
Will Ramey | Sr. Product Manager for GPU Computing

San Jose Convention Center, CA | September 20–23, 2010

Languages, APIs and Development Tools
for GPU Computing

“GPU Computing”

 Using all processors in the system for the things they are

best at doing

— Evolution of CPUs makes them good at sequential, serial tasks

— Evolution of GPUs makes them good at parallel processing

NVIDIA Confidential

DirectX

GPU Computing Ecosystem

Languages & API’s

Tools & PartnersIntegrated
Development Environment
Parallel Nsight for MS Visual Studio

Mathematical
Packages

Consultants, Training
& Certification

Research & Education

All Major Platforms

Libraries

Fortran

GPU Computing Applications

Broad Adoption

CUDA - NVIDIA’s Architecture for GPU Computing

Over 250M installed

CUDA-enabled GPUs

Over 650k CUDA Toolkit

downloads in last 2 Yrs

Windows, Linux and

MacOS Platforms

supported

GPU Computing spans

HPC to Consumer

350+ Universities

teaching GPU Computing

on the CUDA Architecture

NVIDIA GPU
with the CUDA Parallel Computing Architecture

CUDA
C/C++

OpenCL
Direct

Compute
Fortran Python,

Java, .NET, …

Over 100k developers

Running in Production
since 2008

SDK + Libs + Visual
Profiler and Debugger

Commercial OpenCL
Conformant Driver

Public Availability
across all CUDA
Architecture GPU’s

SDK + Visual Profiler

Microsoft API for
GPU Computing

Supports all CUDA-
Architecture GPUs
(DX10 and DX11)

PyCUDA

GPU.NET

jCUDA

PGI Accelerator

PGI CUDA Fortran

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Your GPU Computing Application

GPU Computing Software Stack

CUDA Architecture

Application Acceleration Engines (AXEs)
Middleware, Modules & Plug-ins

Foundation Libraries
Low-level Functional Libraries

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

© NVIDIA Corporation 2010

Languages & APIs

Many Different Approaches

Application level integration

High level, implicit parallel languages

Abstraction layers & API wrappers

High level, explicit language integration

Low level device APIs

NVIDIA Confidential

GPUs for MathWorks Parallel Computing Toolbox™

and Distributed Computing Server™

Workstation Compute Cluster

MATLAB Distributed Computing Server (MDCS)MATLAB Parallel Computing Toolbox (PCT)

• PCT enables high performance through

parallel computing on workstations

• NVIDIA GPU acceleration now available

• MDCS allows a MATLAB PCT application to be

submitted and run on a compute cluster

• NVIDIA GPU acceleration now available

NVIDIA Confidential

MATLAB Performance with Tesla

Core 2 Quad Q6600 2.4 GHz, 6 GB RAM, Windows 7 64-bit, Tesla C1060, single precision operations

-

2.0

4.0

6.0

8.0

10.0

12.0

256 K 1,024 K 4,096 K 16,384 K

R
e
la

ti
v

e
 E

x
e
c
u

ti
o

n
 S

p
e
e
d

Input Size

Relative Performance, Black-Scholes Demo
Compared to Single Core CPU Baseline

Single Core CPU Quad Core CPU Single Core CPU + Tesla C1060 Quad Core CPU + Tesla C1060

SUBROUTINE SAXPY (A,X,Y,N)

INTEGER N

REAL A,X(N),Y(N)

!$ACC REGION

DO I = 1, N

X(I) = A*X(I) + Y(I)

ENDDO

!$ACC END REGION

END

saxpy_:

…

movl (%rbx), %eax

movl %eax, -4(%rbp)

call __pgi_cu_init

. . .

call __pgi_cu_function

…

call __pgi_cu_alloc

…

call __pgi_cu_upload

…

call __pgi_cu_call

…

call __pgi_cu_download

…

Host x64 asm File
Auto-generated GPU code

typedef struct dim3{ unsigned int x,y,z; }dim3;

typedef struct uint3{ unsigned int x,y,z; }uint3;

extern uint3 const threadIdx, blockIdx;

extern dim3 const blockDim, gridDim;

static __attribute__((__global__)) void

pgicuda(

__attribute__((__shared__)) int tc,

__attribute__((__shared__)) int i1,

__attribute__((__shared__)) int i2,

__attribute__((__shared__)) int _n,

__attribute__((__shared__)) float* _c,

__attribute__((__shared__)) float* _b,

__attribute__((__shared__)) float* _a)

{ int i; int p1; int _i;

i = blockIdx.x * 64 + threadIdx.x;

if(i < tc){

_a[i+i2-1] = ((_c[i+i2-1]+_c[i+i2-1])+_b[i+i2-1]);

_b[i+i2-1] = _c[i+i2];

_i = (_i+1);

p1 = (p1-1);

} }

+

Unified
a.out

compile

link

execute … no change to existing makefiles, scripts, IDEs,
programming environment, etc.

