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This work is a component of a proposed knowledge-based speech recognition system which uses
landmarksto guide the search fatistinctive featuresin the speech signal, landmarks identify times

when the acoustic manifestations of the linguistically motivated distinctive features are most salient.
This paper describes an algorithm for automatically detecting acoustically abrupt landmarks. Some
examples of acoustically abrupt landmarks are stop closures and releases, nasal closures and
releases, and the point of cessation of free vocal fold vibration due to a velopharyngeal port closure
at a nasal-to-obstruent juncture. As a consequence of landmark detection, the algorithm provides
estimates of the broad phonetic classticulator-free featurgsof the underlying segment. The
algorithm is hierarchically structured, and is rooted in linguistic and speech production theory. It
uses several factors to detect landmarks: energy abruptness in five frequency bands and at two levels
of temporal resolution, segmental duration, broad phonetic class constraints, and articulatory
constraints. Tested on a database of continuous, clean speech of women and men, the landmark
detector has detection rates over 90%. A large majority of the detections were within 20 ms of the
landmark transcription, and almost all were within 30 ms. The results are analyzed by landmark type
and phonetic class. @996 Acoustical Society of America.

PACS numbers: 43.72.Ndg|

INTRODUCTION variations of phonetic units. Frequently occurring speech
units can be modeled well, but infrequently occurring units
will not be as well specified. Because of their heavy reliance
In a knowledge-based approach to speech recognitioryn data, statistical methods do not generalize easily to tasks
knowledge about speech and the operating environment &y which they are not explicitly trained. For example, if the
explicitly built into the recognizer by the system designer. Itoperating environment does not match the training environ-
can model parts of the human perception process. Since hient(e.g., a different microphone is used, background noise
mans are the best speech recognizers known to us, i3 added, or speech is bandlimited to the telephone),line
knowledge-based approach is a worthwhile endeavor. If suGecognition accuracy can decrease severely. To accommo-
cessful, it should have the flexibility to work in many oper- gate a new operating environment, retraining or adaptation is
ating environments. A knowledge-based system is dedicategsyally required. In adverse conditions, like noisy or tele-
to processing speeckiersus signals in genejaind therefore  phone quality environments, building models the statistical
is efficient in that sense. Because knowledge sources are &%ay does not always give satisfactory performajeg., the
plicitly incorporated, improvements to the system can begygork by Daset al. (1993].
made in a directed, meaningful manner. Prosodic and seg- Speech recognition systems may use a combination of
mental level knowledge can usually be added in a straighthoth knowledge-based and statistical approaches. In much of
forward way. The knowledge necessary to design such a sygpeech recognition research since the late 1980s, hidden
tem, however, should be as comprehensive as possible aparkov modelsstHMMs), a popular statistical tool, form the
the desired acoustic parameters need to be automatically efgundation of most systems. Increasingly, artificial neural
tractable. networks (ANNSs), another statistical tool, are becoming
Rather than explicitly specifying speech knowledge in apopular as well. Hybrid HMM/ANN systems are being built.
recognition system, a statistical approach builds models by, these fundamentally statistical systems, knowledge
training on speech data, thereby implicitly acquiring knowl-soyrces are added whenever suitable. Examples of such
edge on its own. Automatic learning during the training knowledge sources are phone duration information, an audi-
phase makes statistical methods powerful, since much of O4pry model front end, or, more simply, the mel-frequency
pregent ignorance about speech can be overcome in this wayegje to approximate the frequency warping performed by
Statistical methods have been successful for largege pasilar membrane. The fundamental philosophy underly-
vocabulary, speaker-independent speech recogn(#g., g the speech recognition system adopted in this paper,
the work by Lee(1989)]. In the training phase, large nowever, is knowledge based instead of statistical. The sys-
amounts of data are used to cover all the possible contextugly, employs some statistics as a guide to making decisions
but the foundation of the system is not statistical.
dE-mail address: liu@lexic.mit.edu Figure 1 shows a block diagram of the proposed

A. A knowledge-based approach
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FIG. 2. An illustration of landmarksAC =abrupt-consonantah =abrupt,
N=nonabruptV =vocalic.
word hypothesis
ance when the acoustic correlates of distinctive features are
FIG. 1. The proposed speech recognition system. most salient. They mark perceptual foci and articulatory tar-
gets. Steven$1985H has suggested that, for some phonetic
knowledge-based speech recognition systStevenset al, contrasts, a listener focuses on landmarks to get the acoustic

1992. This system sets the framework for the research pre(_:ues necessary for deciphering the underlying distinctive fea-
sented in this paper. The first step is to locedmarks tures. quU|(1986 and Ohde(1994 have ”T‘ade ,th|s same
which are points in an utterance around which informationObser,vatlon for Japanese syllables gnd ch|I'dren's speech, re-
about the underlyingfistinctive featuresnay be extracted. spectively. In order to exploit these information-rich areas of
Next, the distinctive features at a landmark are identifieothe sfpeecfh (\;va\llef(()jrm, Te _protﬁ)osed SpEECh refcognmon ﬁys-
based on acoustic measurements made in the vicinity of tht(?rg Irst finds lan marks mft € speecl wave_orml S0 t at
landmark. The landmarks and associated features are relatd sequent processing can focus on re evant signa portlons,
to the underlying segmeritand a sequence of segments ismstead of treating eaph part of the signal equa!ly impor=
hypothesized. This sequence is matched to a lexicon whoé@ntly' Based on the kind of landmark founq, certain .d'Sth'
words are directly defined in terms of features, and wordve features will be relevant and others will not. This very
hypotheses are made. Feedback allows information from aWrected approach minimizes the amount of processing nec-

advanced stage to be used to correct mistakes made at poary- La_nd'marks can "’,‘ISO be fqund somewhat indepen-
earlier stage. ently of timing factors, like speaking rate and segmental

duration. On the other hand, landmarks can give timing in-

formation to aid in later processing. The vertical lines in Fig.

2 denote some examples of landmarks. The types of land-
The speech recognition system of Fig. 1 has two notemark shown will be explained in Sec. I.

worthy properties. The first is the chosen unit of speech, the Landmark detection is just one way to organize the

distinctive feature. Distinctive features concisely describe thépeech waveform. Frame-based processing and segmentation

sounds of a language at a subsegmental level. They havease two other possibilities. All three methods begin with slic-

relatively direct relation to acoustics and articulation. Theying the speech waveform into equal-length, likely overlap-

take on binary values and form a minimal set which canping frames; their difference lies in how they organize sub-

distinguish each segment from all others in a langudge sequent processing. Figure 3 illustrates the differences

kobsonet al, 1952. Another advantage of distinctive fea- among these three techniques.

tures is that they can concisely describe many of the contex-

tual variations of a segment. These contextual variations N g

could be due to individual speaking styles and phonological proae koot S

assimilation across word boundaries. If the unit of modeling
were the phoneme rather than the distinctive feature, a sepa-
rate model would be required for every modification of the

phoneme, resulting in an explosion of the number of speech

B. Distinctive features

i i ; : . frame-based — 5-10 ms frame skip
units required, as Le@.989 gxpenenced Wl.th triphone mod-  ocessing = — o 15-30 ms frame length
eling. The number of units is even larger if syllable or word a boundary
models are used. segmentation  [«e>le—rle——>[<>| |« >
. o landmark
C. Landmark detection landmark N L
detection -—r o > - - > |

The second noteworthy property of the proposed speech
recognition system is landmarks. They are a guide to the

presence of underlying segments, Wh?Ch Org?nize_ distinctiveg. 3. The differences among frame-based processing, segmentation, and
features into bundles. Landmarks define regions in an uttefrandmark detection. The waveform is of the word “practice.”
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In frame-based processing, presently the most populapeech. Other experiments involving the TIMIT corpus, tele-
way of dividing up the speech waveform, the frantkem-  phone speech, and speech in noise are reported by Liu
selvesare the centers of subsequent processing. A frame i§1995h.
typically 15—30 ms long and occurs every 5—10 ms. A fixed  The organization of this paper is as follows. In Sec. | we
set of speech attributes is measured at each frame. describe landmarks in greater detail. In Sec. Il we present the

