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Laplace Transform and its application for solving differential
equations. Fourier and Z Transforms

Motivation. Transform methods are widely used in many areas of science and engineering. For
example, transform methods are used in signal processing and circuit analysis, in applications
of probability theory. The basic idea is to transform a function from its original domain into
a transform domain where certain operations can be carried out more efficiently, carrying out
the operation in the transform domain, and then carrying out an inverse transform of the
result (from the transform domain to the original domain).

For example, the convolution operation of two functions of time t, f(t) and g(t) is defined
as:

f(t) ∗ g(t) =

∫ +∞

−∞
f(τ) · g(t− τ)dτ =

∫ +∞

−∞
f(t− τ) · g(τ)dτ

with τ a real number. The convolution in the time domain becomes multiplication in the
Laplace or Fourier domain. As an application, consider a linear circuit with the impulse
response h(t) and with the signal x(t) as input. Then the output of the linear circuit is
y(t) = x(t)∗h(t). If H(s), X(s) and Y (s) are the Laplace transforms of the impulse response,
the input, and the output, respectively, then Y (s) = H(s) ·X(s), as seen in Figure 1. Once we
know Y (s) we can apply the inverse Laplace Transform to obtain the response of the circuit,
y(t), function of time t.

Transform methods provide a bridge between the commonly used method of separation
of variables and numerical techniques for solving linear partial differential equations. While
in some ways similar to separation of variables, transform methods can be effective for a
wider class of problems. Even when the inverse of the transform cannot be found analytically,
numeric and asymptotic techniques now exist for their inversion.

Laplace Transform. Let R be the field of real numbers and C the field of complex numbers.
Consider a function f : R 7→ R such that f(t), t ∈ R, t ≥ 0. Then the Laplace Transform of
f(t) is denoted as L[f(t)] and it is defined as F (s) with s ∈ C:

F (s) = L[f(t)] =
∫∞
0

e−stf(t)dt.

The Laplace transform F (s) typically exists for all complex numbers s such that Re(s) > a
where a ∈ R is a constant which depends on the behavior of f(t).

The Inverse Laplace Transform is given by the following complex integral:

f(t) = L−1[F (s)] = 1
2πi

limT→∞
∫ γ+iT

γ−iT
estF (s)ds
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Figure 1: A circuit with the impulse response h(t) and x(t) as input. Then the output is
y(t) = x(t) ∗ h(t). If H(s), X(s) and Y (s) are respectively the Laplace transforms of the
impulse response, the input, and the output, then Y (s) = H(s) ·X(s)

where γ is a real number so that the contour path of integration is in the region of convergence
of F (s) normally requiring sρ > Re(sρ) for every singularity sρ of F (s) and with i =

√−1.
If all singularities are in the left half-plane (in this case Re(sρ) < 0 for every sρ), then γ can
be set to zero and the above inverse integral formula becomes identical to the inverse Fourier
transform. This integral is known as the Fourier-Mellin integral.

The Bilateral Laplace Transform is defined as:

F (s) = L[f(t)] =

∫ ∞

−∞
e−stf(t)dt.

In probability theory, the Laplace transform is defined by means of an expectation value.
If X is a random variable with probability density function fX , then the Laplace transform
of fX is given by the expectation:

(LfX)(s) = E[e−sX ].

By abuse of language, one often refers instead to this as the Laplace transform of the
random variable X. Replacing the variable s by −t gives the moment generating function
of X. The Laplace transform has applications throughout probability theory, including first
passage times of stochastic processes such as Markov chains and renewal theory.

Laplace Transforms of a few functions f(t). In each case we start from the definition. For
example, f(t) = k:

F (s) = L [k] =

∫ ∞

0

e−stkdt = −k

s

[
e−st

]t 7→∞
t=0

=
k

s
.
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Now f(t) = eαt

F (s) = L [
eαt

]
=

∫ ∞

0

e−steαtdt = − 1

s− α

[
e−(s−α)t

]t 7→∞
t=0

=
1

s− α
.

Properties of the Laplace Transform. The properties of the Laplace Transform summarized
in Table 1 can be derived easily starting from the definition.

Table 1: Properties of the Laplace Transform. The function f(t) is assumed to be n-times
differentiable, with n-th derivative of exponential type. Notations: F (s) = L[f(t)], G(s) =
L[g(t)], f (n) is the n-th derivative of f(t), F (n)(s) is the n-th derivative of F (s), u(t) is the
Heaviside step function, u(t) =

∫ t

−∞ δ(τ)dτ with δ the Dirac delta function, (f ∗ g)(t) is the
convolution of f(t) and g(t), α, β ∈ R.
Property Time-domain s-domain
Linearity αf(t) + βg(t) αF (s) + βG(s)
Scaling f(αt) 1

α
F ( s

α
)

Frequency shifting eαtf(t) F (s− α)
Time shifting f(t− α)u(t− α) e−αsF (s)
Frequency differentiation tnf(t) (−1)nF (n)(s)
Frequency integration f(t)/t

∫∞
s

F (r)dr
Differentiation f (n)(t) snF (s)− sn−1f(0)− ...− f (n−1)(0))

Integration
∫ t

0
f(τ)dτ (u ∗ f)(t)1

s
F (s)

Convolution (f ∗ g)(t) F (s) ∗G(s)

Periodic function f(t) = f(t + T ) f(t) 1
1−e−Ts

∫ T

0
e−stf(t)dt

For example, to prove linearity consider two functions f(t) and g(t) and their Laplace
Transforms:

F (s) = L [f(t)] =

∫ ∞

0

e−stf(t)dt and G(s) = L [g(t)] =

∫ ∞

0

e−stg(t)dt.

