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This work is a component of a proposed knowledge-based speech recognition system which uses
landmarksto guide the search fordistinctive features. In the speech signal, landmarks identify times
when the acoustic manifestations of the linguistically motivated distinctive features are most salient.
This paper describes an algorithm for automatically detecting acoustically abrupt landmarks. Some
examples of acoustically abrupt landmarks are stop closures and releases, nasal closures and
releases, and the point of cessation of free vocal fold vibration due to a velopharyngeal port closure
at a nasal-to-obstruent juncture. As a consequence of landmark detection, the algorithm provides
estimates of the broad phonetic class~articulator-free features! of the underlying segment. The
algorithm is hierarchically structured, and is rooted in linguistic and speech production theory. It
uses several factors to detect landmarks: energy abruptness in five frequency bands and at two levels
of temporal resolution, segmental duration, broad phonetic class constraints, and articulatory
constraints. Tested on a database of continuous, clean speech of women and men, the landmark
detector has detection rates over 90%. A large majority of the detections were within 20 ms of the
landmark transcription, and almost all were within 30 ms. The results are analyzed by landmark type
and phonetic class. ©1996 Acoustical Society of America.

PACS numbers: 43.72.Ne@JS#

INTRODUCTION

A. A knowledge-based approach

In a knowledge-based approach to speech recognition,
knowledge about speech and the operating environment is
explicitly built into the recognizer by the system designer. It
can model parts of the human perception process. Since hu-
mans are the best speech recognizers known to us, a
knowledge-based approach is a worthwhile endeavor. If suc-
cessful, it should have the flexibility to work in many oper-
ating environments. A knowledge-based system is dedicated
to processing speech~versus signals in general! and therefore
is efficient in that sense. Because knowledge sources are ex-
plicitly incorporated, improvements to the system can be
made in a directed, meaningful manner. Prosodic and seg-
mental level knowledge can usually be added in a straight-
forward way. The knowledge necessary to design such a sys-
tem, however, should be as comprehensive as possible and
the desired acoustic parameters need to be automatically ex-
tractable.

Rather than explicitly specifying speech knowledge in a
recognition system, a statistical approach builds models by
training on speech data, thereby implicitly acquiring knowl-
edge on its own. Automatic learning during the training
phase makes statistical methods powerful, since much of our
present ignorance about speech can be overcome in this way.
Statistical methods have been successful for large-
vocabulary, speaker-independent speech recognition@e.g.,
the work by Lee ~1989!#. In the training phase, large
amounts of data are used to cover all the possible contextual

variations of phonetic units. Frequently occurring speech
units can be modeled well, but infrequently occurring units
will not be as well specified. Because of their heavy reliance
on data, statistical methods do not generalize easily to tasks
for which they are not explicitly trained. For example, if the
operating environment does not match the training environ-
ment~e.g., a different microphone is used, background noise
is added, or speech is bandlimited to the telephone line!,
recognition accuracy can decrease severely. To accommo-
date a new operating environment, retraining or adaptation is
usually required. In adverse conditions, like noisy or tele-
phone quality environments, building models the statistical
way does not always give satisfactory performance@e.g., the
work by Daset al. ~1993!#.1

Speech recognition systems may use a combination of
both knowledge-based and statistical approaches. In much of
speech recognition research since the late 1980s, hidden
Markov models~HMMs!, a popular statistical tool, form the
foundation of most systems. Increasingly, artificial neural
networks ~ANNs!, another statistical tool, are becoming
popular as well. Hybrid HMM/ANN systems are being built.
In these fundamentally statistical systems, knowledge
sources are added whenever suitable. Examples of such
knowledge sources are phone duration information, an audi-
tory model front end, or, more simply, the mel-frequency
scale to approximate the frequency warping performed by
the basilar membrane. The fundamental philosophy underly-
ing the speech recognition system adopted in this paper,
however, is knowledge based instead of statistical. The sys-
tem employs some statistics as a guide to making decisions
but the foundation of the system is not statistical.

Figure 1 shows a block diagram of the proposeda!E-mail address: liu@lexic.mit.edu
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knowledge-based speech recognition system~Stevenset al.,
1992!. This system sets the framework for the research pre-
sented in this paper. The first step is to locatelandmarks,
which are points in an utterance around which information
about the underlyingdistinctive featuresmay be extracted.
Next, the distinctive features at a landmark are identified
based on acoustic measurements made in the vicinity of the
landmark. The landmarks and associated features are related
to the underlying segments2 and a sequence of segments is
hypothesized. This sequence is matched to a lexicon whose
words are directly defined in terms of features, and word
hypotheses are made. Feedback allows information from an
advanced stage to be used to correct mistakes made at an
earlier stage.

B. Distinctive features

The speech recognition system of Fig. 1 has two note-
worthy properties. The first is the chosen unit of speech, the
distinctive feature. Distinctive features concisely describe the
sounds of a language at a subsegmental level. They have a
relatively direct relation to acoustics and articulation. They
take on binary values and form a minimal set which can
distinguish each segment from all others in a language~Ja-
kobsonet al., 1952!. Another advantage of distinctive fea-
tures is that they can concisely describe many of the contex-
tual variations of a segment. These contextual variations
could be due to individual speaking styles and phonological
assimilation across word boundaries. If the unit of modeling
were the phoneme rather than the distinctive feature, a sepa-
rate model would be required for every modification of the
phoneme, resulting in an explosion of the number of speech
units required, as Lee~1989! experienced with triphone mod-
eling. The number of units is even larger if syllable or word
models are used.

C. Landmark detection

The second noteworthy property of the proposed speech
recognition system is landmarks. They are a guide to the
presence of underlying segments, which organize distinctive
features into bundles. Landmarks define regions in an utter-

ance when the acoustic correlates of distinctive features are
most salient. They mark perceptual foci and articulatory tar-
gets. Stevens~1985! has suggested that, for some phonetic
contrasts, a listener focuses on landmarks to get the acoustic
cues necessary for deciphering the underlying distinctive fea-
tures. Furui~1986! and Ohde~1994! have made this same
observation for Japanese syllables and children’s speech, re-
spectively. In order to exploit these information-rich areas of
the speech waveform, the proposed speech recognition sys-
tem first finds landmarks in the speech waveform so that
subsequent processing can focus on relevant signal portions,
instead of treating each part of the signal equally impor-
tantly. Based on the kind of landmark found, certain distinc-
tive features will be relevant and others will not. This very
directed approach minimizes the amount of processing nec-
essary. Landmarks can also be found somewhat indepen-
dently of timing factors, like speaking rate and segmental
duration. On the other hand, landmarks can give timing in-
formation to aid in later processing. The vertical lines in Fig.
2 denote some examples of landmarks. The types of land-
mark shown will be explained in Sec. I.

Landmark detection is just one way to organize the
speech waveform. Frame-based processing and segmentation
are two other possibilities. All three methods begin with slic-
ing the speech waveform into equal-length, likely overlap-
ping frames; their difference lies in how they organize sub-
sequent processing. Figure 3 illustrates the differences
among these three techniques.

FIG. 1. The proposed speech recognition system.

FIG. 2. An illustration of landmarks;AC5abrupt-consonantal,A5abrupt,
N5nonabrupt,V5vocalic.

FIG. 3. The differences among frame-based processing, segmentation, and
landmark detection. The waveform is of the word ‘‘practice.’’
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In frame-based processing, presently the most popular
way of dividing up the speech waveform, the framesthem-
selvesare the centers of subsequent processing. A frame is
typically 15–30 ms long and occurs every 5–10 ms. A fixed
set of speech attributes is measured at each frame.

