

GPU Computing Overview

Broad Adoption

- Over 150,000,000 installed CUDA-Architecture GPUs
- Over 90,000 GPU Computing Developers (9/09)
- Windows, Linux and MacOS Platforms supported
- GPU Computing spans
 HPC to Consumer
- 250+ Universities teaching GPU Computing on the CUDA Architecture

GPU Computing Applications

CUDA C/C++

- Over 90,000 developers
- Running in Production since 2008
- SDK + Libs + Visual Profiler and Debugger

OpenCL

- 1st GPU demo
- Shipped 1st OpenCL Conformant Driver
- Public Availability

Direct Compute

- Microsoft API for GPU Computing
- Supports all CUDA-Architecture GPUs (DX10 and DX11)

Fortran

- PGI Accelerator
- PGI CUDA Fortran
- NOAA Fortran bindings
- FLAGON

Python, Java, .NET, ...

- PyCUDA
- jCUDA
- CUDA.NET
- OpenCL.NET

NVIDIA GPU

with the CUDA Parallel Computing Architecture

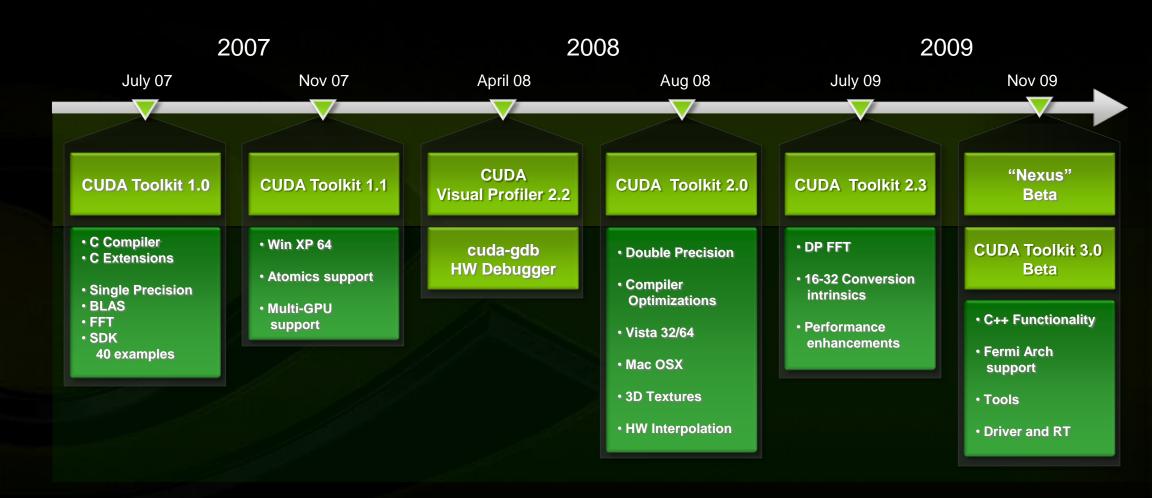
GPU Computing Application Development

Your GPU Computing Application

Application Acceleration Engines (AXEs)
Middleware, Modules & Plug-ins

Foundation Libraries
Low-level Functional Libraries

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.



CUDA Architecture

CUDA C/C++ Update

CUDA C/C++ Update

CUDA C++ Language Functionality

- C++ Class Inheritance
- C++ Template Inheritance

(Productivity)

Fermi Architecture Support

- Native 64-bit GPU support
- Generic Address space
- Dual DMA support
- ECC reporting
- Concurrent Kernel Execution

Architecture supported in SW now

Tools

- "Nexus" Visual Studio IDE
- Debugger support for CUDA Driver API
- ELF support (cubin format deprecated)
- CUDA Memory Checker (cuda-gdb feature)
- Fermi: Fermi HW Debugger support in cuda-gdb
- Fermi: Fermi HW Profiler support in CUDA Visual Profiler