From the definition of the Laplace Transform it follows that

L [f(t) + g(t)] =

∫ ∞

0

e−st [f(t) + g(t)] dt =

∫ ∞

0

e−stf(t)dt +

∫ ∞

0

e−stg(t)dt = F (s) + G(s).

It is also easy to see that F (0) represents the area under the curve f(t):

F (s = 0)

∫ ∞

0

f(t)dt

The Laplace Transform can be expressed as:

L [f(t)] = f(0)
s

+ f ′(0)
s2 + f ′′(0)

s3 + f ′′′(0)
s4 + . . . .
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Proof: This important property of the Laplace Transform is a consequence of the following
equality:

∫
e−αxf(x)dx = −e−αx

α

[
f(x) +

f ′(x)

α
+

f ′′(x)

α2
+

f ′′′(x)

α3
+ . . .

]

This is easy to prove by applying the derivation operator of both sides; then the left hand
side becomes A = e−αxf(x). The right hand side is the sum of two terms B and C:

B = α
e−αx

α

[
f(x) +

f ′(x)

α
+

f ′′(x)

α2
+

f ′′′(x)

α3
+ . . .

]

C = −e−αx

α

[
f ′(x) +

f ′′(x)

α
+

f ′′′(x)

α2
+

f iv(x)

α3
+ . . .

]

Then

B + C = e−αxf(x).

Thus A = B + C and this equality allows us to express the Laplace Transform as:

L [f(t)] =

{
−e−st

s

[
f(t) +

f ′(t)
s

+
f ′′(t)
s2

+
f ′′′(t)

s3
+ . . .

]}∞

0

.

But:

lim
t7→∞

{
−e−st

s

[
f(t) +

f ′(t)
s

+
f ′′(t)
s2

+
f ′′′(t)

s3
+ . . .

]}
= 0

After we subtract the value of the expression for t = 0 we obtain the result enounced:

L [f(t)] =
f(0)

s
+

f ′(0)

s2
+

f ′′(0)

s3
+

f ′′′(0)

s4
+ . . .

Corollary of this property: The Laplace Transform of the first and second derivatives of the
function f(t) can be expressed as:

L [f ′(t)] = sF (s)− f(0) and L [f(t)′′(t)] = s2F (s)− sf(0)− f ′(0)

with F (s) the Laplace Transform of f(t).

Proof: To compute L [f ′(t)] we substitute f ′(t) = h(t) and observe that:

f ′′(t) = h′(t), f ′′′(t) = h′′(t), . . .

Using the property of the Laplace Transform:

H(s) = L [h(t)] =

[
h(0)

s
+

h′(0)

s2
+

h′′(0)

s3
+ . . .

]
=

[
f ′(0)

s
+

f ′′(0)

s2
+

f ′′′(0)

s3
+ . . .

]
.

Now write the expression of the Laplace Transform of the function f(t) as:

F (s) = L [f(t)] =
f(0)

s
+

1

s

[
f ′(0)

s
+

f ′′(0)

s2
+

f ′′′(0)

s3
+ . . .

]
.

4



It follows immediately that:

F (s) =
f(0)

s
+

1

s
H(s) or H(s) = sF (s)− f(0).

The second property can be proved in a similar way using the substitution h(t) = f ′′(t) and
writing:

F (s) = L [f(t)] =
f(0)

s
+

f ′(0)

s2
+

1

s2

[
f ′′(0)

s
+

f ′′′(0)

s2
+ . . .

]
.

Thus:

F (s) =
f(0)

s
+

f ′(0)

s2
+

1

s2
H(s) or H(s) = s2F (s)− sf(0)− f ′(0).

