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Abstract 

In this paper we use Modified form of Adomian’s Decomposition Method Laplace, which is a mixture of 

Laplace transforms and Adomian’s Decomposition Method called the Laplace Decomposition Method (LDM) to 

solve the system of ordinary differential equation of the first order and an ordinary differential equation of any 

order by converting it into a system of differential equation of order one. Some examples are presented to show 

the ability of the method for linear and non-linear systems of differential equations also present the comparison 

of their solution with the exact solution through graphically.  

Keywords: Laplace Transformation, Adomian’s Decomposition Method (ADM), System of differential 

equation, linear differential equation and non-linear ordinary differential equation. 

 

1. Introduction 

Adomian’s Decomposition Method was introduced by Adomian in [1, 2] and used heavily in the literature to 

solve the wide class of natural and engineering problems [3-9]. Adomian’s Decomposition Method has been 

applied to a vast wide variety of problems in Physics, Biology and Chemical reactions. This method was applied 

to Non-linear differential equation [10], Non-linear Dynamic system [11], The Heat equation [12, 13], The Wave 

equation [14] Coupled Non-Linear Partial differential equation [15, 16] Linear and Non-linear Integro-

differential equation [17] and Airy’s equation [18] successfully.   

Laplace Adomian’s Decomposition Method (LADM) was first introduced by Suheil A. Khuri [19, 20], and has 

been successfully used to find the solution of differential equations [21-26]. The Laplace Adomian’s 

Decomposition Method is a combination of ADM and Laplace Transforms. This Method is successfully used to 

find the exact solution of the Bratu and Duffing equation in [27, 28]. The Significant advantage of this method is 

its capability of combining the two powerful methods to obtain exact solution for non-linear equation. 

2. The System of Differential Equation 

Consider the system of ordinary differential equations of the first order as follow [29]: 
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Where each represents the derivative of first order of one of the unknown functions as a mapping depending on 

the independent variable x, and n unknown functions .,,, 21 nggg  Since every ordinary differential equations 

of n order can be written as a system consisting of n ordinary differential equation of order one, we restrict our 

study to a system of differential equation of the first order. 

3. Analysis of Adomian’s Decomposition Method 

Consider the differential equation in the general form [30], 

        ,xfxyNxyRxyL              (2) 
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where L is the linear operator of the highest-order derivative which is assume to be invertible easily, R is also a 

linear operator of order less than L, and  ,xyN  indicate the non-linear term and f  is the source term. Thus 

applying the inverse operator ,1L  to Eq. (2) on both sides, we get 

        ,1

0 xyNxyRxfLgxy  
          (3) 

where ,0g  is the solution of the homogeneous equation, 

  .0xyL         (4) 

The constants of integration involved in the solution of homogeneous Eq. (4) are to be determined by the initial 

conditions, according to the problem, whether it is initial value problem or boundary value problem. According 

to ADM, the solution of the unknown function  ,xy  can be expressed by an infinite series of the form 

   





0
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n

n xyxy         (5) 

and the non-linear term can be decomposed by the infinite series of the form 
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0







n

nAxyN                (6) 

and ,sAn are called Adomian’s Polynomials, which can be determined by the algorithm defined in [31, 32]. 

By substituting Eq. (5) and (6) into (3), 
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where the components ,,,, 210 yyy  are determined by the recursive relation. 
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Hence the series solution from Eq. (4) can be obtained immediately. 

4. Analysis of  Laplace Decomposition Method (LDM) 

We represent the system (1) by using the ith equation as [33]: 

    niyyyxgyD n ,,3,2,1,,,,, 2111         (8) 

where D is the linear differential operator. Appling Laplace Transform on both sides on Eq. (8), we get 

       niyyyxgL
s

y
s

yL niii ,,3,2,1,,,,,
1

0
1

21       (9) 

where L is a Laplace operator,  

according to Adomian’s Decomposition Method, the solution of Eq. (9) will be the some of the series: 
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j

jii gy                     (10) 

and the non-linear terms can be written as the sum of the following series: 
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j

jiiijini gggAyyxg                  (11) 

where  jiiiji gggA ,1,0,, ,,,  , are called Adomian’s polynomials. Which can be determined by the 

algorithm described in [31, 32]. 

Now, substituting Eq. (10), Eq. (11) in Eq. (9), we get 
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taking the inverse Laplace Transform of Eq. (12), then we write its recurrence relations as: 
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Hence the series solution from Eq. (10) can be obtained immediately. 

5. Numerical Applications 

Example 5.1 Consider the following system of three differential equations of first order, 

,cos31 xyy                     (14) 

,32

xeyy                                 (15) 

,213 yyy                                 (16) 

subjected to the initial conditions, 

  ,101 y     ,002 y     .203 y  

Appling Laplace Transform on Eq. (14), (15) and (16), we get 

   ,
1

1

11
321 yL

sss
yL 


                              (17) 

   ,
1

1

11
32 yL

sss
yL 


                              (18) 

   .
12

213 yyL
ss

yL                               (19) 

According Adomian’s Decomposition method, the solution of Eq. (17), (18) and (19) is  
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0

, 




ixyxy
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Then, Eq. (17), (18), (19), becomes 
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Taking inverse Laplace transforms of Eq. (21), (22) and (23), we get 
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Its recurrence relation can be written as, 
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Thus, from Eq. (24), (25) and (26) we get 

  ,sin10,1 xxy   

  ,10,2

xexy   

  ,20,3 xy  

for ,0n  Eq. (24), (25) and (26) gives 
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for ,1n  Eq. (24), (25) and (26) becomes 
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Now by putting all values in Eq. (20), we get the result 

,1

xey   

,sin2 xy   

xexy cos3  

Which the same result as obtained by ADM in [29]. 