More structured than frame-based processing, segmenta-
tion findsboundariesin the speech waveform. These bound-
aries delimit unequal-length, semi-steady-state, abutting re-
gions, with each region corresponding to a phone or
subphone unit.3 Subsequent processing focuses on these re-
gions, typically acquiring averages across a region@e.g., see
Gish and Ng~1993!# and sometimes measuring attributes
near the boundaries@e.g., see Zueet al. ~1990b!#. In various
tasks, Flammiaet al. ~1992! and Marcus~1993! have found
that a segmentation approach performs better than or compa-
rably to a frame-based approach while reducing the compu-
tational load in training and testing by a significant amount.
In continuous speech recognition systems of the 1970s
through the mid-1980s, segmentation was a popular method
of organizing the speech waveform. Segmentation was com-
patible with acoustic–phonetic processing, which was then
widely used@e.g., see Weinsteinet al. ~1975!#. A problem
arises with segmentation, however, when parts of the wave-
form do not have sharp boundaries, like those corresponding
to diphthongs and semivowels. In order to accommodate dif-
ferent degrees of abruptness, either oversegmentation is re-
quired to find all the pieces of interest~Andre-Obrecht,
1988! or a multilevel representation is needed~Glass, 1988!.

Landmark detection is distinctly different from frame-
based processing and segmentation, as illustrated in Fig. 3.
As mentioned before, landmarks arefoci, so speech process-
ing is done around a landmark rather than in between two
landmarks. While many of the boundaries in segmentation
are also the landmarks for a landmark-based system, not all
boundaries are landmarks and not all landmarks are bound-
aries. The problem of delimiting semivowels and diphthongs
is avoided altogether by landmark detection, as will be ex-
plained in Sec. I. Landmark detection is typically more hier-
archical and involves more than one acoustic measure. Also,
landmarks are associated with bundles of distinctive features
whereas segmentation is associated with phones.

D. Objective and outline

As the first step in the lexical access process, landmark
detection is of primary importance. The most numerous
types of landmarks are acoustically abrupt. An estimate
based on a phonetically balanced subset of sentences in the
TIMIT corpus ~Zue et al., 1990a! shows that acoustically
abrupt landmarks comprise approximately 68% of the total
number of landmarks in speech. These landmarks are often
associated with consonantal segments, e.g., a stop closure or
release. This paper describes a knowledge-based algorithm
for automatically detecting acoustically abrupt landmarks.
Acoustically abrupt landmarks comprise ‘‘abrupt-
consonantal’’ and ‘‘abrupt’’ landmarks, which are described
in Sec. I. The process of landmark detection provides infor-
mation about the articulator-free features@consonantal#, @so-
norant#, and@continuant#. The landmark detector is designed
and tested on clean, broadband, phonetically controlled

speech. Other experiments involving the TIMIT corpus, tele-
phone speech, and speech in noise are reported by Liu
~1995b!.

The organization of this paper is as follows. In Sec. I we
describe landmarks in greater detail. In Sec. II we present the
database used in a landmark detection experiment. In Sec. III
we detail the landmark detection algorithm. In Sec. IV we
present the results of running the algorithm on the database.
Finally, in Sec. V we summarize the paper, showing how the
articulator-free features can be deduced from the landmark
type, and give suggestions on how the landmark detector can
be improved.

I. LANDMARKS

Landmarks are categorized into four groups: abrupt-
consonantal, abrupt, nonabrupt, and vocalic. Figure 2 shows
examples of these landmark groups for the utterance ‘‘The
day was long.’’ This section will describe these landmark
groups. The focus of this paper is on detecting the abrupt-
consonantal and abrupt landmarks.

Phonologically, segments can be classified as
@1consonantal# or @2consonantal#. A @1consonantal# seg-
ment involves aprimary articulator forming a tight constric-
tion in the midline of the vocal tract~Sagey, 1986!. Only the
articulators in the oral cavity~i.e., lips, tongue blade, and
tongue body! can be primary articulators. Segments not in-
volving a tight constriction or implemented by articulators
outside of the oral cavity~e.g., soft palate and glottis! are
@2consonantal#. Speech is formed by a series of articulator
narrowings and releases. The most salient of these narrow-
ings and releases are acoustically abrupt. An acoustically
abrupt constriction involving a primary articulator is typi-
cally tight and is a consequence of implementing a
@1consonantal# segment. Anabrupt-consonantal~AC! land-
mark marks the closure and another marks the release of one
of these constrictions. The clearest manifestation of anAC
landmark is when the constriction occurs adjacent to a
@2consonantal# segment. A pair of these landmarks, one on
either side of the constriction, will be referred to as theouter
AC landmarks. An example of a pair of outerAC landmarks
is the@"# closure and release in ‘‘able.’’ Other landmarks can
occur within or outside of the pair of outerAC landmarks.
These are described below.

A common sequence of landmarks is one in which the
outerAC landmarks are governed by the same underlying
segment and, thus, are implemented by the same articulator
~e.g., the@"# closure and release in able!. In consonantal
clusters, however, the two outerAC landmarks are often not
governed by the same articulator~e.g., the@!# closure and
@$# release in ‘‘tap dance’’!. The release by the first articu-
lator or the formation of the constriction by the second ar-
ticulator may or may not be manifested in the acoustic sig-
nal. If the articulatory event is observable in the acoustic
signal, then it is marked as anintraconsonantalAC land-
mark. In the ‘‘tap dance’’ example, if the@!# release is evi-
dent in the sound, then the@!# burst and the@$# closure are
intraconsonantalAC landmarks.

The configuration of the glottis and the soft palate are
articulatorily independent of the occurrence of anAC land-
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mark. Just as for abrupt primary articulator movement, the
movements of the glottis or the soft palate can independently
cause an abrupt change in the acoustic signal. For example,
as the glottis moves from a spread to a modal configuration
when air is passing through, vocal-fold vibration begins.
This onset of vocal-fold vibration is observed as a rapid
change in the characteristics of the sound. Likewise, if the
velopharyngeal port closes when the oral cavity is already
closed, there is an abrupt increase in intraoral pressure, re-
sulting in a reduction in the amplitude of glottal pulses.
These abrupt changes in the sound caused by glottal or velo-
pharyngeal activity but without accompanying primary ar-
ticulator movement are labeled asabrupt~A! landmarks. The
AC andA landmarks differ in thatA landmarks do not in-
volve primary articulator movement. TheA landmarks can
occur outside of a pair of outerAC landmarks~called inter-
vocalicA landmarks; e.g., the voice onset after the@!# burst
in ‘‘paint’’ ! or within the pair ~called intraconsonantalA
landmarks; e.g., the@'#–@## transition in ‘‘canteen’’!. To-
gether,AC andA landmarks comprise approximately 68%
of the total number of landmarks, as noted in the Introduc-
tion.

For semivowels, the constriction that is formed is not
narrow enough to create an abrupt change in the spectrum of
the sound. The narrowing of the constriction, however, does
reach some articulatory extreme out of which it gradually

releases. The narrowing of the constriction usually causes a
decrease in the first-formant frequency,F1 , and in the am-
plitude of the sound. If the consonant occurs between two
vowels, a minimum inF1 and in waveform amplitude de-
notes the narrowest point in the constriction~e.g., the middle
of @4# in ‘‘away’’ !. This point is anonabrupt~N! landmark
and occurs outside of a pair of outerAC landmarks. The
narrowest point in the production of a semivowel can be
coincident with an acoustically abrupt part of speech; in such
a case, the landmark is both anN and an acoustically abrupt
landmark~e.g., the@$4# release in ‘‘dwell’’!. TheN land-
marks comprise approximately 3% of the total number of
landmarks, as estimated from the TIMIT database.