Applications of the Laplace Transform for solving differential equations. The Laplace Trans-
form allows us to transform ordinary differential equations into algebraic equations. For
example consider a continuous function f(t) with derivatives f ′(t) and f ′′(t). A second order
differential equation with the initial conditions f(0) = γ and f ′(0) = δ is:

af ′′(t) + bf ′(t) + cf(t) = 0

If we apply the Laplace Transform:

L [af ′′(t) + bf ′(t) + cf(t)] = 0

Let F (s) be the Laplace transform of f(t). Using the linearity property and the expressions
of the Laplace transform of the first and second derivative of the function f(t) this equation
becomes:

a
[
s2F (s)− sf(0)− f ′(0)

]
+ b [sF (s)− f(0)] + cF (s) = 0

We want to determine F(s) first and then determine the function f(t) = L−1 [f(t)]:

F (s)
[
as2 + bs + c

]
= asf(0) + af ′(0) + bf(0)

thus:

F (s) =
asf(0) + af ′(0) + bf(0)

as2 + bs + c

Let s1 and s2 be the roots of the second degree equation in s:

as2 + bs + c = 0 or (s− s1)(s− s2) = 0

with:

s1,2 =
−b±√b2 − 4ac

2a

Then we can express:

F (s) =
af(0)s + af ′(0) + bf(0)

(s− s1)(s− s2)

The function f(t) with the Laplace transform F (s) is:
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f(t) = Aes1t + Bes2t

with:
A + B = af(0) and As2 + Bs1 = −[af ′(0) + bf(0)].

It is easy to show these conditions using the properties of the Laplace Transform and the
calculations of the Laplace transforms of an exponential function:

L [f(t)] = L [
Aes1t + Bes2t

]
= AL [

es1t
]
+ BL [

es2t
]

= A
1

s− s1

+ B
1

s− s2

or

F (s) =
s(A + B)− (As2 + Bs1)

(s− s1)(s− s2)
=

s[af(0)] + [af ′(0) + bf(0)]

(s− s1)(s− s2)
.

If we equate the coefficients of the polynomial in s at the numerator we get the expressions
we expect:

A + B = af(0) and As2 + Bs1 = −[af ′(0) + bf(0)].

Application of the Laplace Transform to the bungee jumper problem. We now consider the
following model for v(t), the velocity of the jumper function of time:

v′(t) = g − c

m
v(t)

with g the gravitational constant and m the mass of the jumper, c a linear drag coefficient,
and the initial velocity v(0) = 0. If V (s) = L [v(t)] then we can transform this first order
differential equation into an algebraic one:

sV (s)− v(0) =
g

s
− c

m
V (s).

It follows that:

V (s)(s +
c

m
) =

g

s
+ v(0)

or

V (s) =
g

s(s + c
m

)
+

v(0)

s + c
m

A technique called partial fraction expansion allows us to express the first term on the right
hand side of the equations as follows:

g

s(s + c
m

)
=

A

s
+

B

(s + c
m

)
.

The coefficients A and B ca be determined easily from the identity:

g

s(s + c
m

)
≡ s(A + B) + A c

m

s(s + c
m

)

as

A + B = 0 and A
c

m
= g.
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Thus:

A =
gm

c
and B = −gm

c
.

Thus the Laplace Transform of the velocity is:

V (s) =
gm

sc
− gm

c(s + c
m

)
+

v(0)

s + c
m

To find the velocity, v(t) we apply the Inverse Laplace Transform to individual terms in the
equation giving F (s):

L−1
[gm

sc

]
=

gm

c
.

L−1

[
− gm

c(s + c
m

)

]
= −gm

c
× 1

s + c
m

e−
c
m

t.

L−1

[
v(0)

s + c
m

]
= v(0)e−

c
m

t.

Finally:

v(t) = L−1 [V (s)] =
gm

c
− gm

c
× 1

s + c
m

e−
c
m

t + v(0)e−
c
m

t.

Continuous Fourier Transform. When s is an imaginary number, s = iω, or s = i2πf ; ω = 2πf
is called the angular frequency, f = 1/T the frequency, and T is the period of the function.
Then the Laplace transform of the function q(t) becomes the continuous Fourier transform,
F [q(t)]:

Q(f) = L[q(t)]|s=i2πf = F [q(t)] =
∫∞
−∞ e−i2πftq(t)dt.

Fourier analysis is widely used in signal processing. The spectrum S(f) of the signal s(t), is
the Fourier Transform of s(t) and has a meaningful physical interpretation.

z-Transform. Consider a function f(t). Call ∆T (t) a sampling function with period T and
frequency f = 1/T . ∆T (t) is defined as:

∆T (t) =
∞∑

n=0

δ(t− nT ).

Sampling the continuous function f(t) means to observe the function at discrete instances of
time, in other words to record a discrete set of samples of the function, f [n] = f(nT ). Call
fs(t) the sampled function:

fs(t) = f(t) ·∆T (t) = f(t)
∞∑

n=0

δ(t− nT ) =
∞∑

n=0

f(nT )δ(t− nT ) =
∞∑

n=0

f [n]δ(t− nT ).
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The Laplace transform of the sampled function fs(t) is:

Fq(s) =

∫ ∞

0

fs(t)e
−st.

Let us transform this expression:

∫ ∞

0

fs(t)e
−st =

∫ ∞

0

∞∑
n=0

f [n]δ(t− nT )e−stdt =
∞∑

n=0

f [n]

∫ ∞

−0

δ(t− nT )e−stdt =
∞∑

n=0

f [n]e−nsT .

If we substitute z = esT we have:

F (z) =
∑∞

n=0 f [n]z−n.
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