
Laplace Transforms

For the design of a control system, it is important to know how the system of interest behaves 

and how it responds to different controller designs. To do this, the dynamic equations of the 

system are obtained and are solved to get the dynamic response. There are three different 

domains within which the dynamic response of a system is studied for the purpose of control 

design. These are the Laplace domain, the frequency domain and the state-space. This 

module provides an introduction to the Laplace domain and covers the mathematics of the 

Laplace transform.   

(This command loads the functions required for computing Laplace and Inverse Laplace transforms)

The Laplace transform

The Laplace transform is a mathematical tool that is commonly used to solve differential 

equations. Not only is it an excellent tool to solve differential equations, but it also helps in 

obtaining a qualitative understanding of how a system will behave and how changing certain

parameters will effect the dynamic response.  

Definitions

The Laplace transform of a real function  is defined as 

... Eq. (1)

where  is a complex variable . This definition is only valid if 

 for some finite and real value of . The Laplace transform provides 

the ability to transform a differential equation into a form that can be manipulated 



algebraically. For example, the differential equation

... Eq. (2)

with initial conditions  and can be transformed to 

... Eq. (3)

which can be rearranged to obtain

... Eq. (4)

The solution to the differential equation is then the inverse Laplace transform which is 

defined as 

... Eq. (5)

where  is a constant that is greater than the real parts of all the singularities of  and 

 is . This equation is usually not used in practice. Instead, the Laplace inverse for 

different functions can be found using tables like Table 1 (see below) that list functions 

and their transforms (these are easily available in textbooks and the internet). When the 

functions are not simple enough such that their transforms can be directly found from 

tables, the theorems of Laplace transforms and different rearrangement techniques (for 

example the partial fraction expansion) are used to arrange the equations in a form that 

can be recognized as one or a combination of the functions available in the tables. The 

inverse Laplace Transforms of functions can also be easily found using built-in functions 



(1.2.2.1)(1.2.2.1)

in Maple. 

Example 1: Laplace transform of a unit step function

Find the Laplace transform of .

Solution by hand

Solution using Maple

1

Example 2: Laplace transform of a ramp function

Find the Laplace transform of   

where  is a constant.

Solution by hand

Integrating by parts (  ): 



(1.4.2.2)(1.4.2.2)

(1.4.2.1)(1.4.2.1)

(1.3.2.1)(1.3.2.1)

Solution using Maple

Example 3: Laplace transform of a derivative

Find the Laplace transform of .

Solution by hand

Integrating by parts (  ): 

Therefore,

where  is the Laplace transform of .

Solution with Maple



(1.5.2.2)(1.5.2.2)

(1.5.2.1)(1.5.2.1)

Example 4: Laplace transform of a second derivative

Find the Laplace transform of .

Solution by hand

Integrating by parts (  ): 

Using the result from Example 3, this can be written as

Therefore,

Solution with Maple

The general equation for Laplace transforms of derivatives

From Examples 3 and 4 it can be seen that if the initial conditions are zero, then taking a 

derivative in the time domain is equivalent to multiplying by  in the Laplace domain. The 

following is the general equation for the Laplace transform of a derivative of order .

 



(1.6.2)(1.6.2)

(1.7.2.1)(1.7.2.1)

(1.6.1)(1.6.1)

... Eq. (6)

For example, the seventh order derivative of a function  can be written as

Example 5: Laplace transform of a sine function

Find the Laplace transform of  .

Solution by hand

Using the identity ,

Solution using Maple



List of Functions and their Laplace Transforms

The following table contains a list of some common functions and their Laplace 
transforms.

Table 1. Common functions and their Laplace transforms

Time domain function, Laplace transform, 

Unit impulse, 

 Unit-step, 

Unit-ramp, 

where 



Important Properties and Theorems of Laplace Transforms

1. Multiplication by a constant

... Eq. (7)
where  is a constant.

2. Superposition

... Eq. (8)

3. Differentiation

... Eq. (9)

4. Integration

... Eq. (10)

5. Complex shifting

... Eq. (11)
where  is a constant.

6. The Initial Value Theorem



... Eq. (12)

7. The Final Value Theorem

... Eq. (13)

8. Time delay

... Eq. (14)
where  is the time delay.

9. Time Domain Convolution

... Eq. (15)

Example 6: Laplace transform of 

Find the Laplace transform of .

Solution by hand

Using Table 1,

Therefore, using property 5. Complex shifting,



(1.11.2.2)(1.11.2.2)

(1.10.2.1)(1.10.2.1)

(1.11.2.1)(1.11.2.1)

Solution using Maple

1

Example 7: Laplace transform of 

Find the Laplace transform of .

Solution by hand

The Laplace transform of this function can be found using Table 1 and Properties 1, 2 
and 5.

Solution using Maple

=
 simplify 

Example 8: Laplace transform of 

Find the inverse Laplace transform of .