PGI Accelerator
Compilers

PyCUDA / PyOpenCL

Slide courtesy of Andreas Klöckner, Brown University

http://mathema.tician.de/software/pycuda

http://mathema.tician.de/software/pycuda

CUDA C: C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

CUDA C Code

Write GPU kernels in C#, F#, VB.NET, etc.

 Exposes a minimal API accessible from any

.NET-based language

— Learn a new API instead of a new language

 JIT compilation = dynamic language support

 Don’t rewrite your existing code

— Just give it a ―touch-up‖

OpenCL

 Cross-vendor open standard

— Managed by the Khronos Group

 Low-level API for device management and

launching kernels

— Close-to-the-metal programming interface

— JIT compilation of kernel programs

 C-based language for compute kernels

— Kernels must be optimized for each processor architecture

NVIDIA released the first OpenCL conformant driver for

Windows and Linux to thousands of developers in June 2009

http://www.khronos.org/opencl

http://www.khronos.org/opencl

DirectCompute

 Microsoft standard for all GPU vendors

— Released with DirectX® 11 / Windows 7

— Runs on all 100M+ CUDA-enabled DirectX 10 class GPUs and later

 Low-level API for device management and launching kernels

— Good integration with DirectX 10 and 11

 Defines HLSL-based language for compute shaders

— Kernels must be optimized for each processor architecture

Language & APIs for GPU Computing

Approach Examples

Application Integration MATLAB, Mathematica, LabVIEW

Implicit Parallel Languages PGI Accelerator, HMPP

Abstraction Layer/Wrapper PyCUDA, CUDA.NET, jCUDA

Language Integration CUDA C/C++, PGI CUDA Fortran

Low-level Device API CUDA C/C++, DirectCompute, OpenCL

© NVIDIA Corporation 2010

Development Tools

Build Debug Profile

Parallel Nsight for Visual Studio

Integrated development for CPU and GPU

Windows GPU Development for 2010
NVIDIA Parallel Nsight ™ 1.5

cuda-gdb Shader Debugger

Visual Profiler

cudaprof

PerfHUD

ShaderPerf

Platform Analyzer

FX Composer

cuda-memcheck

nvcc

© NVIDIA Corporation 2010

4 Flexible GPU Development Configurations

Desktop Single machine, Single NVIDIA GPU
Analyzer, Graphics Inspector

Networked Two machines connected over the network

TCP/IP

Single machine, Dual NVIDIA GPUs
Analyzer, Graphics Inspector, Compute Debugger

Analyzer, Graphics Inspector, Compute Debugger, Graphics Debugger

Workstation SLI SLI Multi OS workstation with two Quadro GPUs
Analyzer, Graphics Inspector, Compute Debugger, Graphics Debugger

Supported on 32bit and 64bit
systems

Seamlessly debug both the
host/CPU and device/GPU code

Set breakpoints on any source
line or symbol name

Access and print all CUDA
memory allocs, local, global,
constant and shared vars

NVIDIA cuda-gdb

CUDA debugging integrated
into GDB on Linux

Parallel Source

Debugging

Included in the CUDA Toolkit

Allinea DDT debugger

 Latest News from Allinea

 CUDA SDK 3.0 with DDT 2.6

 Released June 2010

 Fermi and Tesla support

 cuda-memcheck support for memory errors

 Combined MPI and CUDA support

 Stop on kernel launch feature

 Kernel thread control, evaluation and

breakpoints

 Identify thread counts, ranges and CPU/GPU

threads easily

 SDK 3.1 in beta with DDT 2.6.1

 SDK 3.2

 Coming soon: multiple GPU device support

TotalView Debugger
 Latest from TotalView debugger (in Beta)

— Debugging of application running on the GPU device

— Full visibility of both Linux threads and GPU device threads

 Device threads shown as part of the parent Unix process

 Correctly handle all the differences between the CPU and GPU

— Fully represent the hierarchical memory

 Display data at any level (registers, local, block, global or host memory)

 Making it clear where data resides with type qualification

— Thread and Block Coordinates

 Built in runtime variables display threads in a warp, block and thread

dimensions and indexes

 Displayed on the interface in the status bar, thread tab and stack frame

— Device thread control

 Warps advance Synchronously

— Handles CUDA function inlining

 Step in to or over inlined functions

— Reports memory access errors

 CUDA memcheck

— Can be used with MPI

Included in the CUDA Toolkit

NVIDIA Visual Profiler

Analyze GPU HW performance
signals, kernel occupancy,
instruction throughput, and more

