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Large Deviation Background

Rate function The function I : X 7→ [0,∞] is called rate
function if

• I is lower semicontinuous

• I has compact levet set.

Large deviation Principle
A sequence of random variables X1, X2, . . . is said to satisfy a
LDP with speed an and rate function I if for all Borel sets
A ⊂M ,

• lim sup
n→∞

1

an
logP{Xn ∈ A} ≤ − inf

X∈cl(A)
I(x)

• lim inf
n→∞

1

an
logP{Xn ∈ A} ≥ − inf

X∈int(A)
I(x)

In easy word, limn→∞
1
an

logP{Xn ∈ A} ≈ −I(x).



Large
deviations for
the range of a
simple random

walk.

Parkpoom
Phetpradap
University of

Bath

LD
Background

Introduction

Previous
Results

Main Result

Random Walk
on Torus

Proof of LDP for
random walk on
torus

X

Reference

Large Deviation Background

Rate function The function I : X 7→ [0,∞] is called rate
function if

• I is lower semicontinuous

• I has compact levet set.

Large deviation Principle
A sequence of random variables X1, X2, . . . is said to satisfy a
LDP with speed an and rate function I if for all Borel sets
A ⊂M ,

• lim sup
n→∞

1

an
logP{Xn ∈ A} ≤ − inf

X∈cl(A)
I(x)

• lim inf
n→∞

1

an
logP{Xn ∈ A} ≥ − inf

X∈int(A)
I(x)

In easy word, limn→∞
1
an

logP{Xn ∈ A} ≈ −I(x).



Large
deviations for
the range of a
simple random

walk.

Parkpoom
Phetpradap
University of

Bath

LD
Background

Introduction

Previous
Results

Main Result

Random Walk
on Torus

Proof of LDP for
random walk on
torus

X

Reference

Large Deviation Background

Rate function The function I : X 7→ [0,∞] is called rate
function if

• I is lower semicontinuous

• I has compact levet set.

Large deviation Principle
A sequence of random variables X1, X2, . . . is said to satisfy a
LDP with speed an and rate function I if for all Borel sets
A ⊂M ,

• lim sup
n→∞

1

an
logP{Xn ∈ A} ≤ − inf

X∈cl(A)
I(x)

• lim inf
n→∞

1

an
logP{Xn ∈ A} ≥ − inf

X∈int(A)
I(x)

In easy word, limn→∞
1
an

logP{Xn ∈ A} ≈ −I(x).



Large
deviations for
the range of a
simple random

walk.

Parkpoom
Phetpradap
University of

Bath

LD
Background

Introduction

Previous
Results

Main Result

Random Walk
on Torus

Proof of LDP for
random walk on
torus

X

Reference

Large Deviation Background

Donsker and Varadhan Theory

LDP of pair empirical process
The pair empirical measure L2

n satisfy LDP with speed n and
explicitly given rate function.

Contraction Principle
If X1, X2, . . . satisfy LDP with speed an and rate function I,
and f : M →M ′ is a continuous mapping, then sequences
f(X1), f(X2), . . . satisfies LDP with speed an and rate
function J given by

J(y) = inf
x∈f−1({y})

I(x)
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Introduction

The Model

• Let (Sn)n>0 be a d-dimensional simple random walk on Zd
starting at the origin.

• In this talk, we are only interested in the case when d ≥ 3.

Let Rn = ]{Si : 1 ≤ i ≤ n} be the number of points visited by
the random walk up to time n.
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Expected size of Range

Theorem (Dvoretzky and Erdős, 1950)

ERn =


κn+O(n1/2), if d = 3;
κn+O(log n), if d = 4;

κn+ cd +O(n2−d/2), if d ≥ 5

where

• κ = P(Si 6= 0 for i > 0) is the exit probability from the
origin.

• cd(d = 5, 6, . . .) are positive constants.

Further, the strong law of large numbers holds

lim
n→∞

Rn
ERn

= 1 a.s. if d ≥ 2.
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The Large Deviation Behaviour

Theorem (Kesten and Hamana, 2001)

For n > 0,

ψ(θ) := lim
n→∞

−1

n
logP(Rn ≥ θn) exists

for all θ (but ψ(θ) may equal +∞). Moreover,

ψ(θ) = 0, for θ ≤ κ
0 < ψ(θ) <∞, for κ < θ ≤ 1

ψ(θ) =∞, for θ > 1.
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The Kesten-Hamana theorem describes the probability of
unusually large range ({Rn ≥ θn} for θ > κ).