(1.12.2.1)(1.12.2.1)

Solution by hand

can be rearranged to get

This resembles the form of the Laplace transform of a sine function. Also, the  

term hints towards complex shifting. Further rearrangement gives 

Using Properties 1 and 5, and Table 1, the inverse Laplace transform of  is

Solution using Maple

Example 9: Inverse Laplace transform of  (Method of 

Partial Fraction Expansion)

Find the inverse Laplace transform of .

Solution by hand

This example shows how to use the method of Partial Fraction Expansion when there 

are no repeated roots in the denominator.

The denominator of the function can be factored to get



(1.13.2.1)(1.13.2.1)

This can be written as a sum of partial fractions:

... Eq. (16)

The next step is to solve for and . Multiplying both sides by , gives

By setting , this equation simplifies to

Similarly, multiplying both sides of Eq. (16) by  and setting , gives

and multiplying both sides of Eq. (16) by  and setting , gives

Now  can be written as

Using Properties 1 and 5, and using Table 1, we get

Solution with Maple

Example 10: Inverse Laplace transform of  (Method of 

Partial Fraction Expansion)

Find the inverse Laplace transform of 



.

Solution by hand

This example shows how to use the method of Partial Fraction Expansion when there 

are repeated roots in the denominator.

The denominator of the function can be factored to get

This can be written as a sum of partial fractions:

... Eq. (17)

The next step is to solve for and . Multiplying both sides by , gives

By setting , this simplifies to

Similarly, multiplying both sides of Eq. (17) by  gives

... Eq. (18)

and setting , gives

Now, differentiating both sides of Eq. (18) with respect to  and then setting  

gives

This reduces to

 can now be written as



(1.14.2.1)(1.14.2.1)

Using Properties 1 and 5, and using Table 1, we get

Solution with Maple

Example 11: Inverse Laplace transform of  (Method of 

Partial Fraction Expansion)

Find the inverse Laplace transform of .

Solution by hand

This example shows how to use the method of Partial Fraction Expansion when there 

are complex roots in the denominator.

The denominator of the function can be factored to get

This can be written as a sum of partial fractions:

 ... Eq. (19)

Multiplying both sides by  and setting , gives



(1.15.2.1)(1.15.2.1)

Similarly, multiplying both sides of Eq. (19) by  and setting , gives

By rationalizing the denominator this can be written as

Once again, multiplying both sides of Eq. (19) by  and setting , gives

and by rationalizing the denominator this can be written as

 can now be written as

The inverse transform of this is

which can be further written as

Using the identities  and , we 

get

Solution with Maple



Example 12: Spring-mass system with viscous damping

Problem Statement: The following differential 

equation is the equation of motion for an ideal 

spring-mass system with damping and an external 

force 

If  Kg,  N$s/m,  N/m,  N, and 

, find the solution of this differential 

equation using Laplace transforms. Fig. 1: Spring-mass system with damping

Solution

Taking the Laplace transform of both sides of the equation of motion gives

By rearranging this equation we get 

The denominator of this transfer function can be factorized to

This can be further written as a sum of partial fractions:

... Eq. (20)

Now we have to solve for and . Multiplying both sides by , gives



By setting , this equation simplifies to

Similarly, multiplying both sides of Eq. (20) by  and setting , gives

and multiplying both sides of Eq. (20) by  and setting , gives

Now  can be written as

Using Properties 1 and 5, and using Table 1, we get

This equation shows that the displacement approaches  m as  approaches infinity. 

The following is a plot of the displacement versus time.  

Displacement plotDisplacement plot

Solution with Maple



(2.1.1.1)(2.1.1.1)

MapleSim Simulation

Constructing the model

Step1: Insert Components

Drag the following components into the workspace:

Table 2: Components and locations

Componen
t

Location

1-D 
Mechanical 

> 
Translationa

l > 
Common 

1-D 
Mechanical 

> 
Translationa

l > 
Common 

1-D 
Mechanical 

> 
Translationa

l > 
Common 

1-D 
Mechanical 

> 
Translationa

l > Force 



1. 1. 

1. 1. 

2. 2. 

3. 3. 

Drivers

Step 2: Connect the components

Connect the components as shown in the following diagram. 

Fig. 2: Component diagram

Step 3: Set parameters and initial conditions

Click the Translational Spring Damper component and enter 4 N/m for the 

spring constant ( ) and 5 N/m for the damping constant ( ).
Click the Mass component and enter 1 kg for the mass ( ), 0 m/s for the initial 

velocity ( ) and 0 m for the initial position ( ). Select the check marks that enforce

these initial condition.

Click the Translational Constant Force component and enter 2 N for the

Nominal force ( ).

Step 4: Run the Simulation

Attach a Probe to the Mass component as shown in Fig. 2. Click this probe and 

select Length in the Inspector tab. This will show the position of the mass as a 



2. 2. 

1. 1. 

function of time. 

Click Run Simulation ( ).

This simulation outputs the same plot that is obtained analytically:

Fig. 3: MapleSim simulation result - Displacement (m) vs. time (sec)
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