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Thank you! 
 
•  Xuewen  Chen 

•  Dennis Schwartz 
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Roadmap 

•  Introduction – Motivation 
– Why ‘big data’ 
– Why (big) graphs? 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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Why ‘big data’ 
•  Why? 
•  What is the problem definition? 
•  What are the major research challenges? 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 4 
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Main message: 

Big data: often > experts 
•  ‘Super Crunchers’ Why Thinking-By-Numbers is the 

New Way To Be Smart by Ian Ayres, 2008 

•  Google won the machine translation 
competition 2005 

•  http://www.itl.nist.gov/iad/mig//tests/mt/2005/doc/
mt05eval_official_results_release_20050801_v3.html 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 5 
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Problem definition – big picture 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 6 

Tera/Peta-byte  
data 

Analytics Insights, 
outliers 
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Problem definition – big picture 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 7 

Tera/Peta-byte  
data 

Analytics Insights, 
outliers 

Main emphasis in this talk 
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Problem definition – big picture 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 8 

Tera/Peta-byte  
data 

(my personal) rules of thumb: if 
data 
•  fits in memory -> R, matlab, 

scipy 
•  single disk -> RDBMS (sqlite3, 

mysql, postgres) 
•  multiple (<100-1000) disks: 

parallel RDBMS (Vertica, 
TeraData) 

•  multiple (>1000) disks: 
hadoop, pig 
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(Free) Resource for graphs 

Open source system for mining huge graphs: 
 
PEGASUS project (PEta GrAph mining 

System)  
•  www.cs.cmu.edu/~pegasus 
•  Apache license for s/w 
•  code and papers 
 
 Wayne State, Feb. 2013 



CMU SCS 

Research challenges 
•  The usual ones from data mining 

– Data cleansing 
– Feature engineering 
– … 

PLUS 
– Scalability ( < O(N**2)) 
– Real data *disobey* textbook assumptions 

(uniformity, independence, Gaussian, Poisson) 
with huge performance implications 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 10 
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Roadmap 

•  Introduction – Motivation 
– Why ‘big data’ 
– Why (big) graphs? 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

>$10B revenue 

>0.5B users 

Wayne State, Feb. 2013 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

 
•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

Wayne State, Feb. 2013 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 
•  Subject-verb-object -> graph 
•  Many-to-many db relationship -> graph 

Wayne State, Feb. 2013 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

Wayne State, Feb. 2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

Wayne State, Feb. 2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

Wayne State, Feb. 2013 
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Graph mining 
•  Are real graphs random? 

Wayne State, Feb. 2013 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

Wayne State, Feb. 2013 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

Wayne State, Feb. 2013 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

Wayne State, Feb. 2013 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Wayne State, Feb. 2013 



CMU SCS 

C. Faloutsos (CMU) 24 

Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Wayne State, Feb. 2013 
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But: 
How about graphs from other domains? 

Wayne State, Feb. 2013 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

Wayne State, Feb. 2013 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

Wayne State, Feb. 2013 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
Wayne State, Feb. 2013 C. Faloutsos (CMU) 28 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Wayne State, Feb. 2013 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

Wayne State, Feb. 2013 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

Wayne State, Feb. 2013 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

Wayne State, Feb. 2013 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

Wayne State, Feb. 2013 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

Wayne State, Feb. 2013 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
38 Wayne State, Feb. 2013 38 C. Faloutsos (CMU) 

? ? 