CUDA Driver & CUDA C Runtime

- CUDA Driver / Runtime Buffer interoperability (Stateless CUDART)
- Separate emulation runtime
- Unified interoperability API for Direct3D and OpenGL
- OpenGL texture interoperability
- Fermi: Direct3D 11 interoperability

2009 Nov 09 "Nexus" Beta **CUDA Toolkit 3.0** Beta • C++ Functionality • Fermi Arch support Tools Driver and RT

Fortran Language Solutions

- PGI Accelerators
 - High-level implicit programming model, similar to OpenMP
 - Auto-parallelizing compiler
- PGI CUDA Fortran Compiler
 - High-level explicit programming model, similar to CUDA C Runtime
- NOAA F2C-ACC
 - Converts Fortran codes to CUDA C
 - Some hand-optimization expected
- FLAGON
 - Fortran 95 Library for GPU Numerics
 - Includes support for cuBLAS, cuFFT, CUDPP, etc.

OpenCL

- Cross-vendor open standard
 - Managed by the Khronos Group
- Low-level API for device management and launching kernels
 - Close-to-the-metal programming interface
 - JIT compilation of kernel programs

http://www.khronos.org/opencl

- C-based language for compute kernels
 - Kernels must be optimized for each processor architecture

NVIDIA OpenCL Support

OpenCL ICD NVIDIA R195 **OpenCL OpenGL Interoperability Documentation Double Precision NVIDIA Compiler Flags NVIDIA OpenCL Visual Query for Compute Capability** Profiler **Byte Addressable Stores NVIDIA OpenCL Code** R190 32-bit Atomics **Samples Images OpenCL 1.0 Driver** Min. Spec. NV R190 released June 2009

DirectCompute

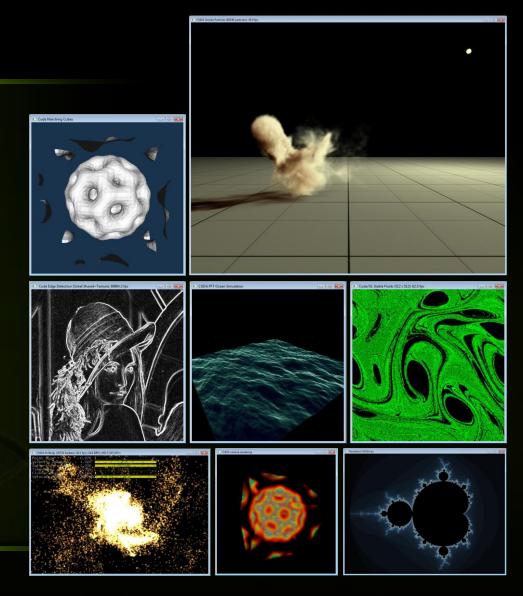
- Microsoft standard for all GPU vendors
 - Released with DirectX® 11 / Windows 7
 - Runs on all 150M+ CUDA-enabled DirectX 10 class GPUs and later
- Low-level API for device management and launching kernels
 - Good integration with other DirectX APIs
- Defines HLSL-based language for compute shaders
 - Kernels must be optimized for each processor architecture

Language & APIs for GPU Computing

Solution	Approach			
CUDA C / C++	Language Integration Device-Level API			
PGI Accelerator PGI CUDA Fortran	Auto Parallelizing Compiler Language Integration			
CAPS HMPP	Auto Parallelizing Compiler			
OpenCL	Device-Level API			
DirectCompute	Device-Level API			
PyCUDA	API Bindings			
CUDA.NET, OpenCL.NET, jCUDA	API Bindings			

Massively Parallel Development Language / API Support (Linux)

	CUDA C/C++	OpenCL	Fortran
CAPS HMPP	✓		✓
PGI Accelerators	✓	- 1	✓
PGI CUDA Fortran	✓	1 0 0 0 0	✓
NV cuda-gdb	√		
Allinea DDT	√		
TotalView Debugger	√		· U .
NV Visual Profiler	√	✓	- 10 °
TAU CUDA	✓		✓
Mcore Platform Analyzer	✓		✓


cuda-gdb will be extended to support OpenCL debugging in a future release, with solutions from Allinea, TotalView and others expected to follow.