More structured than frame-based processing, segmentdatabase used in a landmark detection experiment. In Sec. llI
tion findsboundariesn the speech waveform. These bound-we detail the landmark detection algorithm. In Sec. IV we
aries delimit unequal-length, semi-steady-state, abutting reggresent the results of running the algorithm on the database.
gions, with each region corresponding to a phone ofFinally, in Sec. V we summarize the paper, showing how the
subphone unit. Subsequent processing focuses on these raarticulator-free features can be deduced from the landmark
gions, typically acquiring averages across a redmg., see type, and give suggestions on how the landmark detector can
Gish and Ng(1993] and sometimes measuring attributesbe improved.
near the boundarig®.g., see Zuet al. (1990h]. In various
tasks, Flammiat al. (1992 and Marcug1993 have found |. LANDMARKS
that a segmentation approach performs better than or compa-
rably to a frame-based approach while reducing the compu;

tational load in training and testing by a significant amount.examples of these landmark groups for the utterance “The

In continuous speech recognition systems of the 1970aay was long.” This section will describe these landmark

ﬂ}rOUQh fch_e nllr:j-1980$,hsegmefntatlog was atp(t)_pular methﬁgroups. The focus of this paper is on detecting the abrupt-
of organizing the speech waveform. Segmentation was conf oo 204 abrupt landmarks.

p"?‘(;'bl'e W'tr:j acoustlc—;:/r\}o_nettlc.ptro?esls$r719, W:'Ch \E)vlas then Phonologically, segments can be classified as
widely use [e.g., see weinsteiat al. (1975]. A problem +consonantdl or [—consonantdl A [+consonantdl seg-
arises with segmentation, however, when parts of the wave-

f d th haro boundaries. like th di ent involves grimary articulatorforming a tight constric-
tor(rjr? hct)hno aveds ap ounl alrles,d| et ose correzp?n d":gon in the midline of the vocal trad¢Sagey, 1986 Only the
0 GIPRIhONGs and SEMIVOWEIs. In order to accommodate dit e ators in the oral cavityi.e., lips, tongue blade, and

. : . . F()'ngue body can be primary articulators. Segments not in-
nged 0 fln(ft_lall tlhe plecest ?f lnteresAgre-Oblrgght, volving a tight constriction or implemented by articulators
§ or a multilevel representation is needglass, B outside of the oral cavitye.g., soft palate and glotiisare

Landmark _detect|0n IS d'Sth.tly dlffe_rent from f_ram_e- —consonantdl Speech is formed by a series of articulator
based processing and segmentation, as illustrated in Fig.

A tioned bef landmarks doei h arrowings and releases. The most salient of these narrow-
AS mentioned betore, landmarks dogl, SO Speech process- ings and releases are acoustically abrupt. An acoustically
ing is done around a landmark rather than in between tw

Abrupt constriction involving a primary articulator is typi-
landmarks. While many of the boundaries in segmentatio P gap y b

lly tight and is a consequence of implementing a
are also the landmarks for a landmark-based system, not Econsonantdlsegment. Arabrupt-consonantalAC) land-
boundaries are landmarks and not all landmarks are boun

. Th bl f delimiti . | d diphth nark marks the closure and another marks the release of one
aries. 1he problem ot defimiting SEmIVOWeIS and dIptNongS,¢ v, aqe constrictions. The clearest manifestation ofA@n

is avoided altogether by landmark detection, as will be €X1andmark is when the constriction occurs adjacent to a
plained in Sec. |. Landmark detection is typically more hier-%

Landmarks are categorized into four groups: abrupt-
onsonantal, abrupt, nonabrupt, and vocalic. Figure 2 shows

archical and involves more than one acoustic measure. Als —consonantdlsegment. A pair of these landmarks, one on
: involv usti ure. ither side of the constriction, will be referred to as theer

landmarks are assopiatgd with b.undles.of distinctive featurelg‘C landmarks. An example of a pair of oute€ landmarks
whereas segmentation is associated with phones. is the[b] closure and release in “able.” Other landmarks can
occur within or outside of the pair of outé&C landmarks.
These are described below.

As the first step in the lexical access process, landmark A common sequence of landmarks is one in which the
detection is of primary importance. The most numerousouter AC landmarks are governed by the same underlying
types of landmarks are acoustically abrupt. An estimatesegment and, thus, are implemented by the same articulator
based on a phonetically balanced subset of sentences in tkeg., the[b] closure and release in ahldn consonantal
TIMIT corpus (Zue et al, 19904 shows that acoustically clusters, however, the two out&C landmarks are often not
abrupt landmarks comprise approximately 68% of the totagoverned by the same articulat@.g., the[p] closure and
number of landmarks in speech. These landmarks are oftdul] release in “tap dancej! The release by the first articu-
associated with consonantal segments, e.g., a stop closurelator or the formation of the constriction by the second ar-
release. This paper describes a knowledge-based algorithticulator may or may not be manifested in the acoustic sig-
for automatically detecting acoustically abrupt landmarksnal. If the articulatory event is observable in the acoustic
Acoustically abrupt landmarks comprise “abrupt- signal, then it is marked as antraconsonantalAC land-
consonantal” and “abrupt” landmarks, which are describedmark. In the “tap dance” example, if thip] release is evi-
in Sec. |. The process of landmark detection provides infordent in the sound, then tHe] burst and thdd] closure are
mation about the articulator-free featufesnsonantd) [so- intraconsonantahC landmarks.
norani, and[continuant. The landmark detector is designed The configuration of the glottis and the soft palate are
and tested on clean, broadband, phonetically controllearticulatorily independent of the occurrence of &A@ land-

D. Objective and outline
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mark. Just as for abrupt primary articulator movement, theeleases. The narrowing of the constriction usually causes a
movements of the glottis or the soft palate can independentlgecrease in the first-formant frequenéy,, and in the am-
cause an abrupt change in the acoustic signal. For examplplitude of the sound. If the consonant occurs between two
as the glottis moves from a spread to a modal configuratiomowels, a minimum inF; and in waveform amplitude de-
when air is passing through, vocal-fold vibration begins.notes the narrowest point in the constricti@ng., the middle
This onset of vocal-fold vibration is observed as a rapidof [w] in “away” ). This point is anonabrupt(N) landmark
change in the characteristics of the sound. Likewise, if theand occurs outside of a pair of out&C landmarks. The
velopharyngeal port closes when the oral cavity is alreadyarrowest point in the production of a semivowel can be
closed, there is an abrupt increase in intraoral pressure, reeincident with an acoustically abrupt part of speech; in such
sulting in a reduction in the amplitude of glottal pulses.a case, the landmark is both Bhand an acoustically abrupt
These abrupt changes in the sound caused by glottal or veltandmark(e.g., the[dw] release in “dwell”). The N land-
pharyngeal activity but without accompanying primary ar-marks comprise approximately 3% of the total number of
ticulator movement are labeled alsrupt(A) landmarks. The landmarks, as estimated from the TIMIT database.
AC andA landmarks differ in thaA landmarks do not in- Finally, vowels have their own landmarks. When the
volve primary articulator movement. The landmarks can vocal tract is at an open extreme for a vowel, a local maxi-
occur outside of a pair of outekC landmarks(calledinter- ~ mum occurs in both; and waveform amplitudée.g., the
vocalic A landmarks; e.g., the voice onset after fpéburst  middle of[ae] in “bat” ). This point is avocalic (V) land-
in “paint” ) or within the pair(called intraconsonantalA ~ mark and occurs outside of a pair of out®€ landmarks.
landmarks; e.g., thén]—[t] transition in “canteen’. To- TheV landmarks make up approximately 29% of the total
gether,AC and A landmarks comprise approximately 68% number of landmarks, as estimated from the TIMIT data-
of the total number of landmarks, as noted in the Introducbase.
tion. For lexical access, a landmark-to-segment relation must
For semivowels, the constriction that is formed is notbe specified. Sometimes, a one-to-one relation holds, like the
narrow enough to create an abrupt change in the spectrum oflation between & landmark and a vowel. Sometimes, a
the sound. The narrowing of the constriction, however, doeswvo-to-one relation holds; for example, an intervocalic frica-
reach some articulatory extreme out of which it graduallytive can have a landmark at closure and a landmark at re-

TABLE I. Detection rates of the development and test sets, by phonetic categofynéxt to a detection rate
means that the number of tokens is less than 30 so the detection rate is unreliable. The number of tokens is
given in parentheses.