Highly configurable
tables and graphical views

Save/load profiler sessions or
export to CSV for later analysis

Compare results visually
across multiple sessions to
see improvements

Windows, Linux and Mac OS X
OpenCL support on Windows and Linux

GPU Computing SDK

Hundreds of code samples for
CUDA C, DirectCompute and OpenCL

Finance

Oil & Gas

Video/Image Processing

3D Volume Rendering

Particle Simulations

Fluid Simulations

Math Functions

© 2009 NVIDIA Corporation

Application

Design Patterns

Trivial Application

Design Rules:

Serial task processing on CPU

Data Parallel processing on GPU

Copy input data to GPU

Perform parallel processing

Copy results back

Follow guidance in the

CUDA C Best Practices Guide

The CUDA C Runtime could be substituted

with other methods of accessing the GPU

Application

CPU C Runtime CUDA C RuntimeOpenCL DriverCUDA Driver APICUDA FortranPyCUDACUDA.NETCUDA C Runtime

CPU
CPU

Memory
GPU

GPU

Memory

Basic Application

“Trivial Application” plus:

Maximize overlap of data transfers and computation

Minimize communication required between processors

Use one CPU thread to manage each GPU

Multi-GPU notebook, desktop,

workstation and cluster node

configurations are increasingly common

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

Memory
GPU

GPU

Memory
CPU

CPU

Memory

Graphics Application

“Basic Application” plus:

Use graphics interop to avoid unnecessary copies

In Multi-GPU systems, put buffers to be displayed in GPU

Memory of GPU attached to the display

Application

CPU C Runtime CUDA C Runtime OpenGL / Direct3D

GPU
GPU

Memory
CPU

CPU

Memory

Basic Library

“Basic Application” plus:

Avoid unnecessary memory transfers

Use data already in GPU memory

Create and leave data in GPU memory

Library

CPU C Runtime CUDA C Runtime

These rules apply to plug-ins as well

CPU
CPU

Memory
GPU

GPU

Memory

Application with Plug-ins

“Basic Application” plus:

Plug-in Mgr

Allows Application and Plug-ins

to (re)use same GPU memory

Multi-GPU aware

Follow “Basic Library” rules

for the Plug-ins CPU C Runtime CUDA C Runtime

Application

Plug-in Mgr

Plug-inPlug-in Plug-in

CPU
CPU

Memory
GPU

GPU

Memory

Database Application

Minimize network communication

Move analysis “upstream”

to stored procedures

Treat each stored procedure

like a “Basic Application”

App Server could also be a

“Basic Application”

Client Application is also a

“Basic Application”

CPU C Runtime CUDA C Runtime

Database Engine Stored Procedure

Client Application

or

Application Server

Data Mining, Business Intelligence, etc.

CPU
CPU

Memory
GPU

GPU

Memory

Multi-GPU Cluster Application

M
P

I
o

v
e
r

 E
th

e
rn

e
t,

 I
n

fi
n

ib
a
n

d
,
e
tc

.

“Basic Application” plus:

Use Shared Memory for

intra-node communication

or pthreads, OpenMP, etc.

Use MPI to communicate

between nodes Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

© 2009 NVIDIA Corporation

Libraries

CUFFT 3.2: Improved Radix-3, -5, -7

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
FL

O
P

S

log3(size)

Radix-3 (SP, ECC off)

C2070 R3.2

C2070 R3.1

MKL

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
FL

O
P

S

log3(size)

Radix-3 (DP, ECC off)

C2070 R3.2

C2070 R3.1

MKL

CUFFT 3.2 & 3.1 on NVIDIA Tesla C2070 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

Radix-5, -7 and mixed radix improvements not shown

CUBLAS Performance

0x

2x

4x

6x

8x

10x

12x

1024 2048 3072 4096 5120 6144 7168

S
p
e
e
d
u
p
 v

s.
 M

K
L

Matrix dimensions (NxN)

MKL

v3.1

v3.2

Up to 2x average speedup over CUBLAS 3.1

Less variation in performance

for different dimensions vs. 3.1

CUFFT 3.2 & 3.1 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

Average speedup of {S/D/C/Z}GEMM x {NN,NT,TN,TT}

MATLAB Interface

» 15+ functions

» Up to 10x speedup

“CULAPACK” Library

» Dense linear algebra

» C/C++ & FORTRAN

» 150+ Routines

GPU Accelerated

Linear Algebra

Supercomputer Speeds

Performance 7x of

Intel’s MKL LAPACK

Partnership

Developed in

partnership with

NVIDIA

CULA (LAPACK for heterogeneous systems)