Finally, vowels have their own landmarks. When the
vocal tract is at an open extreme for a vowel, a local maxi-
mum occurs in bothF1 and waveform amplitude~e.g., the
middle of @~|# in ‘‘bat’’ !. This point is avocalic ~V! land-
mark and occurs outside of a pair of outerAC landmarks.
The V landmarks make up approximately 29% of the total
number of landmarks, as estimated from the TIMIT data-
base.

For lexical access, a landmark-to-segment relation must
be specified. Sometimes, a one-to-one relation holds, like the
relation between aV landmark and a vowel. Sometimes, a
two-to-one relation holds; for example, an intervocalic frica-
tive can have a landmark at closure and a landmark at re-

TABLE I. Detection rates of the development and test sets, by phonetic category. An* next to a detection rate
means that the number of tokens is less than 30 so the detection rate is unreliable. The number of tokens is
given in parentheses.

Phonetic
category

Landmark
type

Detection rate
~Development!

Detection rate
~Test!

OuterAC 1v fric clos g~lottis! 96% ~97! 96% ~47!
1v fric rel ••• 95% ~109! 98% ~58!
2v fric clos ••• 100% ~58! *100% ~28!
2v fric rel ••• 100% ~107! *100% ~26!
flap clos ••• *88% ~26! *88% ~8!
flap rel ••• *85% ~27! *75% ~8!
1v stop clos ••• 95% ~94! 98% ~48!
unasp’d stop rel ••• 97% ~104! 95% ~44!
2v stop clos ••• 99% ~126! 100% ~62!
asp’d stop rel b~urst! 95% ~111! 89% ~72!
nasal clos s~onorant! 90% ~170! 72% ~53!
nasal rel ••• 90% ~105! 77% ~35!
@(# clos ••• *71% ~21! *33% ~9!
@(# rel ••• 81% ~36! *76% ~17!

IntraconsonantalAC stop clos b~urst! *100% ~20! *30% ~10!
stop rel ••• *95% ~19! *100% ~10!
fric clos ••• *100% ~8! *90% ~29!
affric rel ••• 84% ~56! 95% ~40!
nasal→fric g~lottis! *100% ~26! *100% ~2!
fric→nasal ••• *100% ~13! *100% ~4!

IntraconsonantalA velophar clos g~lottis! 95% ~57! *92% ~25!
velophar rel ••• *25% ~4! *100% ~8!

IntervocalicA @C# clos g~lottis! 90% ~41! *100% ~23!
@C# rel ••• 100% ~51! *100% ~23!
2v @*# onset ••• ••• ~0! ••• ~0!
2v @*# offset ••• 97% ~111! 97% ~72!

Total 94% ~1597! 91% ~761!
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lease. In some cases, a three-to-one relation holds, as in@!#,
which has one landmark at closure, one at the labial release,
and one at voice onset. Or, there may be a one-to-two rela-
tion, as in ‘‘bright,’’ where the landmark at the@"# release
serves both@"# and @.#.

For the purpose of evaluating the performance of a land-
mark detection algorithm, theAC andA landmarks are clas-
sified into phonetic categories. The second column of Table I
lists these categories. The outerAC landmarks are the clo-
sures and releases associated with fricatives, flaps, stops, na-
sals, and@(#’s next to @2consonantal# segments. For ex-
ample, the closure and release of the@"# in @|"|# are outer
AC landmarks. Flaps are classified as obstruents even though
they are often too short to allow much pressure buildup.
Eventually, they will need a specialized detector dedicated to
finding them. IntraconsonantalAC and A landmarks are
those in consonant clusters. For illustration, if the release of
@$# in ‘‘tadpole’’ is evident in the sound, then it is an intra-
consonantalAC stop release and the@!# closure is an intra-
consonantalAC stop closure. In the word ‘‘ski,’’ the end of
/2/ at the /%/ closure is an intraconsonantalAC fricative clo-
sure. An affricate release as in@?w# of ‘‘church’’ is an intrac-
onsonantalAC affricate release. The landmark between the
@2# and @&# in ‘‘small’’ is a fricative→nasal landmark. The
landmark between the@&# and @6# in ‘‘plums’’ is a
nasal→fricative landmark. A velopharyngeal closure or re-
lease occurs for nasal/stop combinations. For example, the
end of glottal vibration after the@'# in ‘‘bending’’ is a velo-
pharyngeal closure. The beginning of glottal vibration for the
@&# in ‘‘batman’’ is a velopharyngeal release. The intervo-
calic A landmarks are caused by the glottis. These are the
onsets and offsets of glottal stops and aspirated consonants.
The remaining columns of Table I will be discussed later.

II. DATABASE

A. Speech recording

Utterances were tape-recorded in a quiet room using an
Electrovoice omnidirectional microphone dangling 25 cm in
front of and 5 cm above the speaker’s mouth. This placement
was roughly equidistant to the nose, mouth, and throat, so the
microphone could pick up signals from all three radiating
sources. The recordings were passed through an antialiasing
filter with a cutoff frequency of 7.5 kHz before being digi-
tized at 16 kHz. The 7.5-kHz cutoff frequency allowed rel-
evant high-frequency frication noise in female speech to be
captured. The signal-to-noise ratio~SNR! for speech re-
corded in this condition was about 30 dB.

B. Lexicon and data sets

A lexicon of 250 words was used to construct 40 syn-
tactically correct sentences. The words were mostly mono-
syllabic ~69%!, some bisyllabic~30%!, and very few trisyl-
labic ~1%!. Fifteen percent of the words had consonant
clusters ~e.g., @2!# in ‘‘sport,’’ @'$# in ‘‘and,’’ or @)Ñ# in
‘‘few’’ !. Two data sets—development and test—were con-
structed. The development set was used during algorithm
development: the design and parameter values of the algo-
rithm were modified by hand based on knowledge accumu-

lated from preliminary results with the development set. It
consisted of four speakers~two women, two men! speaking
the first 20 sentences. The test set was independent from the
development set to see how well the algorithm generalized to
new speakers and new sentences. It consisted of two new
speakers~one woman, one man! speaking the last 20 sen-
tences.

C. Labeling convention

Because a complete speech recognition system which
employs landmark detection was not available, the landmark
detector could not be evaluated in terms of a word recogni-
tion score. Instead, an intermediate level of evaluation was
necessary. This intermediate level was a landmark detection
score, which is highly dependent on the landmark labeling
convention. Thus, care was taken to objectively label utter-
ances with landmarks.

Landmark labeling was done using phonological and
acoustic rules. Three decisions had to be made:~1! the exist-
ence of anAC or A landmark,~2! the time placement of the
landmark, and~3! the categorization of the landmark. Wave-
form and spectrogram displays and listening were used to
guide landmark labeling.

An AC or A landmark exists if the underlying segment
is acoustically evident and acoustically abrupt. The intended
sentences were used to guide the labeling. Most of the time,
the intended phonological targets were manifested in the
speech signal. Sometimes, however, phonological targets
were modified in the speech signal. For example, a@Z# fol-
lowing a nasal, as in ‘‘in the,’’ often shows little evidence of
diminished voicing, so instead of labeling it as a velopharyn-
geal closure followed by a fricative release, it was labeled
simply as a sonorant consonantal release. Even if a phono-
logical target is manifested in the speech signal, it may not
be acoustically abrupt. A typical example is@(#, which can be
acoustically abrupt or not. An@(# closure or release was con-
sidered acoustically abrupt if 90% of its broadband energy
transition in dB occurred within 40 ms.