Phonetic Landmark Detection rate Detection rate
category type (Development (Tesh
OuterAC +v fric clos g(lottis) 96% (97) 96% (47)
+v fric rel 95% (109 98% (58)
—v fric clos 100% (58) *100% (28)
—v fric rel 100% (107 *100% (26)
flap clos *88% (26) *88% (8)
flap rel *85% (27) *75% (8)
+v stop clos 95% (94) 98% (48)
unasp'd stop rel 97% (104 95% (44)
—v stop clos . 99% (126 100% (62)
asp’d stop rel b(urst 95% (111) 89% (72
nasal clos s(onoranj 90% (170 72% (53
nasal rel 90% (105 77% (35)
[1] clos *71% (21) *33% (9)
[1] rel 81% (36) *76% (17)
IntraconsonantahC stop clos b(ursh *100% (20) *30% (10)
stop rel *95% (19) *100% (10)
fric clos *100% (8) *90% (29)
affric rel 84% (56) 95% (40
nasak-fric g(lottis) *100% (26) *100% (2)
fric—nasal *100% (13) *100% (4)
Intraconsonantah velophar clos o(lottis) 95% (57) *92% (25)
velophar rel *25% (4) *100% (8)
IntervocalicA [?] clos g(lottis) 90% (41) *100% (23)
[*] rel 100% (51) *100% (23)
—v [h] onset RN (o)} -+ (0)
—v [h] offset 97% (112 97% (72)
Total 94% (1597 91% (761

3420 J. Acoust. Soc. Am., Vol. 100, No. 5, November 1996

Sharlene A. Liu: Landmark detection



lease. In some cases, a three-to-one relation holds, [@d,in lated from preliminary results with the development set. It

which has one landmark at closure, one at the labial releasepnsisted of four speakefsvo women, two mehspeaking

and one at voice onset. Or, there may be a one-to-two reldhe first 20 sentences. The test set was independent from the

tion, as in “bright,” where the landmark at tHé] release development set to see how well the algorithm generalized to

serves botlib] and[r]. new speakers and new sentences. It consisted of two new
For the purpose of evaluating the performance of a landspeakergone woman, one marspeaking the last 20 sen-

mark detection algorithm, theC andA landmarks are clas- tences.

sified into phonetic categories. The second column of Table |

lists these categories. The out#®€ landmarks are the clo- C. Labeling convention

sures and releases associated with fricatives, flaps, stops, na- Because a complete speech recognition system which

sals, and[l]'s next to [-consonantgl segments. For ex- employs landmark detection was not available, the landmark

ample, the closure and releasg_ of {h¢ in [ebe] are outer etector could not be evaluated in terms of a word recogni-
AC landmarks. Flaps are classified as obstruents even thouq n score. Instead, an intermediate level of evaluation was

they are often too short to allow much pressure leIIdUphecessary. This intermediate level was a landmark detection

Eventually, they will need a specialized detector dedicated tgcore, which is highly dependent on the landmark labeling

fmdmg them. IntraconsonantaAC. and A Iar!dmarks ar€ - convention. Thus, care was taken to objectively label utter-
those in consonant clusters. For illustration, if the release og :

dlin “tadpole” | ident in th d then it | it nces with landmarks.

[d] in "ta tgig |ts evi Ien n Zioun I en itis an Itn ra- Landmark labeling was done using phonological and
consonantaAC stop rT‘ case Elin h e cdo§ulr<_e”|sthan |ndra-f acoustic rules. Three decisions had to be métethe exist-
;:(7nstotﬂank/ | s op_cosu_ret. nhe Wormcs f"_ t'e enl OF ence of amC or A landmark,(2) the time placement of the
siatthe ki closure IS an intraconsonan ricative clo- landmark, and3) the categorization of the landmark. Wave-

sure. An affricate release as|ié] of “church” is an intrac- ; : .
X form and spectrogram displays and listening were used to
onsonantalAC affricate release. The landmark between the P g play 9

L . L guide landmark labeling.
I[;Lda;i[r?] l:l)r(;tvvsergi" ﬂ']‘cé{;]f”;?]tc'jve[z_]’n;safl‘;ﬁjnnﬂ?,ari: ';he An AC or A landmark exists if the underlying segment

fricative landmark. A veloph el is acoustically evident and acoustically abrupt. The intended
nasar-iricative fandmark. A velopharyngeal Closure or ré- oo yances were used to guide the labeling. Most of the time,

lease occurs for nasalstop combinations. For example, ﬂﬁe intended phonological targets were manifested in the

eﬂd ofglot;callvibratioTnhaftt)er t.h@] in ‘f‘b?n:irllg’_’bis?veio- th speech signal. Sometimes, however, phonological targets
pharyngeal closure. The beginning ot glottal vibration Tor (€, .o .o o gified in the speech signal. For exampl&)gfol-

[m] in “batman” is a velopharyngeal release. The intervo- lowing a nasal, as in “in the,” often shows little evidence of

cahctA Iarzjdmﬁarkts arfe ::atltjsledt by thedglottlls. these are th‘Eiiminished voicing, so instead of labeling it as a velopharyn-
onsets and ofisets of glotial Stops and aspirate consonanb-seal closure followed by a fricative release, it was labeled

The remaining columns of Table | will be discussed later. simply as a sonorant consonantal release. Even if a phono-
logical target is manifested in the speech signal, it may not
1. DATABASE ; : :
be acoustically abrupt. A typical exampl€gi§ which can be
A. Speech recording acoustically abrupt or not. Af] closure or release was con-
sidered acoustically abrupt if 90% of its broadband energy

Utterances were tape-recorded in a quiet room using all_ sition in dB occurred within 40 ms

Electrovoice omnidirectional microphone dangling 25 cm in . ;
front of and 5 cm above the speaker’s mouth. This pIacemenA IaRegardlng the time placement of a landmark,/4n or

- ndmark was put at the time of the articulator movement
was roughly equidistant to the nose, mouth, and throat, so the, . : .
; . . .~ Which caused the landmark, as inferred from the acoustic
microphone could pick up signals from all three radiating

) .. “data. Time placement for mo#tC and A landmarks is
sources. The recordings were passed through an antlallasm%]r .
' . . .. straightforward because of the abrupt spectral change that
filter with a cutoff frequency of 7.5 kHz before being digi- :
. takes place. The landmark for a voiced obstruent closure was
tized at 16 kHz. The 7.5-kHz cutoff frequency allowed rel- : :
. o o laced at the disappearance of high-frequency formant en-
evant high-frequency frication noise in female speech to bg .
: X . ergy in the spectrogram.
captured. The signal-to-noise rati®NR) for speech re- . .
S . The landmarks were grouped into the phonetic catego-
corded in this condition was about 30 dB. N . .
ries listed in Table I. A flap was defined to have a 35 ms or
less closure interval; otherwise it was categorized gg ar
[d]. This criterion is in accord with Zue and Laferriere’'s
A lexicon of 250 words was used to construct 40 syn-(1979 acoustic study, in which they found that the average
tactically correct sentences. The words were mostly monoelosure period of a flap is 26—27 ms, with a standard devia-
syllabic (69%), some bisyllabiq30%), and very few trisyl- tion of 10-12 ms. OuteAC landmarks associated with stop
labic (1%). Fifteen percent of the words had consonantclosures and fricatives were further divided into voiced and
clusters(e.g., [sp] in “sport,” [nd] in “and,” or [fy] in unvoiced. To avoid interpreting the various acoustic mani-
“few” ). Two data sets—development and test—were confestations of voicing at these landmarks, a voiced/unvoiced
structed. The development set was used during algorithrdecision was made based on the underlying phonology alone.
development: the design and parameter values of the alg&top releases, on the other hand, were categorized as aspi-
rithm were modified by hand based on knowledge accumurated or unaspirated based on the voice onset tM@T).