CULA - Performance

Supercomputing Speeds

This graph shows the relative speed of many CULA functions when compared to

Intel’s MKL 10.2. Benchmarks were obtained comparing an NVIDIA Tesla C2050

(Fermi) and an Intel Core i7 860. More at www.culatools.com

http://www.culatools.com/

Sparse Matrix Performance: CPU vs. GPU

0x

5x

10x

15x

20x

25x

30x

35x

Multiplication of a sparse matrix by multiple vectors

"Non-transposed"

"Transposed"

MKL 10.2

Average speedup across S,D,C,Z

CUSPARSE 3.2 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

RNG Performance: CPU vs. GPU

0x

5x

10x

15x

20x

25x

SP DP SP DP

Uniform Normal

Generating 100K Sobol' Samples

CURAND 3.2

MKL 10.2

CURAND 3.2 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

41

NAG GPU Library

 Monte Carlo related

 L’Ecuyer, Sobol RNGs

 Distributions, Brownian Bridge

 Coming soon

 Mersenne Twister RNG

 Optimization, PDEs

 Seeking input from the community

 For up-to-date information:
www.nag.com/numeric/gpus

http://www.nag.com/numeric/gpus

NVIDIA Performance Primitives

 Similar to Intel IPP focused on

image and video processing

 6x - 10x average speedup vs. IPP

— 2800 performance tests

 Core i7 (new) vs. GTX 285 (old)

 Now available with CUDA Toolkit

NPP Performance Suite Grand Totals

0

2

4

6

8

10

12

Core2Duo t=1 Core2Duo t=2 Nehalem t=1 Nehalem t=8 Geforce 9800

GTX+

Geforce GTX

285

Processor

R
e
la

ti
v
e
 A

g
re

g
a
te

 S
p

e
e
d

Aggregate Performance Results

www.nvidia.com/npp

http://www.nvidia.com/npp

 Open source, supported by NVIDIA

 Computer Vision Workbench (CVWB)

http://openvidia.sourceforge.net

GPU imaging & computer vision

Demonstrates most commonly used image

processing primitives on CUDA

Demos, code & tutorials/information

OpenVIDIA

More Open Source Projects

Thrust: Library of parallel algorithms

with high-level STL-like interface

OpenCurrent: C++ library for solving PDE’s

over regular grids

200+ projects on Google Code & SourceForge

Search for CUDA, OpenCL, GPGPU

http://code.google.com/p/thrust

http://code.google.com/p/opencurrent

http://code.google.com/p/thrust
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/opencurrent

NVIDIA Application Acceleration Engines - AXEs

OptiX – ray tracing engine
Programmable GPU ray tracing pipeline
that greatly accelerates general ray tracing tasks

Supports programmable surfaces and custom ray data

SceniX– scene management engine
High performance OpenGL scene graph built
around CgFX for maximum interactive quality

Provides ready access to new GPU capabilities & engines

CompleX – scene scaling engine
Distributed GPU rendering for keeping complex scenes
interactive as they exceed frame buffer limits

Direct support for SceniX, OpenSceneGraph, and more

15GB Visible Human model from N.I.H.

Autodesk Showcase customer example

OptiX shader example

NVIDIA PhysX™

The World’s Most Deployed Physics API

Major PhysX
Site Licensees

Cross Platform
Support

Middleware & Tool
Integration

Integrated in Major
Game Engines

Diesel

Unity 3d

Hero

BigWorld

UE3

Gamebryo

Vision

Instinct

Trinigy

Max

Maya

XSI

SpeedTree

Natural Motion

Fork Particles

Emotion FX

© 2009 NVIDIA Corporation

Cluster & Grid

Management

NVIDIA Confidential

GPU Management & Monitoring

Products Features

All GPUs

• List of GPUs

• Product ID

• GPU Utilization

• PCI Address to Device Enumeration

Server products

• Exclusive use mode

• ECC error count & location (Fermi only)

• GPU temperature

• Unit fan speeds

• PSU voltage/current

• LED state

• Serial number

• Firmware version

NVIDIA Systems Management Interface (nvidia-smi)

Use CUDA_VISIBLE_DEVICES to assign GPUs to process

49

Bright Cluster Manager

Includes:

 NVIDIA CUDA, OpenCL libraries and GPU drivers

 Automatic sampling of all available NVIDIA GPU metrics

 Flexible graphing of GPU metrics against time

 Visualization of GPU metrics in Rackview

 Powerful cluster automation, setting alerts, alarms and actions
when GPU metrics exceed set thresholds

 Health checking framework based on GPU metrics

 Support for all Tesla GPU cards and GPU Computing Systems,
including the most recent “Fermi” models

Most Advanced Cluster Management Solution for GPU

clusters

Copyright © 2010 Platform Computing Corporation. All Rights Reserved.50

Symphony Architecture and GPU

x64 Host Computer with

GPU support

x64 Host Computer with

GPU support

x64 Host Computer with

GPU support

x64 Host Computer with GPU support
x64 Host Computer with GPU support

x64 Host Computer with GPU support

Session Manager

Session Manager

Symphony

Repository Service

Client

Application

C# .N
E

T
 A

P
I

Client

Application

Java J
a

v
a

 A
P

I
Excel

Spreadsheet

Model C
O

M
 A

P
I

Compute Hosts

Management Hosts

Clients

EGO – Resource aware orchestration layer

Symphony Service

Director

C
U

D
A

 L
ib

ra
ri

e
sService

Instance

Manager

Service

Instance
(GPU aware)

Service

Instance

Manager

API

Service

Instance

Manager

Service

Instance

d
u
a
l
q
u
a
d

-c
o
re

 C
P

U
s

Service

Instance

Manager

Service

Instance

Host OS

Computer with GPU support

GPU 2

Service

Instance
(GPU aware)

Service

Instance
(GPU aware)

Service

Instance
(GPU aware)

GPU 1

Client

Application

C++ C
+

+
 A

P
I

C
+

+
 A

P
I

.N
E

T
A

P
I

J
a

v
a

 A
P

I
C

+
+

 A
P

I

Selecting GPGPU Nodes

© NVIDIA Corporation 2010

Developer

Resources

NVIDIA Developer Resources

VIDEO
LIBRARIES

Video Decode Acceleration
NVCUVID / NVCUVENC
DXVA
Win7 MFT

Video Encode Acceleration
NVCUVENC
Win7 MFT

Post Processing
Noise reduction / De-interlace/
Polyphase scaling / Color process

ENGINES &
LIBRARIES

Math Libraries
CUFFT, CUBLAS, CUSPARSE,
CURAND, …

NPP Image Libraries
Performance primitives
for imaging

App Acceleration Engines
Optimized software modules
for GPU acceleration

Shader Library
Shader and post processing

Optimization Guides
Best Practices for
GPU computing and
Graphics development

DEVELOPMENT
TOOLS

CUDA Toolkit
Complete GPU computing
development kit

cuda-gdb
GPU hardware debugging

Visual Profiler
GPU hardware profiler for
CUDA C and OpenCL

Parallel Nsight
Integrated development
environment for Visual Studio

NVPerfKit
OpenGL|D3D performance tools

FX Composer
Shader Authoring IDE

SDKs AND
CODE SAMPLES

GPU Computing SDK
CUDA C, OpenCL, DirectCompute
code samples and documentation

Graphics SDK
DirectX & OpenGL code samples

PhysX SDK
Complete game physics solution

OpenAutomate

SDK for test automation

http://developer.nvidia.com

4 in Japanese, 3 in English, 2 in Chinese, 1 in Russian)

10 Published books with 4 in Japanese, 3 in English, 2 in Chinese, 1 in Russian

Google Scholar

Proven Research Vision

Launched June 1st

with 5 premiere Centers

and more in review

John Hopkins University , USA

Nanyan University, Singapore

Technical University of Ostrava, Czech

CSIRO, Australia

SINTEF, Norway

Exclusive Events, Latest HW, Discounts

Quality GPGPU Teaching

Launched June 1st

with 7 premiere Centers

and more in review

McMaster University, Canada

Potsdam, USA

UNC-Charlotte,USA

Cal Poly San Luis Obispo, USA

ITESM, Mexico

Czech Technical University, Prague, Czech

Qingdao University, China

Teaching Kits, Discounts, Training

World Class Research

Leadership and Teaching

University of Cambridge

Harvard University

University of Utah

University of Tennessee

University of Maryland

University of Illinois at Urbana-Champaign

Tsinghua University

Tokyo Institute of Technology

Chinese Academy of Sciences

National Taiwan University

Premier Academic Partners

NV Research
http://research.nvidia.com

Education

350+ Universities

Supporting 100’s of Researchers

around the globe ever year

Academic Partnerships / Fellowships

GPU Computing Research & Education

Thank You!

Thank you!