NVIDIA SDKs

Hundreds of code samples for CUDA C/C++, DirectCompute, and OpenCL

- Finance
- Oil & Gas
- Video/Image Processing
- 3D Volume Rendering
- Particle Simulations
- Fluid Simulations
- Math Functions

Massively Parallel Development Tools for Linux

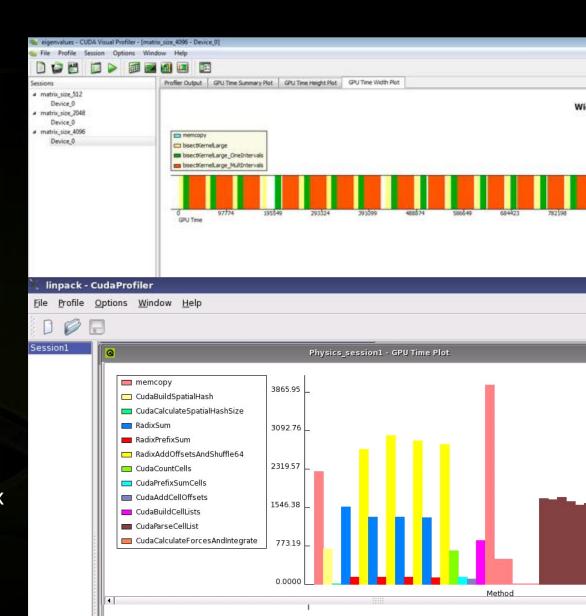
	Debugging	Profiling	Analysis	Cluster Support	Lib's
CUDA C/C++	✓	✓	√	✓	✓
OpenCL	Coming Soon	✓	Coming Soon	✓	Coming Soon
Fortran		√	√	✓	✓

cuda-gdb will be extended to support OpenCL debugging in a future release, with solutions from Allinea, TotalView and others expected to follow.

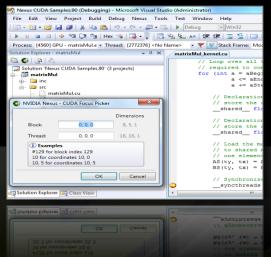
cuda-gdb

CUDA debugging integrated into GDB on Linux

- Supported on 32bit and 64bit systems
- Seamlessly debug both the host/CPU and device/GPU code
- Set breakpoints on any source line or symbol name
- Access and print all CUDA memory allocs, local, global, constant and shared vars