B. Lexicon and data sets
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Almost all of the aspirated stops were unvoiced, and almost speech

all of the unaspirated stops were voiced. Unaspirated stop

releases were labeled with one landmark while aspirated stop spectrograrm [+—— £ 1S Flanning window
releases were labeled with two landmarkse at the burst R T ; L A
and one at the voice ongef stop release was considered 2z mssmoothing—é—» | :
unaspirated if the VOT was 20 ms or less. It was considered :
aspirated if the VOT was more than 20 ms. This criterion
agrees with Lisker and Abramson($964) finding that En-
glish unvoiced aspirated stops in word-initial position have

an average VOT of 28 ms or more, depending on the place of S S
articulation, and the voiced unaspirated counterparts have an oo o

average VOT of 17 ms or less. Affricates also had a 20-ms
criterion: separate burst and fricative release landmarks were

10 ms smoothing

dt =50 ms dt=26ms

6 dB threshold (B1)

9 dB threshold
reshol 9 dB threshold (B2-6)

coarse processing

localized peaks

assigned only if the VOT exceeded 20 ms. Nasal onsets and s

offsets at the beginnings and ends of utterances were labeled processing

as velopharyngeal releases and closures, respectively. gib
In order to assess the effect of vowel reduction on land- landmarks

mark detection, vowels next t&C and A landmarks were

labeled as either reduced or unreduced. A reduced vowel il§1G. 4. The landmark detection algorithm. The input is speech and the
short in duratiorjtypically less than 50 m&latt, 1976] and  output is three types of landmarkstlottis), sonorant, b(ursb.

low in intensity[typically 12 dB or more down from a neigh-
boring stressed vowe&Beckman, 198F. Schwas by defini-
tion are reduced; syllabic nasals, syllalji¢'s, and some
[2]'s are typically reduced. All other vowels, stressed or oth-
erwise, were classified as unreduced.

These labeling conventions agree for the most part witl
those of TIMIT for acoustically abrupt points in the speech
waveform(Zue and Seneff, 1990TIMIT labels were simi-
larly motivated by phonemics and acoustics. Abrupt acoustic
changes were always marked. If no acoustic evidence existed CclOSure.
for a certain phoneme, then no label was put there. Spectrorable | associates landmarks in each phonetic category with
gram displays and listening were also used to decide on lag [andmark type. The rest of this section presents the steps
bels. One difference between the database presented here 3ijét outlined in greater detail.

TIMIT was the labeling of stop releases. Whereas only one )

label was placed at an unaspirated stop release in this data: General processing

base, two labels were placed in TIMIT, one for the burstand A broadband spectrogram is computed with a 6-ms Han-

one for the voice onset, regardless of the VOT. ning window every 1 ms. Each 6-ms frame is zero-padded
out to 512 points before a discrete Fourier transf¢bRT)
is taken. The top panel of Fig. 5 shows a spectrogram for the
utterance: “The money is coming today.” The spacing be-

IIl. LANDMARK DETECTION ALGORITHM tween points for the DFT is 31.2 Hz, so that spectral peak
amplitudes in later energy computations can be estimated

Figure 4 shows a flow diagram of the algorithm for land- reasonably well. The high frame rate allows quick acoustic
mark detection. Speech input goes through a general signghanges to be monitored. Some acoustic changes happen
processing stage, whose outputs feed a landmark typerery quickly, particularly the ones associated with obstruent
specific processing stage. The output of type-specific prosegments as articulators move from one quantal state to an-
cessing is a series of landmarks specified by time and typgther. The short Hanning window produces a broadband
In general processing, a spectrogram is computed and dépectrum, which gives broad spectral information while sup-
vided into six frequency bands. Then, a coarse- and a fingyressing harmonic detail.
processing pass are executed. In each pass, an energy wave- The resulting spectrogram is then divided into the fol-
form is constructed in each of the six bands, the derivative ofowing six frequency bands:
the energy is computed, and peaks in the derivative are de-

freely vibrating vocal foldgwith no increase in intraoral

pressurg to a condition where the vocal folds are not

freely vibrating, or vice versa;

h(2) s(onoran}, which marks sonorant consonantal closures
and releases;

(3) b(ursh, which designates stop or affricate bursts and

points where aspiration or frication ends due to a stop

tected. Localized peaks in time are found by matching peaks Band 1 0.0-0.4 kHz
from the coarse- and fine-processing passes. These peaks 2: 0.8-1.5
represent times of abrupt spectral change in the six bands. In 3: 1.2-2.0
type-specific processing, the localized peaks direct process- 4: 2.0-3.5
ing to find three types of landmarks. These three types are 2 gg—gg

the following:

(1) g(lottis), which marks a time when there is a transition of Band 1 monitors the presence or absence of glottal vibration.
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The money ~ is  coming today. 5 gives an example of the band 1 energy waveform. An
T ' energy waveform should be able to resolve abrupt acoustic
changes due to sudden changes in formant frequency ampli-
tudes, but ignore glottal pulse variations and noise fluctua-
tions. To smooth out the unwanted characteristics, a 20-ms
average of the squared magnitude of the spectrogram, cen-
tered about the time of interest, is computed every 1 ms.
Within each band, the maximum in the smoothed spectro-
gram at each time is chosen to represent the energy in that
band. Energy is then recorded in dB. Provided a band en-
compasses exactly one spectral prominence, picking the

frequency
(kHz)

—=Nw O

Band 1 energy
(dB)

gfé;?’o’ ; {*9 9B threshold ﬂ maximum energy in the band as a function of time is the
S =R S N i mw same as following the spectral prominence amplitude in
Ry DO RS SR Y b AT T L i
s8 | ‘\-QdBthresAQ/s \/ g 3 time. . : .
3t | . Pl ; Once the six-band energy is computed, a six-batd-
+ -+ - o+t -

of-rise (ROR) is found by taking an overlapping dB first

FIG. 5. General processing as the first part of the landmark detection algodlfference of the energy n each band. The ROR waveform

rithm. The top panel shows the spectrogram for the utterance “The money i9f @ band indicates how quickly the energy is changing in
coming today.” The middle panel is the band 1 energy and the bottom panethat band. Working with dB differences automatically con-
is the band 1 ROR, both from coarse processing. The two dotted hOriZOnt%iders relatlve Values SO that galn normallzatlon |S not nec-
lines are thresholds for peak picking. The peaks detected are showrtwith t The first diff . ted
signs indicating the polarity of the peaks. Band 1 peaks are also Iikel)ﬁssary acro_ss u erances_' e hirst difrerence 1S compu_e ev-
candidates fog(lottis) landmarks. ery 1 ms using a 50-ms time step, centered about the time of
interest. The 50-ms time step is chosen to span energy tran-
_ sitions of abrupt closures and releases, including voiced ob-
It does not extend beyond 400 Hz in order to reduce thetruent closures, taking into account the 6-ms Hanning win-
chance of picking up low-frequency burst energy. Closuregjow and 20-ms smoothing. The third panel of Fig. 5 shows
and releases for sonorant consonants are detected USifk ROR calculated from the band 1 energy waveform above
bands 2-5. These bands approximate the frequency ranggs
for the spectral prominences of sonorant consonants. For in-  The positive and negative peaks in the ROR waveform
tervocalic sonorant consonantal segments, a large spectrala he points of abrupt acoustic change in a band. Mermel-

change usually occurs in the 0.8- to 2-kHz range, and thigeins(1975 peak-picking algorithm was tailored to find the
change is often due to the introduction of a zero in the vocal

overlap. Each of these two bands is not guaranteed to cont
one spectral prominence, but at Iea}st one band is expected Ill%rizontal lines in the third panel of Fig. 5 show th®-dB
capture at least one spectral prominence. At a sonorant COR osholds. The peaks that are detected by the peak-picker
sonantal closure, band 1 energy remains strong because glot- L ; S )