Regarding the time placement of a landmark, anAC or
A landmark was put at the time of the articulator movement
which caused the landmark, as inferred from the acoustic
data. Time placement for mostAC and A landmarks is
straightforward because of the abrupt spectral change that
takes place. The landmark for a voiced obstruent closure was
placed at the disappearance of high-frequency formant en-
ergy in the spectrogram.

The landmarks were grouped into the phonetic catego-
ries listed in Table I. A flap was defined to have a 35 ms or
less closure interval; otherwise it was categorized as a@## or
@$#. This criterion is in accord with Zue and Laferriere’s
~1979! acoustic study, in which they found that the average
closure period of a flap is 26–27 ms, with a standard devia-
tion of 10–12 ms. OuterAC landmarks associated with stop
closures and fricatives were further divided into voiced and
unvoiced. To avoid interpreting the various acoustic mani-
festations of voicing at these landmarks, a voiced/unvoiced
decision was made based on the underlying phonology alone.
Stop releases, on the other hand, were categorized as aspi-
rated or unaspirated based on the voice onset time~VOT!.
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Almost all of the aspirated stops were unvoiced, and almost
all of the unaspirated stops were voiced. Unaspirated stop
releases were labeled with one landmark while aspirated stop
releases were labeled with two landmarks~one at the burst
and one at the voice onset!. A stop release was considered
unaspirated if the VOT was 20 ms or less. It was considered
aspirated if the VOT was more than 20 ms. This criterion
agrees with Lisker and Abramson’s~1964! finding that En-
glish unvoiced aspirated stops in word-initial position have
an average VOT of 28 ms or more, depending on the place of
articulation, and the voiced unaspirated counterparts have an
average VOT of 17 ms or less. Affricates also had a 20-ms
criterion: separate burst and fricative release landmarks were
assigned only if the VOT exceeded 20 ms. Nasal onsets and
offsets at the beginnings and ends of utterances were labeled
as velopharyngeal releases and closures, respectively.

In order to assess the effect of vowel reduction on land-
mark detection, vowels next toAC andA landmarks were
labeled as either reduced or unreduced. A reduced vowel is
short in duration@typically less than 50 ms~Klatt, 1976!# and
low in intensity@typically 12 dB or more down from a neigh-
boring stressed vowel~Beckman, 1986!#. Schwas by defini-
tion are reduced; syllabic nasals, syllabic@(#’s, and some
@Ñ#’s are typically reduced. All other vowels, stressed or oth-
erwise, were classified as unreduced.

These labeling conventions agree for the most part with
those of TIMIT for acoustically abrupt points in the speech
waveform~Zue and Seneff, 1990!. TIMIT labels were simi-
larly motivated by phonemics and acoustics. Abrupt acoustic
changes were always marked. If no acoustic evidence existed
for a certain phoneme, then no label was put there. Spectro-
gram displays and listening were also used to decide on la-
bels. One difference between the database presented here and
TIMIT was the labeling of stop releases. Whereas only one
label was placed at an unaspirated stop release in this data-
base, two labels were placed in TIMIT, one for the burst and
one for the voice onset, regardless of the VOT.

III. LANDMARK DETECTION ALGORITHM

Figure 4 shows a flow diagram of the algorithm for land-
mark detection. Speech input goes through a general signal
processing stage, whose outputs feed a landmark type-
specific processing stage. The output of type-specific pro-
cessing is a series of landmarks specified by time and type.
In general processing, a spectrogram is computed and di-
vided into six frequency bands. Then, a coarse- and a fine-
processing pass are executed. In each pass, an energy wave-
form is constructed in each of the six bands, the derivative of
the energy is computed, and peaks in the derivative are de-
tected. Localized peaks in time are found by matching peaks
from the coarse- and fine-processing passes. These peaks
represent times of abrupt spectral change in the six bands. In
type-specific processing, the localized peaks direct process-
ing to find three types of landmarks. These three types are
the following:

~1! g~lottis!, which marks a time when there is a transition of

freely vibrating vocal folds~with no increase in intraoral
pressure! to a condition where the vocal folds are not
freely vibrating, or vice versa;

~2! s~onorant!, which marks sonorant consonantal closures
and releases;

~3! b~urst!, which designates stop or affricate bursts and
points where aspiration or frication ends due to a stop
closure.

Table I associates landmarks in each phonetic category with
a landmark type. The rest of this section presents the steps
just outlined in greater detail.

A. General processing

A broadband spectrogram is computed with a 6-ms Han-
ning window every 1 ms. Each 6-ms frame is zero-padded
out to 512 points before a discrete Fourier transform~DFT!
is taken. The top panel of Fig. 5 shows a spectrogram for the
utterance: ‘‘The money is coming today.’’ The spacing be-
tween points for the DFT is 31.2 Hz, so that spectral peak
amplitudes in later energy computations can be estimated
reasonably well. The high frame rate allows quick acoustic
changes to be monitored. Some acoustic changes happen
very quickly, particularly the ones associated with obstruent
segments as articulators move from one quantal state to an-
other. The short Hanning window produces a broadband
spectrum, which gives broad spectral information while sup-
pressing harmonic detail.

The resulting spectrogram is then divided into the fol-
lowing six frequency bands:

Band 1: 0.0–0.4 kHz
2: 0.8–1.5
3: 1.2–2.0
4: 2.0–3.5
5: 3.5–5.0
6: 5.0–8.0

Band 1 monitors the presence or absence of glottal vibration.

FIG. 4. The landmark detection algorithm. The input is speech and the
output is three types of landmarks:g~lottis!, s~onorant!, b~urst!.
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It does not extend beyond 400 Hz in order to reduce the
chance of picking up low-frequency burst energy. Closures
and releases for sonorant consonants are detected using
bands 2–5. These bands approximate the frequency ranges
for the spectral prominences of sonorant consonants. For in-
tervocalic sonorant consonantal segments, a large spectral
change usually occurs in the 0.8- to 2-kHz range, and this
change is often due to the introduction of a zero in the vocal-
tract transfer function in that range. In order to capture this
change, bands 2 and 3 span this range and are chosen to
overlap. Each of these two bands is not guaranteed to contain
one spectral prominence, but at least one band is expected to
capture at least one spectral prominence. At a sonorant con-
sonantal closure, band 1 energy remains strong because glot-
tal vibration continues; however, spectral prominences above
F1 show a marked abrupt decrease in energy because of
increased acoustic losses, the rapid change of zeros in pole–
zero pairs, and the fall inF1 . The onsets and offsets of
aspiration and frication noise associated with stops, frica-
tives, and affricates can also be found from bands 2–5. Noise
energy will lie in at least one of these four bands. Band 6
spans the remaining frequency range up to 8 kHz, and is one
of the bands used for silence detection for stops.

Following the computation of the spectrogram, energy
changes in the six bands are found using a two-pass strategy,
as indicated by the two parallel branches coming out of the
spectrogram block in Fig. 4. Both passes employ the same
processing steps except that the first pass uses coarse param-
eter values to find the general vicinity of a spectral change,
and the second pass uses fine parameter values to localize it
in time. The processing strategy will be described with the
first pass parameter values, and then the second pass param-
eter values will be given.

In the coarse-processing pass, an energy waveform in
each of the six bands is calculated. The middle panel of Fig.

5 gives an example of the band 1 energy waveform. An
energy waveform should be able to resolve abrupt acoustic
changes due to sudden changes in formant frequency ampli-
tudes, but ignore glottal pulse variations and noise fluctua-
tions. To smooth out the unwanted characteristics, a 20-ms
average of the squared magnitude of the spectrogram, cen-
tered about the time of interest, is computed every 1 ms.
Within each band, the maximum in the smoothed spectro-
gram at each time is chosen to represent the energy in that
band. Energy is then recorded in dB. Provided a band en-
compasses exactly one spectral prominence, picking the
maximum energy in the band as a function of time is the
same as following the spectral prominence amplitude in
time.

