

spectral data with phenological features, and statistical temporal features were calculated using the 
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validation samples. Overall classification accuracies, producer’s and user’s accuracies, and kappa 

coefficients are presented in Table 2. The land cover classification performances were all satisfactory. 

OLI spectral data integrating phenological features achieved better classification accuracy using both 

the MLC (overall accuracy: 93.5%; kappa coefficient: 0.920) and SVM (overall accuracy: 93.8%; kappa 

coefficient: 0.924) classifiers than the classification result for only OLI spectral data using the MLC 

(overall accuracy: 90.4%; kappa coefficient: 0.881) and SVM (overall accuracy: 91.3%; kappa 

coefficient: 0.893) classifiers. These findings were similar to those obtained by visual observation.  

The five phenological features extracted from time series fused NDVI data improved the overall 

classification accuracy by approximately 3% and the kappa coefficient value by approximately 3% 

compared to that obtained by using only OLI spectral data (Table 2). User’s accuracy and producer’s 

accuracy for almost all land cover types improved when using phenological features, especially for grass, 

which showed an accuracy improvement of more than 10%. These results further indicate that 

phenological features contain important information for land cover classification when using remote 

sensing data, especially for vegetation type discrimination because different vegetation types usually 

have separable phenological features that can be captured by time series vegetation index profiles.  

The phenological features extracted using the TIMESAT toolbox contained vegetation growing 

characteristic information and could weaken the effect of cloud, terrain, and shadow on the land cover 

classification of single Landsat OLI data, thus significantly improving the classification accuracy, 

especially for vegetation type classification. 

Table 2. Classification accuracies for MLC and SVM classifiers with different 

configurations (%). 

Land Cover 
Types 

Accuracy 
Types 

OLI Spectral Data 
OLI+ Statistical 

Features 
OLI+ Phenological 

Features 

OLI_MLC * OLI_SVM Stat_MLC Stat_SVM Phen_MLC Phen_SVM

Water 
Pro. Acc. 96.8 99.3 97.0 99.6 96.9 99.5 
User Acc. 100.0 99.3 100.0 99.9 100.0 99.9 

Crop 
Pro. Acc. 92.5 96.1 96.5 98.0 94.4 95.7 
User Acc. 91.8 95.9 94.8 96.3 91.4 94.8 

Forest 
Pro. Acc. 91.4 91.9 93.5 93.9 92.6 92.2 
User Acc. 87.0 87.5 93.4 92.8 92.9 91.9 

Impervious 
Pro. Acc. 91.5 92.6 96.4 97.2 93.6 97.1 
User Acc. 93.0 94.2 95.7 97.6 93.6 96.8 

Bare land 
Pro. Acc. 96.9 95.3 98.3 97.9 98.2 97.3 
User Acc. 93.6 94.2 96.8 97.5 98.2 97.1 

Grass 
Pro. Acc. 63.6 63.8 83.4 81.4 82.7 78.1 
User Acc. 74.8 74.3 85.6 86.3 85.8 79.9 

Overall classification 
accuracy 

90.4 91.3 94.6 95.2 93.5 93.8 

Kappa Coefficient 0.881 0.893 0.934 0.941 0.920 0.924 

* Note: OLI_MLC represented the result of the MLC classifier obtained using OLI spectral data; other symbols 

were similar and represented classification results obtained using different configurations. Stat: statistical 

temporal features integrated with OLI spectral data. Phen: phenological features integrated with OLI spectral 

data. Pro. Acc.: Producer’s Accuracy. User Acc.: User’s Accuracy. 
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However, when considering the performance of different temporal-related features used for land 
cover classification, the phenological features using both the MLC (overall accuracy: 93.5%; kappa 

coefficient: 0.920) and SVM (overall accuracy: 93.8%; kappa coefficient: 0.924) classifiers did not 

improve on statistical temporal features using the MLC (overall accuracy: 94.6%; kappa coefficient: 

0.934) and SVM (overall accuracy: 95.2%; kappa coefficient: 0.941) classifiers (Table 2). Taking the 

results of the MLC classifier as an example, the main difference in the individual land cover type 

discrimination accuracies of phenological features and statistical temporal features occurred in the crop 

category. Producer’s and user’s accuracies for crops achieved using statistical temporal features were 

approximately three percentage points higher than those obtained by using phenological features.  

A similar phenomenon was observed in the classification accuracy of impervious surfaces. For other 

land cover types, however, the classification accuracies showed few differences. These results may have 

been caused by the fact that crops area human-managed vegetation type, and the planting time for 

different fields may be different, thus leading to different crop fields having differences in phenological 

characteristics. Another reason is that the harvest time for different crop fields may also show large 

differences, thus leading to the difference in extracted phenological features. However, the statistical 

temporal features are the basic statistical values of annual NDVI, which are not sensitive to crop planting 

and harvest times. Therefore, the statistical temporal features could better reflect crop growth 

characteristics and yield better classification results than phenological features could. With respect to 

the natural vegetation types (forest and grass), the performance of phenological features was similar to 

that of statistical temporal features, indicating that both phenological features and statistical temporal 

features could capture the growth characteristics of natural vegetation types. Therefore, it was 

understandable that the overall performance of phenological features did not improve on basic statistical 

temporal features, although the phenological features were also suitable for improving land cover 

classification accuracy.  