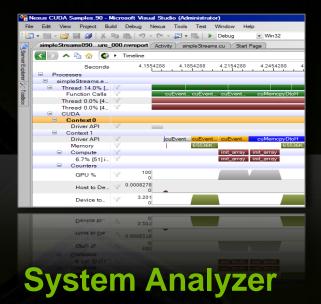

gud-acos_dbg - emacs@ssalian-linux File Edit Options Buffers Tools Gud Complete In/Out Signals Help [Current CUDA Thread <<<(0.0).(→\\ #else /* FERMI */ acos_main () at /ssalian-local/> acos_main<<<<ACOS_CTA_CNT,ACOS_THREAD_CNT>→ (cuda-gdb) s #endif [Current CUDA Thread <<<(0,0),(> stop = second(); acos main () at /ssalian-local/> cudaStat = cudaGetLastError(); /* check f> Breakpoint 2 at 0x805abc4c: fil> NX - ssalian@172.16.175.110:1022 - ssalian-linux 💍 Applications Places System 👸 *gud-acos_dbg* - emacs@ssalian-linux File Edit Options Buffers Tools Gud Complete In/Out Signals Help [Current CUDA Thread $\langle\langle\langle(0,0),(*]$] _device_func__(float __cuda_acosf(float a)) Breakpoint 1, acos_main () at a> float t0, t1, t2; (cuda-gdb) s [Current CUDA Thread <<<(0,0),(> $t0 = __cuda_fabsf(a);$ acos_main () at acos.cu:390 t2 = 1.0f - t0;(cuda-gdb) s ▶ Π t2 = 0.5f * t2; [Current CUDA Thread $\langle\langle\langle(0,0),(\rangle$ $t2 = __cuda_sgrtf(t2);$ t1 = t0 > 0.57f ? t2 : t0; acos_main () at acos.cu:391 t1 = __internal_asinf_kernel(t1); (cuda-gdb) p threadIdx t1 = t0 > 0.57f ? 2.0f * t1 : CUDART PIO2 F> $$5 = {x = 0, y = 0, z = 0}$ (cuda-gdb) p blockIdx if (__cuda_ $$6 = {x = 0, y = 0}$ t1 = CUDAR**Kernel Source** (cuda-gdb) info cuda threads Debugging <<<(0,0),(0,0,0)>>> ... <<<(0,0) #if !defined(__ <<<(0,0),(32,0,0)>>> ... <<<(23+ if (__cuda__ (cuda-gdb) p blockDim t1 = a + a: $$7 = {x = 128, y = 1, z = 1}$ $\$7 = \{x = 128, y = 1, z = 1\}$ (cuda-gdb) p blockDim

© 2009 NVIDIA Corporation


CUDA Visual Profiler

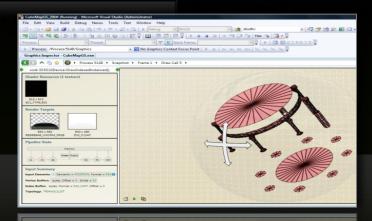
- Analyze GPU HW performance signals, kernel occupancy, instruction throughput, and more
- Highly configurable tables and graphical views
- Save/load profiler sessions or export to CSV for later analysis
- Compare results visually across multiple sessions to see improvements
- Windows, Linux and Mac OS X
 supported
 OpenCL Visual Profiler for Windows and Linux

Included in the CUDA Toolkit



"Nexus" 1.0 Beta

Parallel Debugger


GPU source code debugging Variable & memory inspection

Platform-level Analysis
For the CPU and GPU
Visualize Compute Kernels,
Driver API Calls, and
Memory Transfers

PARTNER

Graphics Inspector

Visualize and debug graphics content

Massively Parallel Development Tools for Windows

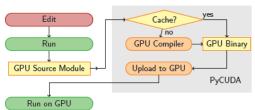
	Visual Studio Integration	Para Debug		Para Profil		Syste Analy Trac (CPU/G	sis/ ce	Premium Support	Early Access	Multi- Vendor GPU Support
		Compute	Gfx	Compute	Gfx	Compute	Gfx			1.1
"Nexus"* Pro	√	√	√	√	√	√	√	\checkmark	√	\checkmark
"Nexus"*	√	√	√	√	√					
NV Visual Profiler				√						
Mcore Platform Analyzer			1)	√		√		П	!	
PerfKit/PerfHUD			√		√	>	√	1 1 1 1		
gDEBugger			√		√		√	√		√

^{* &}quot;Nexus" is NVIDIA's code name

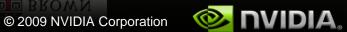
Massively Parallel Development Tools for Linux

	Compilation	Debugging	Profiling	Analysis	Premium Support
CAPS HMPP	✓				✓
PGI Accelerators	√			_5	✓
PGI CUDA Fortran	✓				✓
NV cuda-gdb		✓			
Allinea DDT		✓			✓
TotalView Debugger		√			✓
NV Visual Profiler	///		✓		
TAU CUDA			√	✓	
Mcore Platform Analyzer			✓	✓	✓

cuda-gdb will be extended to support OpenCL debugging in a future release, with solutions from Allinea, TotalView and others expected to follow.