L ; i ; are shown with*+ signs indicating the polarity of the peaks.
tal vibration continues; however, spectral prominences above In the parallel fine-processing pass shown in Fig. 4

F, show a marked abrupt decrease in energy because of

increased acoustic losses, the rapid change of zeros in poIeSQme Earamet.ert_value: f(;e m0d|f|edtr:_n or.dter 0 II(_)callzed en-
zero pairs, and the fall iF,. The onsets and offsets of €rgy changes in ime. -MS smoothing Intérval Is used on

aspiration and frication noise associated with stops, fricall'® SPectrogram instead of 20 ms; a time step of 26 ms is

tives, and affricates can also be found from bands 2—5. NoiskSed for the ROR calculation instead of 50 ms; and the peak
energy will lie in at least one of these four bands. Band eréshold for band 1 is reduced from 9 to 6 dB. This 3-dB

spans the remaining frequency range up to 8 kHz, and is Onr@duct?on is madg to accommodate smaller peqks due to the
of the bands used for silence detection for stops. reduction of the time step. The peak thresholds in bands 2-6

Following the computation of the spectrogram, energyre kept at 9 dB to prevent too many spurious peaks in those
changes in the six bands are found using a two-pass stratedy@nds from occurring.
as indicated by the two parallel branches coming out of the ~As shown in Fig. 4, the ROR peaks resulting from the
spectrogram block in Fig. 4. Both passes employ the samgoarse and fine passes come together at a “peak localiza-
processing steps except that the first pass uses coarse pardi@n” block. Here, ROR peaks from the coarse pass are used
eter values to find the general vicinity of a spectral changel0 guide the search for corresponding ROR peaks in the same
and the second pass uses fine parameter values to localiz€oRnd from the fine pass. Withirr30 ms of a coarse pass
in time. The processing strategy will be described with thepeak, the biggest fine pass peék absolute termswith the
first pass parameter values, and then the second pass paragame sign as the coarse pass peak is chosen as the localized
eter values will be given. peak. Localized peaks are the inputs into the landmark type-
In the coarse-processing pass, an energy waveform ispecific processing stage. The type-specific detectorg fr
each of the six bands is calculated. The middle panel of Figandb landmarks are explained next.

calic segment and by empirical evidence. The two dotted
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B. G(lottis) detector

A g(lottis) landmark pinpoints a time the vocal folds
start or stop free vibration. The factors causing free vocal-
fold vibration to cease are a buildup of intraoral pressure due
to a supraglottal constriction, vocal-fold spreading or glottal
closure, or a reduction of subglottal pressure. The localized
band 1 ROR peaks from general processing are initially all
candidates forg landmarks. These candidates must pass a
series of criteria. A+peak indicates the turning on of glottal
vibration; a—peak indicates the turning off of glottal vibra-
tion. When glottal vibration turns on, it must turn off some
time later. Thus each-peak should be followed by apeak.
Peaks are inserted wherever necessary to satisfy this condi-
tion. The point of insertion is guided by the shape of the
band 1 energy contour. After the peaks are paired, a mini-
mum vowel requirement is imposed on eathpair. A =
pair should span at least the vowel part of a syllable, the
minimum vowel being a schwa. In acoustic terms, this re- <

frequency
(kHz)

energy

guirement is that band 1 energy between: gair of peaks g

must be no less than 20 dB below the maximum band 1

energy in the utterance for at least 20 ms. The 20-dB thresh-

old agrees with Stevend 994 study, in which he showed ; ; ; P _
that theF; amplitude of a reduced vowel can regularly be as +g s +s s:s -9
low as 17 dB below that of the pitch-accented vowel in the steady-state  steady-state

utterance, provided the reduced vowel is not devoiced. The

20-ms duration requirement is a lower bound on the lengtlFIG. 6. S(onoran landmark detection. “The money is ...” portion of Fig. 4

of a schwa, which can regularly be about 30 ms in duratioris shown. The top panel is the spectrogram. The middle panel is the six-band
S . . energy waveform and the bottom panel is the six-band ROR waveforms,

(van Beinum, 199)4, If the region between thes pair of both from fine processing. The energy waveforms’ vertical range is approxi-

peaks does not satisfy the vowel requirement, then that pajfately 35 dB for bands 1, 5, and 6, and 50 dB for bands 2—4. The ROR

is most likely due to creaky voicing or a low-frequency waveforms’ vertical range is each approximatei20 dB/time step.

burst, and is deleted.

checking for sufficient change in a high-pass energy signal
calculated from the 1.3- to 8-kHz range of a preemphasized
version of the spectrogram. Spanning this broad frequency
An s(onoran} landmark is caused by the closure or re-range allows the detection of high-frequency energy changes
lease of a nasal dit]. Figure 6 illustrates landmark detec- \while avoiding false alarms that would occur had high-
tion. A —slandmark designates a closure angt@landmark  frequency abruptness been measured on narrower bands sus-
designates a release. As the vocal tract constricts for a songeptible to semivowel formants moving in and out of the
rant consonant, energy in ttf§,—F, range decreases. At a bands. As a further measure of high-frequency abruptness,
release, this energy increases. If the constriction is tighthe bands 2—5 peaks that were grouped together by sign
enough and occurs sufficiently quickly, the energy will earlier must occur somewhat coincidentally with the pivot in
change rapidly and simultaneously in all bands. During thehat group. The steady-state and abruptness tests that a pivot
constricted interval for a nasal or @i}, a primary articulator must pass are designed to exclude pivots caused by semi-
has made a complete closure, the vocal folds continue tgowels, which are generally not steady state and not acous-
vibrate, and the vocal-tract shape is relatively constant. Thugcally abrupt.
the spectrum should remain relatively steady, especially at  Heavily voiced obstruent@.g.,[d, v]) are often difficult
low frequencies. to detect with they detector described in the previous section
To find s landmarks, only voiced regions, bounded by abecause Band 1 energy may not change sufficiently. They
+g landmark on the left and ag landmark on the right, are ysually do, however, exhibit clear higher frequency energy
considered. Within a voiced region, any peaks having thehanges. If they are missed by thedetector, they can be
same sign in bands 2-5 are grouped together. The biggegétected by a variation of the detector. In this variation,
absolute peak in each group is designated the “pivot” and isivots are found and high-frequency abruptness is required
a likely candidate for ars landmark. The pivot then has to as before; however, the low-frequency energy in between the

pass a steady-state test and an abruptness test. The steaglgsure and release of the obstruent must not be steady state.
state attribute is measured by examining the spectral magni-

tude in the 0- to 600-Hz range of the spectrogram; higheb
frequencies are not used because pole and zero movement
may cause some variation in the higher frequencies. At clo-  Figure 7 illustratesb(urs) landmark detection. A+b

sure and release, high-frequency abruptness is measured lapndmark signifies an affricate or aspirated stop burst. The

C. S(onorant) detector

B(urst) detector
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within =30 ms of this hand-labeled landmark. The role of a
landmark is to identify approximate times around which fur-
ther detailed processing needs to be performed to extract the
desired acoustic cues. Depending on the acoustic cue to be
extracted, the signal processing may be concentrated more to
the left or more to the right of the hand-labeled landmark.
For example, to find the presence of a voice bar at an ob-
struent closure, processing would be concentrated to the
right of the hand-labeled landmark, which would be at the
oral closure. To determine the place of articulation at this
same landmark, processing would be concentrated ttethe

of the hand-labeled landmark. Voiced obstruent closures
were sometimes detected more than 30 ms beyond the oral
closure because the voice bar could push the maximum band
1 energy change to the right by tens of milliseconds. How-
ever, if a—g landmark was obviously due to the cessation of
the voice bar, the voiced obstruent closure was considered
detected.