Once the six-band energy is computed, a six-bandrate-
of-rise ~ROR! is found by taking an overlapping dB first
difference of the energy in each band. The ROR waveform
of a band indicates how quickly the energy is changing in
that band. Working with dB differences automatically con-
siders relative values so that gain normalization is not nec-
essary across utterances. The first difference is computed ev-
ery 1 ms using a 50-ms time step, centered about the time of
interest. The 50-ms time step is chosen to span energy tran-
sitions of abrupt closures and releases, including voiced ob-
struent closures, taking into account the 6-ms Hanning win-
dow and 20-ms smoothing. The third panel of Fig. 5 shows
the ROR calculated from the band 1 energy waveform above
it.

The positive and negative peaks in the ROR waveform
are the points of abrupt acoustic change in a band. Mermel-
stein’s~1975! peak-picking algorithm was tailored to find the
ROR6peaks whose absolute value is greater than 9 dB. The
9-dB threshold is motivated by the difference in glottal
source amplitude between an obstruent and a neighboring
vocalic segment and by empirical evidence. The two dotted
horizontal lines in the third panel of Fig. 5 show the69-dB
thresholds. The peaks that are detected by the peak-picker
are shown with6 signs indicating the polarity of the peaks.

In the parallel fine-processing pass shown in Fig. 4,
some parameter values are modified in order to localize en-
ergy changes in time. A 10-ms smoothing interval is used on
the spectrogram instead of 20 ms; a time step of 26 ms is
used for the ROR calculation instead of 50 ms; and the peak
threshold for band 1 is reduced from 9 to 6 dB. This 3-dB
reduction is made to accommodate smaller peaks due to the
reduction of the time step. The peak thresholds in bands 2–6
are kept at 9 dB to prevent too many spurious peaks in those
bands from occurring.

As shown in Fig. 4, the ROR peaks resulting from the
coarse and fine passes come together at a ‘‘peak localiza-
tion’’ block. Here, ROR peaks from the coarse pass are used
to guide the search for corresponding ROR peaks in the same
band from the fine pass. Within630 ms of a coarse pass
peak, the biggest fine pass peak~in absolute terms! with the
same sign as the coarse pass peak is chosen as the localized
peak. Localized peaks are the inputs into the landmark type-
specific processing stage. The type-specific detectors forg, s,
andb landmarks are explained next.

FIG. 5. General processing as the first part of the landmark detection algo-
rithm. The top panel shows the spectrogram for the utterance ‘‘The money is
coming today.’’ The middle panel is the band 1 energy and the bottom panel
is the band 1 ROR, both from coarse processing. The two dotted horizontal
lines are thresholds for peak picking. The peaks detected are shown with6
signs indicating the polarity of the peaks. Band 1 peaks are also likely
candidates forg~lottis! landmarks.
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B. G(lottis) detector

A g~lottis! landmark pinpoints a time the vocal folds
start or stop free vibration. The factors causing free vocal-
fold vibration to cease are a buildup of intraoral pressure due
to a supraglottal constriction, vocal-fold spreading or glottal
closure, or a reduction of subglottal pressure. The localized
band 1 ROR peaks from general processing are initially all
candidates forg landmarks. These candidates must pass a
series of criteria. A1peak indicates the turning on of glottal
vibration; a2peak indicates the turning off of glottal vibra-
tion. When glottal vibration turns on, it must turn off some
time later. Thus each1peak should be followed by a2peak.
Peaks are inserted wherever necessary to satisfy this condi-
tion. The point of insertion is guided by the shape of the
band 1 energy contour. After the peaks are paired, a mini-
mum vowel requirement is imposed on each6 pair. A 6
pair should span at least the vowel part of a syllable, the
minimum vowel being a schwa. In acoustic terms, this re-
quirement is that band 1 energy between a6 pair of peaks
must be no less than 20 dB below the maximum band 1
energy in the utterance for at least 20 ms. The 20-dB thresh-
old agrees with Stevens~1994! study, in which he showed
that theF1 amplitude of a reduced vowel can regularly be as
low as 17 dB below that of the pitch-accented vowel in the
utterance, provided the reduced vowel is not devoiced. The
20-ms duration requirement is a lower bound on the length
of a schwa, which can regularly be about 30 ms in duration
~van Beinum, 1994!. If the region between the6 pair of
peaks does not satisfy the vowel requirement, then that pair
is most likely due to creaky voicing or a low-frequency
burst, and is deleted.

C. S(onorant) detector

An s~onorant! landmark is caused by the closure or re-
lease of a nasal or@(#. Figure 6 illustratess landmark detec-
tion. A 2s landmark designates a closure and a1s landmark
designates a release. As the vocal tract constricts for a sono-
rant consonant, energy in theF2–F4 range decreases. At a
release, this energy increases. If the constriction is tight
enough and occurs sufficiently quickly, the energy will
change rapidly and simultaneously in all bands. During the
constricted interval for a nasal or an@(#, a primary articulator
has made a complete closure, the vocal folds continue to
vibrate, and the vocal-tract shape is relatively constant. Thus
the spectrum should remain relatively steady, especially at
low frequencies.

To find s landmarks, only voiced regions, bounded by a
1g landmark on the left and a2g landmark on the right, are
considered. Within a voiced region, any peaks having the
same sign in bands 2–5 are grouped together. The biggest
absolute peak in each group is designated the ‘‘pivot’’ and is
a likely candidate for ans landmark. The pivot then has to
pass a steady-state test and an abruptness test. The steady-
state attribute is measured by examining the spectral magni-
tude in the 0- to 600-Hz range of the spectrogram; higher
frequencies are not used because pole and zero movement
may cause some variation in the higher frequencies. At clo-
sure and release, high-frequency abruptness is measured by

checking for sufficient change in a high-pass energy signal
calculated from the 1.3- to 8-kHz range of a preemphasized
version of the spectrogram. Spanning this broad frequency
range allows the detection of high-frequency energy changes
while avoiding false alarms that would occur had high-
frequency abruptness been measured on narrower bands sus-
ceptible to semivowel formants moving in and out of the
bands. As a further measure of high-frequency abruptness,
the bands 2–5 peaks that were grouped together by sign
earlier must occur somewhat coincidentally with the pivot in
that group. The steady-state and abruptness tests that a pivot
must pass are designed to exclude pivots caused by semi-
vowels, which are generally not steady state and not acous-
tically abrupt.

Heavily voiced obstruents~e.g.,@$, 3#! are often difficult
to detect with theg detector described in the previous section
because Band 1 energy may not change sufficiently. They
usually do, however, exhibit clear higher frequency energy
changes. If they are missed by theg detector, they can be
detected by a variation of thes detector. In this variation,
pivots are found and high-frequency abruptness is required
as before; however, the low-frequency energy in between the
closure and release of the obstruent must not be steady state.