Example 5.2 Consider the non-linear system of differential equations, 

,2
2

2
1 y
xd

yd
                                           (27) 

,1
2 ye

xd

yd x                               (28) 

,32
3 yy

xd

yd
                                          (29) 

subjected to the initial conditions, 

  ,101 y     ,102 y     .003 y  

Its exact solutions are as follows, ,2

1

xey   ,2

xey   and ,3

xexy   

Appling Laplace Transform on Eq. (27), (28) and (29), we get 
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According Adomian’s Decomposition method, the solution of Eq. (30), (31) and (32) is  

    .3,2,1,
0

, 
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jii                   (33) 

And non-linear term  xy
2

2 , can be written as the sum of the series, 
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where, ,',2 sA j are called Adomian’s Polynomials, which can be determined by the algorithm defined in [31, 

32]. 

Then, Eq. (30), (31) and (32), becomes 
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Taking inverse Laplace transforms of Eq. (35), (36) and (37), we get 
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Its recurrence relation can be written as, 
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Thus, from Eq. (41), (42) and (43) we get 

  ,10,1 xy  

  ,10,2 xy  

  ,00,3 xy  

for ,0n  Eq. (41), (42) and (43) gives 
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Approximations to the solutions with the five terms are as follows: 

      888.1346666.5811111.3156431264 322

1   xeexxexxy xxx
 

        ,5555.111312111111.0528784 32

2   xxx exexexxy  

      ,3888.106666.40083333.0111111.05.72312 2532

3   xxxeexexxy xxx
 

This is same as obtain by ADM in [29]. 

Some numerical values of these solution are presented in Table 1. 

ix   ixy1   ixye 1   ixy2   ixye 2   ixy3   ixye 3  

0 1.00008 0 1 0 0 0 

0.1 1.22132 1.6535E-5 1.10516 2.9323E-6 0.110517 0 

0.2 1.49186 5.3375E-5 1.22139 1.1211E-5 0.244275 0 

0.3 1.82161 5.9740E-4 1.34974 1.1407E-4 0.404906 5.1165E-5 

0.4 2.22249 3.1315E-3 1.49125 5.7298E-4 0.594560 2.7328E-4 

0.5 2.70702 1.1341E-2 1.64676 1.9591E-3 0.823372 9.8853E-4 

0.6 3.28813 3.2068E-2 1.81686 5.2497E-3 1.090460 2.8076E-3 

0.7 3.97860 7.6660E-2 2.00184 1.1909E-2 1.402860 6.7609E-3 

0.8 4.79050 6.6253E-1 2.20161 2.3929E-2 1.766030 1.1440E-2 

0.9 5.73528 3.1445E-1 2.41576 4.3841E-2 2.185680 2.7962E-2 

Table 1: Numerical values of the solutions of problem 2 

Graphical solutions are presented as: 

 

 

 

Exact   ______

y1       _ _ _ _ _

0.0 0.2 0.4 0.6 0.8

1

2

3

4

5

Fig. 1: Comparison of exact and 

approximate solution of ,1y  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

132 

 

 

 

 

 

 

Example 5.3: Consider a non-linear ordinary differential equation of order 3, 

,
1

3

3

xd

yd
y

xxd

yd
                    (44) 

subjected to the boundary conditions, 

  ,00 y    ,10 y    ,20 y  

and the exact solution is   ,xexxy   

 Considering three functions,    ,1 xyxy     ,2 xyxy   and    ,3 xyxy   we convert Eq. 

(44) in the system of non-linear of three differential equation of order one, i.e. 

   ,21 xyxy                                (45) 

   ,32 xyxy                     (46) 

Exact   ______

y2 _ _ _ _

0.0 0.2 0.4 0.6 0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Exact:   ______

y3 :     - - - - -

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

Fig. 2: Comparison of exact and 

approximate solution of ,2y  

Fig. 3: Comparison of exact and 

approximate solution of ,3y  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

133 

     ,
1

313 xyxy
x

xy                               (47) 

Appling Laplace Transform on Eq. (45), (46) and (47), we get 
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According Adomian’s Decomposition method, the solution of Eq. (48), (49) and (50) is  
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Then, the recurrence relation of Eq. (48), (49) and (50), can be written as, 

    ,0
1

1

1

0,1 







  y

s
Lxy  `   ,1

,21,1 xyL
s

y nn 
              (52) 

    ,0
1

2

1

0,2 







  y

s
Lxy     ,1

,31,2 xyL
s

y nn 
              (53) 

    ,0
1

3

1

0,3 







  y

s
Lxy     ,

11
,2,1

1

1,3 















 

 nnn yxy
x

L
s

Ly             (54) 

Therefore, 

  ,00,1 xy  

  ,10,2 xy  

  ,20,3 xy  

Let r

r yyyyy ,12,11,10,1    is a notation for an approximation to the solution with p+1 term. 

Therefore, some computed approximations are as follows: 
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5432
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Hence, we get the exact solution i.e.   ,xexxy   

This solution same as obtain by ADM in [29]. 

 

 

6. Conclusion 

 We conclude that, Laplace Decomposition Method is a reliable and a powerful tool to solve the system 

of ordinary differential equations. It is demonstrated that, this modified form of Adomian’s Decomposition 

Method has the ability of solving system of both linear and non-linear differential equations.  
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