A deletion is a missed landmark. It occurs when no land-
mark of the correct sign, regardless of type, is detected in the
vicinity of the hand-labeled landmark. The deletion rate is
calculated by dividing the number of deletions by the total
number of landmarks in the category of interest.

s A substitution is a landmark of the correct sign but

wrong type. The substitution rate is found by dividing the

FIG. 7. B(urst landmark detection. The “... is coming ...” portion of Fig. 4 number of substitutions by the total number of landmarks in
is shown. See Fig. 5 caption for a description. the category of interest.

The detection rate represents the number of hand-labeled
acoustic correlates for &b landmark are a silence interval landmarks correctly identified by sign and type. It can be
followed by a sharp increase in energy in high frequenciesdeduced from the substitution and deletion rates:

Since b landmarks can occur only during regions without . - .
glottal vibration, only the regions gelimite% bygﬂg on the Detection rate-100%-—Substitution rate-Deletion rate.

left and a+g on the right are searched. First, opivdter @

“obstruent pivots”) are found in an analogous manner to  An insertion is a false landmark. It is not in the hand-
pivots, as shown in Fig. 7. An opivot is a candidate fdv a |abeled set and should not have been detected. The insertion
landmark. Next, silence is measured around an opivot. For gate is calculated by dividing the number of insertions by the
+OinOt, a silence interval must exist to the left. This Silencetota| number of landmarks in the Category of interest. A land-

period is measured with bands 3—6 energy, using the backnark of incorrect sign found near a hand-labeled landmark,
ground energy levels in each band as reference. Bands 1 apggardless of type, is an insertion.

2 are not used in order to allow voice bars of voiced ob- A neutral landmark is also not in the hand-labeled set

struent closures to persist without upsetting the detection dyt, because it can be useful in acoustic—phonetic decoding,

an obstruent closure. is not counted as an insertion. Neutral landmarks do not con-
A —b landmark signifies the offset of frication or aspi- tripute to error. Examples of neutral landmarks armg land-

ration noise due to a stop closure. The acoustic correlates feparks at creak$,a —s landmark at the closure of a voiced

a —b landmark are a sharp decrease in high-frequency emspstruent, and a-b landmark at an unaspirated stop burst.

ergy followed by a silence interval. This silence is meaSUrEdrhe neutral rate is Computed by d|\/|d|ng the number of neu-

using all the bands, including bands 1 and 2, since a voic@als by the total number of landmarks in the category of
bar preceding the following stop consonant is unlikely injnterest.

frequency
(kHz)

energy

ROR

English. Conventionally, the error rate refers to the sum of the
deletion, substitution, and insertion rates. This rate will be
IV. RESULTS AND DISCUSSION calledE; . Note that the error rate can exceed 100% because

there is no limit to the number of insertions the landmark
detector can produce. HeEg is a conservative representa-
Results of landmark detection are presented in terms dfon of the results, as it requires that the sagrd the type of

deletion, substitution, insertion, neutral, and detection rateghe landmark be correct in order not to add to the error. A
These rates were determined by comparing the output of theubstitution, though, is clearly not as serious an error as a
landmark detector with the labeled landmarks. A landmarldeletion or an insertion. In some cases, a substitution would
was considered correctly detected if it was of the same signot even be considered an error. To reflect this interpretation
and type(g,sb) as the hand-labeled landmark, and wasof the results, another error rate,, is defined as the sum of

A. Scoring
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TABLE Il. Results of the development set, by landmark type. TABLE IV. Results of the TIMIT development and test sets.

Landmark type No. Tokens Del Subs Ins NeutE,; E, Data set No. Tokens Del Subs Ins NeutE; E,
g(lottis) 1052 1% 3% 7% 0% 11% 8% Development 2144 6% 4% 8% 6% 18% 14%
s(onoranj 332 10% 2% 21% 9% 33% 31% Test 1267 5% 5% 9% 8% 19% 14%
b(ursy 213 5% 1% 6% 33% 12% 11%

Total 1597 4% 2% 10% 7% 16% 14%

a total of 48 utterances. Every sentence in the two data sets is
unique, and the speakers, balanced by gender, span all the
the deletion and insertion rates. Hétg excludes the substi- dialectal regions of the United States.

tution rate from the error. In other words, a detected land-  Because the microphone type and the SNR of TIMIT
mark of the right sign but wrong type is not considered andiffer from those of the original database, some modifica-

error inE,. tions were made to customize the landmark detection algo-
rithm to the TIMIT conditions. The overall idea of finding
B. Overall results abrupt spectral change and applying phonetic knowledge at

the points of spectral change, however, remains the same.
ventually, in a fully automated system, the algorithm would
scover the change in operating environment and modify its

Tables Il and Il show the results by landmark type for
the development and test data sets, respectively. The tota
error ratesg,; andE,, in Table Il are approximately equal to

) . ) . parameter values automatically.
those in Table lll. In part_lcular, th(_a totél, is 1.4% in both Results of the TIMIT experiment are shown in Table IV.
tables. The two tables differ only in the details of the error

t The total deleti teis | in Table Il than i The E, rate is again 14% for both development and test sets,

ypes. 1he lotal deletion rate 1S lower in fable 1! than N ,q 45 the case in the original experiment. This striking simi-

Table .III, while the total insertion rate is hlghgr. This dlffer- larity in E, rates lends credence to the original experiment

EQE’E llustrates the trade-off between deletions and Inselihvolving the smaller database. The substitution rates in the
i - . . TIMIT experiment are higher than in the original experiment
The temporal precision with which the landmark detec-mainly bgcause of subs?itutions fors Iandmgrks P

;[orc}‘lndsklanfg /arks 'S gf tmt?rZSt' :?]f th5e total fntjhmbﬁr OJ An interesting point to note regarding the TIMIT experi-
andmarks, 0 were detected within > ms of the hands, oyt is that there is no degradation in performance between
labeled transcription; 73% were within 10 ms; 83% were

L L the development and test sets. A relatively small develop-
. 0, A -
within 20 ms; and 88% were within 30 ms. A small percent ment set to achiev ual rformance in the test set is

ttademark of knowledge-based engineering. In statistical sys-
The rest(9%) were either substituted or deleted. Since the wiedg g g ISt Y

. . tems, a large amount of training still leads to inferior perfor-
precise placement of a Igndmark is dependent on the acoustic. (e in the test set.
cue to be eX‘Fa‘?tEd’ tuning the landmark detector to be more The remainder of this section will center on the original
precise than it is at this stage would serve no real purpose, periment
Nevertheless, even though the algorithm was not designeof( '
specifically to be precise, its time accuracy is still high.

Although the Qatabases for development and test ar(;l G(lottis) landmarks
small—a total of six speakers and 40 sentences—the trends
shown in Tables Il and IIl are believed to be representative ~ As demonstrated by Tables Il and Il tedetector was
of the behavior of the landmark detector. To test this hypoth¥obust for most of the phonetic contexts in whighand-
esis, a more comprehensive database was used. This néaarks occurred. Table | shows the detection rates of the
database consists of a subset of the TIMIT corpus, a phonetilevelopment and test sets by phonetic category.drtiele-
cally and dialectally comprehensive database of Americations were due mostly to voiced obstruents. Voicing in the
English (Fisheret al, 1986; Zueet al, 1990a. The experi- low frequencies reduced abruptness in band 1 energy. Flaps
ment involving the TIMIT database is briefly presented herewere hard to detect because they were heavily voiced and
for the purpose of illustrating the generalizability of the land-had a short closure interval. If the closure interval was less
mark detector beyond the original database; further detailhan 20 ms, then the smoothing in the general processing
can be found in the work by Li¢1995h. The development stage of the landmark detection algorithm obscured the spec-
set is composed of 16 speakers speaking a total of 80 uttetral discontinuity. In contrast to voiced obstruents, voiceless
ances. The test set is composed of 16 new speakers speakipigstruents had a near 100% detection rate.