D. B(urst) detector

Figure 7 illustratesb~urst! landmark detection. A1b
landmark signifies an affricate or aspirated stop burst. The

FIG. 6. S~onorant! landmark detection. ‘‘The money is ...’’ portion of Fig. 4
is shown. The top panel is the spectrogram. The middle panel is the six-band
energy waveform and the bottom panel is the six-band ROR waveforms,
both from fine processing. The energy waveforms’ vertical range is approxi-
mately 35 dB for bands 1, 5, and 6, and 50 dB for bands 2–4. The ROR
waveforms’ vertical range is each approximately630 dB/time step.
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acoustic correlates for a1b landmark are a silence interval
followed by a sharp increase in energy in high frequencies.
Since b landmarks can occur only during regions without
glottal vibration, only the regions delimited by a2g on the
left and a1g on the right are searched. First, opivots~for
‘‘obstruent pivots’’! are found in an analogous manner to
pivots, as shown in Fig. 7. An opivot is a candidate for ab
landmark. Next, silence is measured around an opivot. For a
1opivot, a silence interval must exist to the left. This silence
period is measured with bands 3–6 energy, using the back-
ground energy levels in each band as reference. Bands 1 and
2 are not used in order to allow voice bars of voiced ob-
struent closures to persist without upsetting the detection of
an obstruent closure.

A 2b landmark signifies the offset of frication or aspi-
ration noise due to a stop closure. The acoustic correlates for
a 2b landmark are a sharp decrease in high-frequency en-
ergy followed by a silence interval. This silence is measured
using all the bands, including bands 1 and 2, since a voice
bar preceding the following stop consonant is unlikely in
English.

IV. RESULTS AND DISCUSSION

A. Scoring

Results of landmark detection are presented in terms of
deletion, substitution, insertion, neutral, and detection rates.
These rates were determined by comparing the output of the
landmark detector with the labeled landmarks. A landmark
was considered correctly detected if it was of the same sign
and type ~g,s,b! as the hand-labeled landmark, and was

within 630 ms of this hand-labeled landmark. The role of a
landmark is to identify approximate times around which fur-
ther detailed processing needs to be performed to extract the
desired acoustic cues. Depending on the acoustic cue to be
extracted, the signal processing may be concentrated more to
the left or more to the right of the hand-labeled landmark.
For example, to find the presence of a voice bar at an ob-
struent closure, processing would be concentrated to the
right of the hand-labeled landmark, which would be at the
oral closure. To determine the place of articulation at this
same landmark, processing would be concentrated to theleft
of the hand-labeled landmark. Voiced obstruent closures
were sometimes detected more than 30 ms beyond the oral
closure because the voice bar could push the maximum band
1 energy change to the right by tens of milliseconds. How-
ever, if a2g landmark was obviously due to the cessation of
the voice bar, the voiced obstruent closure was considered
detected.

A deletion is a missed landmark. It occurs when no land-
mark of the correct sign, regardless of type, is detected in the
vicinity of the hand-labeled landmark. The deletion rate is
calculated by dividing the number of deletions by the total
number of landmarks in the category of interest.

A substitution is a landmark of the correct sign but
wrong type. The substitution rate is found by dividing the
number of substitutions by the total number of landmarks in
the category of interest.

The detection rate represents the number of hand-labeled
landmarks correctly identified by sign and type. It can be
deduced from the substitution and deletion rates:

Detection rate5100%2Substitution rate2Deletion rate.
~1!

An insertion is a false landmark. It is not in the hand-
labeled set and should not have been detected. The insertion
rate is calculated by dividing the number of insertions by the
total number of landmarks in the category of interest. A land-
mark of incorrect sign found near a hand-labeled landmark,
regardless of type, is an insertion.

A neutral landmark is also not in the hand-labeled set
but, because it can be useful in acoustic–phonetic decoding,
is not counted as an insertion. Neutral landmarks do not con-
tribute to error. Examples of neutral landmarks are6g land-
marks at creaks,4 a 2s landmark at the closure of a voiced
obstruent, and a1b landmark at an unaspirated stop burst.
The neutral rate is computed by dividing the number of neu-
trals by the total number of landmarks in the category of
interest.

Conventionally, the error rate refers to the sum of the
deletion, substitution, and insertion rates. This rate will be
calledE1 . Note that the error rate can exceed 100% because
there is no limit to the number of insertions the landmark
detector can produce. HereE1 is a conservative representa-
tion of the results, as it requires that the signand the type of
the landmark be correct in order not to add to the error. A
substitution, though, is clearly not as serious an error as a
deletion or an insertion. In some cases, a substitution would
not even be considered an error. To reflect this interpretation
of the results, another error rate,E2 , is defined as the sum of

FIG. 7. B~urst! landmark detection. The ‘‘... is coming ...’’ portion of Fig. 4
is shown. See Fig. 5 caption for a description.
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the deletion and insertion rates. HereE2 excludes the substi-
tution rate from the error. In other words, a detected land-
mark of the right sign but wrong type is not considered an
error inE2 .

B. Overall results

Tables II and III show the results by landmark type for
the development and test data sets, respectively. The total
error rates,E1 andE2 , in Table II are approximately equal to
those in Table III. In particular, the totalE2 is 14% in both
tables. The two tables differ only in the details of the error
types. The total deletion rate is lower in Table II than in
Table III, while the total insertion rate is higher. This differ-
ence illustrates the trade-off between deletions and inser-
tions.

The temporal precision with which the landmark detec-
tor finds landmarks is of interest. Of the total number of
landmarks, 44% were detected within 5 ms of the hand-
labeled transcription; 73% were within 10 ms; 83% were
within 20 ms; and 88% were within 30 ms. A small percent-
age were beyond 30 ms, due to voiced obstruent closures.
The rest~9%! were either substituted or deleted. Since the
precise placement of a landmark is dependent on the acoustic
cue to be extracted, tuning the landmark detector to be more
precise than it is at this stage would serve no real purpose.
Nevertheless, even though the algorithm was not designed
specifically to be precise, its time accuracy is still high.

Although the databases for development and test are
small—a total of six speakers and 40 sentences—the trends
shown in Tables II and III are believed to be representative
of the behavior of the landmark detector. To test this hypoth-
esis, a more comprehensive database was used. This new
database consists of a subset of the TIMIT corpus, a phoneti-
cally and dialectally comprehensive database of American
English ~Fisheret al., 1986; Zueet al., 1990a!. The experi-
ment involving the TIMIT database is briefly presented here
for the purpose of illustrating the generalizability of the land-
mark detector beyond the original database; further details
can be found in the work by Liu~1995b!. The development
set is composed of 16 speakers speaking a total of 80 utter-
ances. The test set is composed of 16 new speakers speaking

a total of 48 utterances. Every sentence in the two data sets is
unique, and the speakers, balanced by gender, span all the
dialectal regions of the United States.

Because the microphone type and the SNR of TIMIT
differ from those of the original database, some modifica-
tions were made to customize the landmark detection algo-
rithm to the TIMIT conditions. The overall idea of finding
abrupt spectral change and applying phonetic knowledge at
the points of spectral change, however, remains the same.
Eventually, in a fully automated system, the algorithm would
discover the change in operating environment and modify its
parameter values automatically.

Results of the TIMIT experiment are shown in Table IV.
TheE2 rate is again 14% for both development and test sets,
as was the case in the original experiment. This striking simi-
larity in E2 rates lends credence to the original experiment
involving the smaller database. The substitution rates in the
TIMIT experiment are higher than in the original experiment
mainly because ofg substitutions fors landmarks.

An interesting point to note regarding the TIMIT experi-
ment is that there is no degradation in performance between
the development and test sets. A relatively small develop-
ment set to achieve equal performance in the test set is a
trademark of knowledge-based engineering. In statistical sys-
tems, a large amount of training still leads to inferior perfor-
mance in the test set.

The remainder of this section will center on the original
experiment.