Question: What can we say about the probability of unusually
small range ({Rn ≤ θn} for θ < κ)?
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unusually large range ({Rn ≥ θn} for θ > κ).

Question: What can we say about the probability of unusually
small range ({Rn ≤ θn} for θ < κ)?
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Result

Theorem 1
Let d ≥ 3. For every b > 0,

lim
n→∞

1

n
d−2
d

logP(Rn ≤ bn) = −1

d
Iκ(b),

where

Iκ(b) = inf
φ∈Φκ(b)

[
1

2

∫
Rd
|∇φ|2(x)dx]

with

Φκ(b) = {φ ∈ H1(Rd) :∫
Rd
φ2(x)dx = 1,

∫
Rd

(1− e−κφ2(x))dx ≤ b}.
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Proof Outline

• We let the random walk live on the torus and prove the
LDP for the random walk on torus.

• Then, we expand the size of the torus.

• The size of the torus depends on timescale.
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Proof Outline

• We let the random walk live on the torus and prove the
LDP for the random walk on torus.

• Then, we expand the size of the torus.

• The size of the torus depends on timescale.
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Random walk on torus

Standard compactification:

• Let ΛN be the torus of size N > 0, i.e., [−N
2 ,

N
2 )d with

periodic boundary conditions.

• For n > 0, let Sn be the random walk wrapped around
ΛNn1/d .

• Let Rn denotes the number of points visited by the
random walk when wrapped around the torus up to time n.

Obvious remark: Rn ≤ Rn.
We will use this fact to prove the upper bound of Theorem 1.
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Proposition 2
1
nRn satisfies LDP on R+ with speed n

d−2
d and rate function

JκN (b) = inf
φ∈∂ΦκN (b)

[
1

2

∫
ΛN

|∇φ|2(x)dx]

with

∂Φκ
N (b) = {φ ∈ H1(ΛN ) :

∫
ΛN

φ2(x)dx = 1,∫
ΛN

(1− e−κφ2(x))dx = b}.
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Proof of Proposition 2 (sketch)

We can separate the proof into three main steps:

• Approximate Sn by its conditional walk (skeleton).

• Proof LDP of its skeleton using Donsker-Varadhan theory
for empirical pair measure.

• Get appropriate rate function for LDP.
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Approximate random walk

Set Sn,ε = {Siεn2/d}
1≤i≤ 1

ε
n
d−2
d

and let En,ε be the conditional

expectation given Sn,ε.

We prove that the difference between
1
nRn and 1

nEn,εRn is negligible in the limit as n→∞ followed
by ε ↓ 0.

Proposition 3

For all δ > 0,

lim
ε↓0

lim sup
n→∞

1

n
d−2
d

logP(
1

n
|Rn − En,εRn| ≥ δ) = −∞.
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LDP of 1
nEn,εRn

We aim to represent En,ε 1
nRn as a function of the empirical

measure in order to apply Donsker-Varadhan theory. We will
scale the torus from size Nn1/d to size N to remove
n−dependence.

Define empirical pair measure:

L2
n,ε = εn−

d−2
d

1
ε
n
d−2
d∑

i=1

δ(n−1/dS
(i−1)εn2/d

,n−1/dS
iεn2/d

).
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LDP of 1
nEn,εRn

We aim to represent En,ε 1
nRn as a function of the empirical

measure in order to apply Donsker-Varadhan theory. We will
scale the torus from size Nn1/d to size N to remove
n−dependence.
Define empirical pair measure:

L2
n,ε = εn−

d−2
d

1
ε
n
d−2
d∑

i=1

δ(n−1/dS
(i−1)εn2/d

,n−1/dS
iεn2/d

).
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After a lot of approximation arguments, we get

Lemma 4

lim
n→∞

|| 1
n
En,εRn − Φ1/ε(L

2
n,ε)||∞ = 0 for all ε > 0.

where,

Φη(µ) =

∫
ΛN

dx
(
1−exp[−ηκ

∫
ΛN×ΛN

ϕε(y−x, z−x)µ(dy, dz)]
)
,

with

ϕε(y, z) =

∫ ε

0
ds
pπ(s/d,−y)pπ

(
(ε− s)/d, z

)
pπ(ε/d, z − y)

.
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Sketch of Lemma 4

We first define:

Wi = {Sj : (i− 1)εn2/d ≤ j ≤ iεn2/d} (1 ≤ i ≤ 1

ε
n
d−2
d )

to be the range of random walk between each skeleton

.