Figure 8 shows a spectrogram and some typical behav-

TABLE Ill. Results of the test set, by landmark type. iors of the landmark detector. The bulk of tlgeinsertions
were due to semivowels. When a semivowel was imple-
mented with a tight constriction, there was an abrupt weak-

Landmark type No. Tokens Del Subs Ins NeutE, E,

g(lottis) 486 20 1% 2% 0% 5% 4% ening of high-frequency energy, and sometimes low-
s(onoran} 114 29% 1% 27% 10% 57% 56% frequency energy as well. The ROR peaks that occurred were
b(urs 161 10% 2% 2% 8% 14% 12% then picked up ag landmarks. Figure 8 shows that the two
Total 761 8% 1% 6% 3% 15% 14% LwI's near 0.5 and 0.9 s causgdnsertions. There are twgp

neutrals at the creak at 0.8 s.
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TABLE V. Detection rates of the development set, by position with respect

Keep the water away from  the book.
to reduced vowels. ¥unreduced vowel, #reduced vowel. The number of
00 02 04 05 08 10 12 14 16 15 bed tokens is given in parentheses.
Left-reduced Right-reduced
¥ VeV VCv
altogether 98%(444) 87% (367)
§ +v fric 100% (41) 81% (59)
4 s ssgleg b - +V stop 100%(52) 80% (49)
+94b +g 9 9 499 + -g b
R \ T T A
=22 3 35 :5% £ 2
=175 8 ® 4 5 F. Influence of vowel reduction
2 5% = E 2
2 A % it x . . .
- 3 * Some insight into the effect of prosody on landmark

detection can be gained by considering the position of a
landmark in relation to reduced vowels. Reduced vowel ef-
Fects on the development set are summarized in Table V and
described more fully by Liu19953. Closure and release
landmarks in left-reduced positigreduced vowel to the left,
unreduced vowel to the righthad a higher detection rate
than landmarks in right-reduced positigmnreduced vowel

Compared tag landmarks s landmarks were more dif- to the left, reduced vowel to the rightThis contrast was
ficult to detect.S landmarks relied on the energy change inespecially pronounced in voiced fricatives and voiced stops.
bands 2-5. In these bands, resonance peak amplitudes apfps were not counted because there were not enough to-
resonance frequency ranges were dependent on phonefigns.
context and can vary quite a bit. Most of theeletions were The finding that landmarks in left-reduced environment
next to semivowels, high vowels, back vowels, or reducechave a higher detection rate than landmarks in right-reduced
vowels. In these contexts, spectral change was small at théhvironment suggests that voiced obstruents are likely to be
consonantal closures and releases. Table | shows that, of theduced in right-reduced environment. Consistent with this
slandmarks, nasals were detected better fifs. On aver-  observation, the American English flapping rule states that
age,[l]'s were implemented less abruptly than nasals. Thelveolar stops are likely to be flapped in right-reduced envi-
[m] closure at 1.2 s in Fig. 8 was missed by #hdetector.  ronment.

Most of the s insertions were due to semivowels. A An acoustic analysis of the various prosodic environ-
semivowel’s high-frequency abruptness and low-frequencynents shows why landmarks in right-reduced environment
steady-state voicing could be mistaken for sonorant consaare harder to detect. One acoustic factor that affects land-
nantal segments. In Fig. 8, atinsertion occurred for each of mark detection is constriction duration. The shorter the du-
the [w]'s, at 0.55 and 0.83 s. Another causesoifisertions  ration, the more likely the acoustic changes at a constriction
was the nonsimultaneous change between high- and lowwill be smoothed out. The average constriction duration of
frequency energy at obstruent constrictions. At an obstruersingleton consonants in left-reduced position is-83 ms,
closure, for example, the disappearance of high-frequencyhile in right-reduced position it is only 6328 ms. Another
energy before low-frequency energy may look like a vowel-acoustic factor affecting landmark detection is the amount of
nasal closure to the detector. energy change at closure and release. The bigger the change,

the taller the ROR peak will be, so the easier the detection.

The change in the 20-ms smoothed, band 1 energy at closure

and release was measured for all voiced obstruents. The band

1 energy change at landmarks in left-reduced position was
E. B(urst) landmarks 21+5 dB, while in right-reduced position it is only #%

The b deletion rate was higher than tigedeletion rate. dB.
Being low-amplitude signals, bursts were often obscured by
noise. For example, background noise or speech noise could
mar the silence interval preceding a burst. Also, the energ
changes associated with landmarks were sometimes too
weak to cause an energy discontinuity. For example, the fri-  Other researchers have tried to perform tasks similar to
cation noise followed by a stop closure, as in the syllabldandmark detection for such purposes as phonetic recogni-
boundary of “bathtub,” sometimes did not cause-apivot. ~ tion, automatic phone label alignment, and concatenative

The b insertions were mainly due to extralingual noise speech synthesis. These tasks are often referred to as “seg-
during stop closures. A-b insertion just before 1.8 s in Fig. mentation,” which was described in the Introduction. Direct
8 marks the drop in energy after thie] burst. A+b neutral comparison of landmark detection with segmentation is not
marks a voiced stop burst fpb] at 1.4 s, and another marks possible because the philosophy and goals of the two tasks
the creak at 1.6 s. are different. Nevertheless, the results of some segmentation

FIG. 8. A spectrogram with the output of the landmark detector and th
hand-labeled landmarks below.

D. S(onorant) landmarks

}L:. Comparison to related work
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work will be presented to set the results of landmark detecnasals andl]'s. The large variation in the acoustic manifes-

tion in context. The comparison will be made with the testtations of vowel contexts and the sometimes glidelike nature

results in Table III. of sonorant consonants madéandmarks difficult to detect.
Some researchers have employed a single-level seg-

menter to generate a single hypothesis of what they consider

to be the phonetic boundaries in a speech waveform. Their

goal is to maximize the detection of phonetic boundariesA. Error analysis

while minimizing insertions. Because the sounds of speech Because landmark detection is a critical first step in the

have:[ VS rymgﬂ:evels tOf t;':lbrtf[ptnes:_;, W't? <t:)or_150r|1antal bsegl'exical access system, some way must be devised to take care
ments being theé most abrupt, SEMIVOWEIS being [ess a rup& the errors in landmark detection. Of the errors, insertions

and vowel§ being essentia_llly steady state, a si_ngle—level S€8an be removed when further processing for distinctive fea-
menter using one acoustic measure cannot increase dete[ﬁ'res in the vicinity of an insertion determines that the inser-

tions without increasing insertions as well. Glass and Zue{ion is not a valid landmark. Many of these insertions are due

(1986 have der.nonstrat.ed this trade-off. They used a S€%% semivowel and diphthong transitions; therefore, they are a
mentation algorithm which generated a boundary When.eve lue to the placement of nonabrupt and vocalic landmarks.
the feature vector generated from the broadband signa Substitutions are not real errors since they point to a

changed sufficiently between two frames. Regardless of Sigdesired landmark but assign the wrong type to it. Again,

nal representatiothair cell response, critical band represen- iher processing can determine the true type of a substitu-
tation, or linear predictive codingthe segmentation error

0 ) .
rate hovered around 30%. The hair cell response results, Deletions are the most serious kinds of error. The dele-

which Glass and Zue favored, gave a deletion rate of 23%{10n rate was 8%. Mislabeling of the database may account
an insertion rate of 6%, and thus a total error of 29%. Theirfor up to 2% in this 8%. This 2% figure was estimated from
task required finding semivowel and diphthong boundariestqe number of hand-labeled landmarks whose existence was

as well as vqced stop releases and supsequent onset of fl(!||uestionable. An example of a hand-labeled landmark in this
glottal vibration. In order to compare their results to the land-