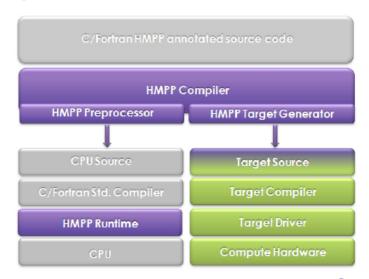

PyCUDA

Python + CUDA = PyCUDA



- All of CUDA in a modern scripting language
- ► Full Documentation
- Free, open source (MIT)
- ► Also: PyOpenCL

- ► CUDA C Code = Strings
- ▶ Generate Code Easily
 - Automated Tuning
- ► Batteries included: GPU Arrays, RNG, ...
- ► Integration: numpy arrays, Plotting, Optimization, ...



HMPP Workbench Overview

- C and Fortran GPU programming directives
 - Define and execute GPU-accelerated versions of functions
 - Implement efficient communication patterns
 - Build parallel hybrid applications with OpenMP and MPI
- An open hybrid compiling workbench
 - Automatically generate CUDA computations
 - Use standard compilers and hardware vendor tools
 - Drive the whole compilation workflow
- A runtime library
 - Dispatch computations on available GPUs
 - Scale to multi-GPUs systems

jCUDA

Using jCUDA you can create cross-platform CUDA solutions, that can run on any operating system supported by CUDA without changing your code.

Either select between Windows XP or Vista by Microsoft or even Linux/MacOS/Solaris systems. Current support is for both 32 and 64 bits of every platform.

Features

- · Double precision
- · Object model for CUDA programming
- CUDA 2.1 Driver API
- CUDA 2.1 Runtime API
- CUFFT routines
- OpenGL interoperability
- * Support for CUBLAS routines will be added in the future

Operating System Support

- Microsoft Windows
- Linux
- * Support for Mac OSX will be added in the future
- . * Support for Solaris 10 (x86) will be added in the future

http://www.hoopoe-cloud.com/Solutions/ jCUDA/Default.aspx

Courtesy of Company for Advanced Supercomputing Solutions, Ltd. 9069 IV 116 INC.

* Support for Mac OSX will be added in the future

FILIOX

CUDA.NET

2.3.6, 14/9/2009

Updates to native wrappers, added SizeT structure to handle 32/64 systems compatibility for functions taking size_t as parameter.

Support for CUDA 2.3 through .NET bindings to CUDA functions.

Currently supported on Windows, Linux and MacOS platforms.

Features

- · Double precision
- · Object model for CUDA programming
- CUDA 2.2 Driver API
- CUDA 2.2 Runtime API
- CUFFT routines
- CUBLAS routines
- Direct3D interoperability
- · OpenGL interoperability

Operating System Support

- Microsoft Windows
- Linux 32/64 bit (using Mono)
- · Mac OSX (using Mono)

http://www.hoopoe-cloud.com/Solutions/ CUDA.NET/Default.aspx

OPENCL.NET

2.3.6, 14/9/2009

Updates to native wrappers, added SizeT structure to handle 32/64 systems compatibility for functions taking size_t as parameter.

Support for CUDA 2.3 through .NET bindings to CUDA functions.

Currently supported on Windows, Linux and MacOS platforms.

Features

- · Double precision
- · Object model for CUDA programming
- CUDA 2.2 Driver API
- CUDA 2.2 Runtime API
- CUFFT routines
- CUBLAS routines
- Direct3D interoperability
- · OpenGL interoperability

Operating System Support

- Microsoft Windows
- Linux 32/64 bit (using Mono)
- · Mac OSX (using Mono)

http://www.hoopoe-cloud.com/Solutions/ CUDA.NET/Default.aspx