C. G(lottis) landmarks

As demonstrated by Tables II and III, theg detector was
robust for most of the phonetic contexts in whichg land-
marks occurred. Table I shows the detection rates of the
development and test sets by phonetic category. Theg dele-
tions were due mostly to voiced obstruents. Voicing in the
low frequencies reduced abruptness in band 1 energy. Flaps
were hard to detect because they were heavily voiced and
had a short closure interval. If the closure interval was less
than 20 ms, then the smoothing in the general processing
stage of the landmark detection algorithm obscured the spec-
tral discontinuity. In contrast to voiced obstruents, voiceless
obstruents had a near 100% detection rate.

Figure 8 shows a spectrogram and some typical behav-
iors of the landmark detector. The bulk of theg insertions
were due to semivowels. When a semivowel was imple-
mented with a tight constriction, there was an abrupt weak-
ening of high-frequency energy, and sometimes low-
frequency energy as well. The ROR peaks that occurred were
then picked up asg landmarks. Figure 8 shows that the two
@4#’s near 0.5 and 0.9 s causedg insertions. There are twog
neutrals at the creak at 0.8 s.

TABLE II. Results of the development set, by landmark type.

Landmark type No. Tokens Del Subs Ins NeutE1 E2

g~lottis! 1052 1% 3% 7% 0% 11% 8%
s~onorant! 332 10% 2% 21% 9% 33% 31%
b~urst! 213 5% 1% 6% 33% 12% 11%

Total 1597 4% 2% 10% 7% 16% 14%

TABLE III. Results of the test set, by landmark type.

Landmark type No. Tokens Del Subs Ins NeutE1 E2

g~lottis! 486 2% 1% 2% 0% 5% 4%
s~onorant! 114 29% 1% 27% 10% 57% 56%
b~urst! 161 10% 2% 2% 8% 14% 12%

Total 761 8% 1% 6% 3% 15% 14%

TABLE IV. Results of the TIMIT development and test sets.

Data set No. Tokens Del Subs Ins Neut E1 E2

Development 2144 6% 4% 8% 6% 18% 14%
Test 1267 5% 5% 9% 8% 19% 14%
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D. S(onorant) landmarks

Compared tog landmarks,s landmarks were more dif-
ficult to detect.S landmarks relied on the energy change in
bands 2–5. In these bands, resonance peak amplitudes and
resonance frequency ranges were dependent on phonetic
context and can vary quite a bit. Most of thesdeletions were
next to semivowels, high vowels, back vowels, or reduced
vowels. In these contexts, spectral change was small at the
consonantal closures and releases. Table I shows that, of the
s landmarks, nasals were detected better than@(#’s. On aver-
age, @(#’s were implemented less abruptly than nasals. The
@&# closure at 1.2 s in Fig. 8 was missed by thes detector.

Most of the s insertions were due to semivowels. A
semivowel’s high-frequency abruptness and low-frequency
steady-state voicing could be mistaken for sonorant conso-
nantal segments. In Fig. 8, ans insertion occurred for each of
the @4#’s, at 0.55 and 0.83 s. Another cause ofs insertions
was the nonsimultaneous change between high- and low-
frequency energy at obstruent constrictions. At an obstruent
closure, for example, the disappearance of high-frequency
energy before low-frequency energy may look like a vowel–
nasal closure to thes detector.

E. B(urst) landmarks

The b deletion rate was higher than theg deletion rate.
Being low-amplitude signals, bursts were often obscured by
noise. For example, background noise or speech noise could
mar the silence interval preceding a burst. Also, the energy
changes associated withb landmarks were sometimes too
weak to cause an energy discontinuity. For example, the fri-
cation noise followed by a stop closure, as in the syllable
boundary of ‘‘bathtub,’’ sometimes did not cause a2opivot.

The b insertions were mainly due to extralingual noise
during stop closures. A2b insertion just before 1.8 s in Fig.
8 marks the drop in energy after the@%# burst. A1b neutral
marks a voiced stop burst for@"# at 1.4 s, and another marks
the creak at 1.6 s.

F. Influence of vowel reduction

Some insight into the effect of prosody on landmark
detection can be gained by considering the position of a
landmark in relation to reduced vowels. Reduced vowel ef-
fects on the development set are summarized in Table V and
described more fully by Liu~1995a!. Closure and release
landmarks in left-reduced position~reduced vowel to the left,
unreduced vowel to the right! had a higher detection rate
than landmarks in right-reduced position~unreduced vowel
to the left, reduced vowel to the right!. This contrast was
especially pronounced in voiced fricatives and voiced stops.
Flaps were not counted because there were not enough to-
kens.

The finding that landmarks in left-reduced environment
have a higher detection rate than landmarks in right-reduced
environment suggests that voiced obstruents are likely to be
reduced in right-reduced environment. Consistent with this
observation, the American English flapping rule states that
alveolar stops are likely to be flapped in right-reduced envi-
ronment.

An acoustic analysis of the various prosodic environ-
ments shows why landmarks in right-reduced environment
are harder to detect. One acoustic factor that affects land-
mark detection is constriction duration. The shorter the du-
ration, the more likely the acoustic changes at a constriction
will be smoothed out. The average constriction duration of
singleton consonants in left-reduced position is 89613 ms,
while in right-reduced position it is only 63628 ms. Another
acoustic factor affecting landmark detection is the amount of
energy change at closure and release. The bigger the change,
the taller the ROR peak will be, so the easier the detection.
The change in the 20-ms smoothed, band 1 energy at closure
and release was measured for all voiced obstruents. The band
1 energy change at landmarks in left-reduced position was
2165 dB, while in right-reduced position it is only 1666
dB.

G. Comparison to related work

Other researchers have tried to perform tasks similar to
landmark detection for such purposes as phonetic recogni-
tion, automatic phone label alignment, and concatenative
speech synthesis. These tasks are often referred to as ‘‘seg-
mentation,’’ which was described in the Introduction. Direct
comparison of landmark detection with segmentation is not
possible because the philosophy and goals of the two tasks
are different. Nevertheless, the results of some segmentation

FIG. 8. A spectrogram with the output of the landmark detector and the
hand-labeled landmarks below.

TABLE V. Detection rates of the development set, by position with respect
to reduced vowels. V5unreduced vowel, v5reduced vowel. The number of
tokens is given in parentheses.

Left-reduced
vCV

Right-reduced
VCv

altogether 98%~444! 87% ~367!
1v fric 100% ~41! 81% ~59!
1v stop 100%~52! 80% ~49!
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work will be presented to set the results of landmark detec-
tion in context. The comparison will be made with the test
results in Table III.

Some researchers have employed a single-level seg-
menter to generate a single hypothesis of what they consider
to be the phonetic boundaries in a speech waveform. Their
goal is to maximize the detection of phonetic boundaries
while minimizing insertions. Because the sounds of speech
have varying levels of abruptness, with consonantal seg-
ments being the most abrupt, semivowels being less abrupt,
and vowels being essentially steady state, a single-level seg-
menter using one acoustic measure cannot increase detec-
tions without increasing insertions as well. Glass and Zue
~1986! have demonstrated this trade-off. They used a seg-
mentation algorithm which generated a boundary whenever
the feature vector generated from the broadband signal
changed sufficiently between two frames. Regardless of sig-
nal representation~hair cell response, critical band represen-
tation, or linear predictive coding!, the segmentation error
rate hovered around 30%. The hair cell response results,
which Glass and Zue favored, gave a deletion rate of 23%,
an insertion rate of 6%, and thus a total error of 29%. Their
task required finding semivowel and diphthong boundaries,
as well as voiced stop releases and subsequent onset of full
glottal vibration. In order to compare their results to the land-
mark detection results, the following adjustments on the
landmark detection results have to be made:~1! include
semivowel and diphthong ‘‘boundary’’ markers, voicing on-
sets of voiced stops, and creaks in the hand-labeled set~these
labels comprise about 25% of the total set!; ~2! count
semivowel/diphthong insertions, creak insertions, and short
stop burst neutrals as detections;~3! count voice bar neutrals
as insertions; and~4! not count substitutions in the error rate.
With these adjustments, the landmark error rate is 26%~de-
letion rate522%, insertion rate54%!, which is slightly better
than Glass and Zue’s 29%. The deletion rate of the landmark
detector could even be lower if the algorithm had been de-
signed to find semivowels. Although this comparison is only
a rough one, it shows that the landmark detector performs as
well as, if not better than, a single-level segmenter.