? 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
39 Wayne State, Feb. 2013 39 C. Faloutsos (CMU) 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
40 Wayne State, Feb. 2013 40 C. Faloutsos (CMU) 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
41 Wayne State, Feb. 2013 41 C. Faloutsos (CMU) 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Wayne State, Feb. 2013 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

Wayne State, Feb. 2013 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

Wayne State, Feb. 2013 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

Wayne State, Feb. 2013 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

C. Faloutsos (CMU) 46 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

Wayne State, Feb. 2013 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

Wayne State, Feb. 2013 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

Wayne State, Feb. 2013 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

Wayne State, Feb. 2013 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

Wayne State, Feb. 2013 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

Wayne State, Feb. 2013 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

Wayne State, Feb. 2013 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

•  A: over-doubled! 
– But obeying the ``Densification Power Law’’ 

Wayne State, Feb. 2013 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

Wayne State, Feb. 2013 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

Wayne State, Feb. 2013 
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T.3 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

Wayne State, Feb. 2013 
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T.3 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

Wayne State, Feb. 2013 
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T.3 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

Wayne State, Feb. 2013 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

Response time (log) 

Prob(RT > x) 
(log) 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Belief Propagation 
– Tensors 
– Spike analysis 

•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 



CMU SCS 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 65 

E-bay Fraud detection - NetProbe 

F A H 
F 99% 
A 99% 
H 49% 49% 

Compatibility 
matrix 

heterophily 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Belief Propagation 
– Tensors 
– Spike analysis 

•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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GigaTensor: Scaling Tensor Analysis 
Up By 100 Times –  

Algorithms and Discoveries 

U  
Kang 

Christos 
Faloutsos 

KDD’12 

Evangelos 
Papalexakis 

Abhay 
Harpale 

Wayne State, Feb. 2013 67 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Hyperlinks &anchor text [Kolda+,05] 

URL 1	

URL 2	

Anchor 
Text	

Java	

C++	

C#	

1
1

1

1
1

1 1

Wayne State, Feb. 2013 68 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Sensor stream (time, location, type) 
– Predicates (subject, verb, object) in knowledge base 

“Barrack Obama is 
the president of 

U.S.” 	

“Eric Clapton plays 
guitar” 	

(26M)	

(26M)	

(48M)	

NELL (Never Ending 
Language Learner) data 

Nonzeros =144M	

Wayne State, Feb. 2013 69 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Sensor stream (time, location, type) 
– Predicates (subject, verb, object) in knowledge base 

Wayne State, Feb. 2013 70 C. Faloutsos (CMU) IP-destination 

IP-source 

Time-stamp Anomaly  
Detection in 
Computer 
networks 
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Problem Definition 

•  How to decompose a billion-scale tensor? 
– Corresponds to SVD in 2D case 

Wayne State, Feb. 2013 72 C. Faloutsos (CMU) 
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Problem Definition 

  Q1: Dominant concepts/topics?	
  Q2: Find synonyms to a given noun phrase? 
  (and how to scale up: |data| > RAM) 

(26M)	

(26M)	

(48M)	

NELL (Never Ending 
Language Learner) data 

Nonzeros =144M	

Wayne State, Feb. 2013 73 C. Faloutsos (CMU) 
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Experiments 

•  GigaTensor solves 100x larger problem 

Number of  
nonzero 
= I / 50	

(J)	

(I)	

(K)	

GigaTensor 

Out of 
Memory 

100x 

Wayne State, Feb. 2013 74 C. Faloutsos (CMU) 
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A1: Concept Discovery 

•  Concept Discovery in Knowledge Base 

Wayne State, Feb. 2013 75 C. Faloutsos (CMU) 
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A1: Concept Discovery 

Wayne State, Feb. 2013 76 C. Faloutsos (CMU) 
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A2: Synonym Discovery 

Wayne State, Feb. 2013 77 C. Faloutsos (CMU) 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Belief propagation 
– Tensors 
– Spike analysis 

•  Problem#3: Scalability -PEGASUS 
•  Conclusions 

Wayne State, Feb. 2013 
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•  Meme (# of mentions in blogs) 
–  short phrases Sourced from U.S. politics in 2008 

79 

20 40 60 80 100 120 140 160
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“you can put lipstick on a pig”  

“yes we can”  

Rise and fall patterns in social media 

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Rise and fall patterns in social media	

80 

•  Can we find a unifying model, which 
includes these patterns? 