Note that 1
nRn = 1

n]{
⋃ 1

ε
n
d−2
d

i=1 Wi}.
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Now, we can see that:

En,ε
1

n
Rn =

1

n

∑
x∈Λ

Nn
1
d

(
1− Pn,ε{x /∈

1
ε
n
d−2
d⋃

i=1

Wi}
)

=
1

n

∑
x∈Λ

Nn
1
d

(
1− Pn,ε(

1
ε
n
d−2
d⋂

i=1

{x /∈Wi})
)

=
1

n

∑
x∈Λ

Nn
1
d

(
1−

1
ε
n
d−2
d∏

i=1

Pn,ε{x /∈Wi}
)
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a =
1

n

∑
x∈Λ

Nn
1
d

(
1− exp

( 1
ε
n
d−2
d∑

i=1

log[1− Pn,ε{x ∈Wi}]
))

≈
∫

ΛN

dx
(

1− exp
(1

ε
n
d−2
d

∫
ΛN×ΛN

L2
n,ε(dy, dz) log[1− qn,ε(y − x, z − x)]

))
.

where

• the last equality come from scaling the torus and adding
empirical measure.

• qn,ε(y, z) = P(σ ≤ εn
2
d |S0 = y, Sεn2/d = z), where

σ = min{n : Sn = 0}.
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σ = min{n : Sn = 0}.



Large
deviations for
the range of a
simple random

walk.

Parkpoom
Phetpradap
University of

Bath

LD
Background

Introduction

Previous
Results

Main Result

Random Walk
on Torus

Proof of LDP for
random walk on
torus

X

Reference

a =
1

n

∑
x∈Λ

Nn
1
d

(
1− exp

( 1
ε
n
d−2
d∑

i=1

log[1− Pn,ε{x ∈Wi}]
))

≈
∫

ΛN

dx
(

1− exp
(1

ε
n
d−2
d

∫
ΛN×ΛN

L2
n,ε(dy, dz) log[1− qn,ε(y − x, z − x)]

))
.

where

• the last equality come from scaling the torus and adding
empirical measure.

• qn,ε(y, z) = P(σ ≤ εn
2
d |S0 = y, Sεn2/d = z), where

σ = min{n : Sn = 0}.
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By using Donsker-Varadhan theory, along with the previous
lemma, we can deduce that:

Proposition 5
1
nEn,εRn satisfies LDP on R+ with speed n

d−2
d and rate

function:

Jε/d(b) = inf{1

ε
I

(2)
ε/d(µ) : µ ∈M+

1 (ΛN × ΛN ),Φ1/ε(µ) = b}.
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Performing the limit

This step is to derive appropriate limit result for rate function,
via functional analysis. The result of this step is that we obtain
the required rate function in Proposition 2.

The proof can be seen on van den Berg, Bolthausen and den
Hollander(2001) “Moderate deviation for the volume of the
Wiener sausage ”.
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Increasing the size of torus

Proposition 6

limN→∞ I
κ
N (b) = Iκ(b) for all b > 0. where Iκ is the rate

function defined in Theorem 1.

Combine this proposition with the previous result, we will get
the upper bound.
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Current Work
Let Jn be the number of intersecting points of two independent
random walks start at the origin.

CONJECTURE
Let d ≥ 3. For every c > 0,

lim
n→∞

1

n
d−2
d

logP(Jn ≥ cn) = −1

d
Îκd (c),

where

Îκd (c) = inf
φ∈Φκd (c)

[

∫
Rd
|∇φ|2(x)dx]

with

Φκ
d(c) = {φ ∈ H1(Rd) :∫

Rd
φ2(x)dx = 1,

∫
Rd

(1− e−(κ/c)φ2(x))2dx ≥ 1}.
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