V. SUMMARY AND CONCLUSIONS

Landmark detection is the first step in a proposed
knowledge-based speech recognition system based on iden-
tifying distinctive features. A landmark detection algorithm
was designed to find the abrupt-consonantal and abrupt land-
marks. It incorporates measures of spectral abruptness and
acoustic–phonetic information in a knowledge-based, hierar-
chical fashion to detect landmarks. The algorithm classified
these landmarks into three types:g~lottis!, s~onorant!, and
b~urst!.

An experiment was performed using clean speech. Error
rates were relatively low. Theg landmarks, which corre-
spond to stops and fricatives among others, were detected
with a 98% detection rate. Theb landmarks, which corre-
spond to bursts and the cessation of noise, were detected
with a 90% detection rate. Theb detector was sensitive to
nonspeech noise, such as lip smacks. Most of the deletions
and insertions were due tos landmarks, which correspond to

nasals and@(#’s. The large variation in the acoustic manifes-
tations of vowel contexts and the sometimes glidelike nature
of sonorant consonants mades landmarks difficult to detect.

A. Error analysis

Because landmark detection is a critical first step in the
lexical access system, some way must be devised to take care
of the errors in landmark detection. Of the errors, insertions
can be removed when further processing for distinctive fea-
tures in the vicinity of an insertion determines that the inser-
tion is not a valid landmark. Many of these insertions are due
to semivowel and diphthong transitions; therefore, they are a
clue to the placement of nonabrupt and vocalic landmarks.

Substitutions are not real errors since they point to a
desired landmark but assign the wrong type to it. Again,
further processing can determine the true type of a substitu-
tion.

Deletions are the most serious kinds of error. The dele-
tion rate was 8%. Mislabeling of the database may account
for up to 2% in this 8%. This 2% figure was estimated from
the number of hand-labeled landmarks whose existence was
questionable. An example of a hand-labeled landmark in this
2% is an@'# closure in ‘‘want.’’ The closure may be coinci-
dent with the velopharyngeal port closure, but if these two
events are mislabeled with separate landmarks, then a dele-
tion is likely to result. The presence of nasality in the pre-
ceding vowel would indicate an underlying nasal segment
whether or not a2s landmark is detected. As another case,
segments which are phonologically@1consonantal# but real-
ized nonabruptly may be mislabeled with abrupt-consonantal
landmarks. This type of mislabeling is common for nasals
and@(#’s. To some extent, the neutral category of landmarks
reduces mislabeling errors by not counting certain kinds of
insertions and deletions as errors when decisions about land-
mark labeling is ambiguous.

Another kind of deletion comes from not finding heavily
voiced obstruents, flaps, nasals, and@(#’s. One percent in the
deletion rate was from missing heavily voiced obstruents and
flaps, and 2% was from missing nasals and@(#’s. The land-
marks of these segments are hard to find because energy
abruptness in the expected frequency bands may be compro-
mised by a voice bar, the vowel context, or the speed of
closure and release. These deletions can potentially be cap-
tured by a nonabrupt landmark detector, which puts a land-
mark near the energy minimum of a constriction for semi-
vowels. Further analysis in the area, to find nasality based on
pole–zero pairs or widened first-formant bandwidth, for ex-
ample, may then be able to identify the underlying segment.

Missingb landmarks accounted for some deletions. One
percent out of the 8% deletion rate was from not finding
sufficient silence during closure. This error can be reduced
by using a broadband measure for silence with one common
reference level rather than using a different reference for
each band.5 Another 1% in the deletion rate was due to not
finding sufficient energy abruptness at the bursts or closures.
A better SNR, attained possibly through noise-cancelling
preprocessing, could prevent these deletions.
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B. Use of prosody

Adding prosodic information could improve perfor-
mance. If the duration between two detected landmarks is
too long, suggesting that a landmark was missed in between,
then the ROR peak threshold could be lowered to detect
more subtle spectral changes in that region. Knowing where
reduced vowels are could help since reduction affects the
acoustics around a neighboring landmark, as shown in Sec.
IV F. Prosodic phrase boundary information could be used to
customize the landmark detector to a change in fundamental
frequency, a decreased waveform intensity, and a lengthened
syllable.

C. Articulator-free features

In the process of landmark detection, inferences about
some of the articulator-free features at a landmark can be
made. Constraints on the articulator-free features, and thus
broad phonetic class, arise. Ans landmark carries with it the
features@1consonantal# and@1sonorant#. A b landmark car-
ries with it the features@1consonantal#, @2sonorant#, and
@2continuant#. A g landmark is ambiguous, since it could be
@1consonantal# or @2consonantal#. If a stop closure or re-
lease is causing theg landmark, for example, then the land-
mark would carry the features@1consonantal#, @2sonorant#,
and@2continuant#; however, if an@*# or glottal stop is caus-
ing the landmark, then it would carry the feature
@2consonantal#. The presence or absence of formant move-
ments around theg landmark would resolve this ambiguity.

OuterAC landmarks come in closure–release pairs ex-
cept at the beginning and end of an utterance. Once the value
of the feature@consonantal# is ascertained, the outerAC
landmarks can be identified and paired with each other.
Knowing the time duration between twoAC landmarks will
aid in distinguishing between singleton consonants and con-
sonant clusters.

D. Nonabrupt and vocalic landmarks

The landmark detector described here finds abrupt and
abrupt-consonantal landmarks. Algorithms to detect the non-
abrupt landmarks, for semivowels, and the vocalic land-
marks, for vowels, still need to be developed. The landmark
detector presented here can help find the remaining land-
marks. Theg landmarks already delimit the voiced regions
within which the nonabrupt and vocalic landmarks have to
occur. Pairs of pivots found by thes detector could be sur-
rounding a nonabrupt landmark, especially if these pivots fail
the steady-state and abruptness criteria.

E. Lexical access

Once the articulator-free features are completely identi-
fied around each landmark, further processing can be cus-
tomized to the broad phonetic environment to identify the
articulator-bound features at each landmark. Following fea-
ture extraction, the landmarks with their feature bundles need
to be collapsed together in some cases and expanded in other
cases so that a one-to-one relation exists between a segment
and a bundle of features. An example in which two feature

bundles at two landmarks would have to be collapsed into
one feature bundle to represent one segment is the closure
and release landmarks of an intervocalic@"#. An example in
which one feature bundle at one landmark would have to be
expanded into two bundles is the@".# release in ‘‘bright,’’ in
order to account for the two segments@"# and@.#. Procedures
would have to be introduced to account for the different
ways one could pronounce a word. One approach would be
to construct a pronunciation network for each word having
multiple pronunciations. This pronunciation network would
be described at the distinctive feature level, since one of the
advantages of distinctive features is their ability to describe
modifications concisely. Another way to describe modifica-
tion is by identifying all modifiable features in the lexicon
and the contexts in which modification occurs, and then plac-
ing reduced weight on discrepancies in these features during
the lexical matching process, based on the context. Once the
pronunciation network is in place or the modifiable features
are marked, lexical access using a sequence of feature
bundles is a straightforward process.
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