Regarding the results obtained using the different classifiers applied in this study, the SVM classifier 

performed slightly better than the MLC classifier, and the overall improvement in accuracy was 

approximately one percentage point (Table 2). These findings indicate that an advanced non-parametric 

classifier could achieve a more satisfactory classification result than the classical MLC classifier. 

Similarly, considering the discrimination accuracy of individual land cover types, the accuracy 

improvement afforded by the SVM classifier for the crop category was more distinct than the 

improvements in other categories. In addition, based on visual observation of the classification results, 

the SVM classifier tended to yield more aggregated class objects, and fragmentized patches were 

reduced. Because crop fields were usually presented in regular land parcels, the SVM classifier was 

more beneficial in improving the classification accuracy of croplands. Unfortunately, grasslands  

co-existed with forest and showed smaller areas in the forest gaps and boundaries; therefore, the 

aggregated effect of the SVM classifier might lead to lower classification accuracy for grasslands and, 

lead to the misclassification of grasslands and forest lands. Therefore, the SVM classifier achieved a 

more distinct accuracy improvement for cropland than the MLC classifier, whereas the improvement for 

other land cover types was not clear. These results also indicate that the SVM classifier was more suitable 

in improving the classification accuracy of land cover types presented in aggregated fields.  

A Z-test was used to compare the confusion matrices to determine whether the classification 

accuracies achieved for different configurations were significantly different (Table 3). In this context,  
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if the two compared error matrices were not significantly different, when given the choice of only these 

two approaches, one should use the easier, quicker, or more efficient approach; accuracy would not be 

the deciding factor for choosing a classification strategy in this situation. |z| > 1.96 would indicate that 

the difference between two confusion matrices was significant at the 5% significance level [40]. The  

Z-test values for all of the different configurations were greater than 1.96, except for the comparison 

between the classification results using the MLC and SVM classifiers based on phenological features. 

These results indicate that both the phenological features and statistical temporal features could 

significantly improve the land cover classification accuracy of single Landsat OLI spectral data.  

The classification accuracy obtained by using the MLC and SVM classifiers based on phenological 

features was not significantly different. Additionally, the difference between the results yielded by the 

MLC and SVM classifiers using statistical temporal features was relatively small compared to that for 

the other Z-test values (Z-test value was 2.57). In contrast, the difference between the results obtained 

using the MLC and SVM classifiers with only Landsat OLI spectral data was greater than that obtained 

by integrating temporal-related information in the classification. When the amount of information used 

for land cover classification was smaller, the SVM classifier could achieve a much better classification 

result than the MLC classifier, whereas with a larger amount of information for classification,  

the improvement yielded by the SVM classifier decreased. All of the Z-test values for classification 

results yielded by using temporal-related features and only spectral features clearly showed greater 

values, regardless of different classifiers. These findings indicate that the classification accuracy 

improvement achieved by adding temporal-related information is much greater than that of a selection 

of complex classifiers. In other words, the use of advanced classifiers affords a smaller improvement in 

classification accuracy than that achieved by the approach involving additional useful features for land 

cover classification.  

Table 3. Z-test values for comparison between confusion matrixes of land cover 

classification with different configurations. 

Classification Methods OLI_MLC * OLI_SVM Stat_MLC Stat_SVM Phen_MLC Phen_SVM

OLI_MLC -      
OLI_SVM 3.45 -     
Stat_MLC 17.53 14.12 -    
Stat_SVM 20.02 16.64 2.57 -   
Phen_MLC 12.57 9.14 5.04 7.60 -  
Phen_SVM 13.84 10.41 3.76 6.32 1.28 - 

* The meanings of the symbols are as given in the note to Table 2. 

5. Conclusions 

This study investigated the efficacies of phenological features and advanced non-parametric 

classifiers on improving the land cover classification accuracy of Landsat data integrating time series 

MODIS NDVI data. The following conclusions were drawn: (1) Phenological features extracted from 

time series fused NDVI data using the TIMESAT tool could significantly improve overall classification 

accuracy by approximately 3% compared to that achieved using only a single temporal Landsat data. 

The classification accuracy for almost all the land cover types improved greatly, especially for vegetation 
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types. However, the phenological features did not improve on the basic statistical features very much. 

In particular, phenological features clearly showed suboptimal efficiency in improving the classification 

accuracy of human-managed vegetation types compared to statistical temporal features. (2) An SVM 

classifier could achieve better classification accuracy than the traditional MLC classifier, but the 

improvement in classification accuracy achieved by using advanced classifiers was inferior to 

that obtained using temporal-related features for land cover classification. In other words, involving 

more temporal-related features in land cover classification was a much better strategy than selecting 

advanced classifiers. 
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