K detecti lts. the followi diust ¢ th 2% is an[n] closure in “want.” The closure may be coinci-
mark:detection resufts, the following adjustments on th€yqnt with the velopharyngeal port closure, but if these two
landmark detection results have to be madB: include

. . " . . events are mislabeled with separate landmarks, then a dele-
semivowel and diphthong “boundary” markers, voicing on-

. ) tion is likely to result. The presence of nasality in the pre-
sets of voiced stops, and creaks in the hand-labeledrsste ; _— ;
: ' ceding vowel would indicate an underlying nasal segment
labels comprise about 25% of the total )se2) count g ying 9

. /diohth X " Ki f 4 sh whether or not a-s landmark is detected. As another case,
Seémivowel/diphthong Insertions, creak insertions, and s Or§egments which are phonologically consonantdlbut real-

stop bur;t neutrals as detectiof3) cpuqt voice bar neutrals ized nonabruptly may be mislabeled with abrupt-consonantal
as insertions; ant#) not count substitutions in the error rate. landmarks. This type of mislabeling is common for nasals
With these adjustments, the landmark error rate is 2886 and[l]'s. To some extent, the neutral category of landmarks

] o i ) 0 L
IﬁtmnGriate:ZZ éo,zlns’eruzc;r;/rafrerﬁ /:;)’ IWh'Ch 'S sllgfhtrl1y tl)ettgr E]educes mislabeling errors by not counting certain kinds of
than Glass and Zue's 0. The deletion rate of the landmar sertions and deletions as errors when decisions about land-

d_etector C(_)uld eve_n be lower if the algorithm hz_id be_en de'mark labeling is ambiguous.
signed to find semivowels. Although this comparison is only Another kind of deletion comes from not finding heavily

a rough one, it shows that the_landmark detector performs ahiced obstruents, flaps, nasals, &Hts. One percent in the
well as, if not better than, a single-level segmenter. deletion rate was from missing heavily voiced obstruents and
flaps, and 2% was from missing nasals 4Ht. The land-
marks of these segments are hard to find because energy

Landmark detection is the first step in a proposedabruptness in the expected frequency bands may be compro-
knowledge-based speech recognition system based on idemised by a voice bar, the vowel context, or the speed of
tifying distinctive features. A landmark detection algorithm closure and release. These deletions can potentially be cap-
was designed to find the abrupt-consonantal and abrupt lantlired by a nonabrupt landmark detector, which puts a land-
marks. It incorporates measures of spectral abruptness amdark near the energy minimum of a constriction for semi-
acoustic—phonetic information in a knowledge-based, hierarvowels. Further analysis in the area, to find nasality based on
chical fashion to detect landmarks. The algorithm classifie¢gpole—zero pairs or widened first-formant bandwidth, for ex-
these landmarks into three typegiottis), s(onoran}, and ample, may then be able to identify the underlying segment.
b(urs?. Missingb landmarks accounted for some deletions. One

An experiment was performed using clean speech. Erropercent out of the 8% deletion rate was from not finding
rates were relatively low. Thg landmarks, which corre- sufficient silence during closure. This error can be reduced
spond to stops and fricatives among others, were detectday using a broadband measure for silence with one common
with a 98% detection rate. Thie landmarks, which corre- reference level rather than using a different reference for
spond to bursts and the cessation of noise, were detectedch band.Another 1% in the deletion rate was due to not
with a 90% detection rate. THe detector was sensitive to finding sufficient energy abruptness at the bursts or closures.
nonspeech noise, such as lip smacks. Most of the deletios better SNR, attained possibly through noise-cancelling
and insertions were due sdandmarks, which correspond to preprocessing, could prevent these deletions.

V. SUMMARY AND CONCLUSIONS

3428 J. Acoust. Soc. Am., Vol. 100, No. 5, November 1996 Sharlene A. Liu: Landmark detection 3428



B. Use of prosody bundles at two landmarks would have to be collapsed into
one feature bundle to represent one segment is the closure

mance. If the duration between two detected landmarks ignd release landmarks of an intervocdli¢. An example in

too long, suggesting that a landmark was missed in betweeHVh'Ch one feature bundle at one landmark would have to be

then the ROR peak threshold could be lowered to detec(?(p"’mded into two bundles is ther] release in "bright,” in
rder to account for the two segmefit§ and[r]. Procedures

more subtle spectral changes in that region. Knowing wher@ . .
reduced vowels are could help since reduction affects th&"OUId have to be introduced to account for the different

acoustics around a neighboring landmark, as shown in sel/ays one could pronounce a word. One approach would be

IV F. Prosodic phrase boundary information could be used td° C(_mStrUCt a pr_on_um:latlor_w network for_ each word having
customize the landmark detector to a change in fundament IuIt|pIe pronunciations. This pronunciation network would
described at the distinctive feature level, since one of the

frequency, a decreased waveform intensity, and a lengthen o ST . . " .
syllqable y y 9 advantages of distinctive features is their ability to describe

modifications concisely. Another way to describe modifica-

tion is by identifying all modifiable features in the lexicon

and the contexts in which modification occurs, and then plac-
In the process of landmark detection, inferences aboung reduced weight on discrepancies in these features during

some of the articulator-free features at a landmark can bghe lexical matching process, based on the context. Once the

made. Constraints on the articulator-free features, and thugronunciation network is in place or the modifiable features

broad phonetic class, arise. Adandmark carries with it the are marked, lexical access using a sequence of feature

featured +consonantdland[+sonorant A b landmark car- bundles is a straightforward process.

ries with it the feature§+consonantd] [—sonoran}, and

[—continuant. A g landmark is ambiguous, since it could be ACKNOWLEDGMENTS

[+consonantglor [—consonantdl If a stop closure or re-

lease is causing thg landmark, for example, then the land-

Adding prosodic information could improve perfor-

C. Articulator-free features

I am grateful to Professor Kenneth N. Stevens for his

- guidance throughout this research and the writing of this
mark would carry the featurgs- consonantd) [ —sonorani paper. | also thank Dr. James R. Glass and two anonymous

and[—continuan}, however, if arlh] or glottal stop is caus- reviewers for their helpful suggestions. This work was par-

ing the landmark, then it would carry the feature .
[—consonantdl The presence or absence of formant move-tlally supported by a grant from NSF and by the Clarence J.

. oo LeBel fund.
ments around thg landmark would resolve this ambiguity. eBel fund
Outer AC landmarks come in closure—release pairs ex-

he beginni d end of 0 h | IKnowledge-based systems also suffer from changes in operating environ-
cept at the beginning and end of an utterance. Once the va Ufient. However, the difference is that a knowledge-based approach directly

of the feature[consonantdlis ascertained, the outekC measures the critical changes that have occufesgl, F, changes, new
landmarks can be identified and paired with each other.microphone characteristicand then modifies its processing parameters to

Knowing the time duration between twaC landmarks will suit the new environment. This approach is conceivably faster than a purely
statistical approach, in which the system would have to be presented with

aid in distinguishing between singleton consonants and CoNgpstantial data from the new environment.
sonant clusters. 2A segments used in this paper to refer to a bundle of distinctive features
which describe a speech sound and which have acoustic correlates. It does
. not refer to a physical slice of the acoustic signal.
D. Nonabrupt and vocalic landmarks 3Segmentation does not involve the further step of associating any phonetic

The landmark detector described here finds abrupt an(fl?&"g‘;ﬂfﬁ iﬁgggzia‘i;sﬁe;égze assignment of phonetic labels is done by a

abrupt-consonantal landmarks. Algorithms to detect the nortcreaks have linguistic significance. For example, they can signal word
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marks, for vowels, still need to be developed. The |andmarl§|n the TIMIT experiment, this technique was employed and did indeed
! ' ) decrease the error.

detector presented here can help find the remaining land-
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