•  four classes on YouTube [Crane et al. ’08] 
•  six   classes on Meme     [Yang et al. ’11] 

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Rise and fall patterns in social media	

81 

•  Answer: YES! 

•  We can represent all patterns by single model 
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C. Faloutsos (CMU) Wayne State, Feb. 2013 In Matsubara+ SIGKDD 2012   



CMU SCS 

82 

Main idea - SpikeM	
-  1. Un-informed bloggers (uninformed about rumor) 

-  2. External shock at time nb (e.g, breaking news) 

-  3. Infection (word-of-mouth) 

Time n=0	 Time n=nb	

β	

C. Faloutsos (CMU) Wayne State, Feb. 2013 

             Infectiveness of a blog-post at age n:  

- Strength of infection (quality of news) 
- Decay function 

β

f (n)

Time n=nb+1	
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-  1. Un-informed bloggers (uninformed about rumor) 

-  2. External shock at time nb (e.g, breaking news) 

-  3. Infection (word-of-mouth) 

Time n=0	 Time n=nb	

β	

C. Faloutsos (CMU) Wayne State, Feb. 2013 

             Infectiveness of a blog-post at age n:  

- Strength of infection (quality of news) 
- Decay function 

β

f (n)

Time n=nb+1	

f (n) = β *n−1.5

Main idea - SpikeM	
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SpikeM - with periodicity	
•  Full equation of SpikeM  

84 

   ΔB(n+1) = p(n+1) ⋅ U(n) ⋅ (ΔB(t)+ S(t)) ⋅ f (n+1− t)+ε
t=nb

n

∑
%

&
'
'

(

)
*
*

Periodicity	

noon 
Peak	 3am 

Dip	

Time n	

Bloggers change their 
activity over time 

(e.g., daily, weekly, 
yearly)	

activity	

p(n)

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Details	
•  Analysis – exponential rise and power-raw fall 

85 

      

   

Lin-log	

Log-log	

 Rise-part 
 

    SI     -> exponential  
SpikeM -> exponential 

 
C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Details	
•  Analysis – exponential rise and power-raw fall 

86 

      

   

Lin-log	

Log-log	

 Fall-part 
 

     SI      -> exponential  
SpikeM -> power law 

 
C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Tail-part forecasts	

87 

•  SpikeM can capture tail part 
 

  

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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“What-if” forecasting	

88 

 
 

e.g., given  (1) first spike, 
      (2) release date of two sequel movies  
      (3) access volume before the release date 

?	

(1) First 
spike	

(2) Release 
date	

(3) Two weeks before 
release	

C. Faloutsos (CMU) Wayne State, Feb. 2013 

?	
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“What-if” forecasting	

89 

 
 

SpikeM can forecast upcoming spikes 

(1) First 
spike	

(2) Release 
date	

(3) Two weeks before 
release	

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability –PEGASUS 

– Diameter 
– Connected components 

•  Conclusions 

Wayne State, Feb. 2013 
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Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done HERE 

Visualization started  
 

Roadmap – Algorithms & results 

Wayne State, Feb. 2013 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

C. Faloutsos (CMU) 93 Wayne State, Feb. 2013 
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???? 

19+ [Barabasi+] 

94 C. Faloutsos (CMU) 

Radius 

Count 

Wayne State, Feb. 2013 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 

95 C. Faloutsos (CMU) 

Radius 

Count 

Wayne State, Feb. 2013 

?? 

~1999, ~1M nodes  
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 

96 C. Faloutsos (CMU) 

Radius 

Count 

Wayne State, Feb. 2013 

14 (dir.) 
~7 (undir.) 



CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 

97 C. Faloutsos (CMU) 

Radius 

Count 

Wayne State, Feb. 2013 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 

98 C. Faloutsos (CMU) 

Radius 

Count 

Wayne State, Feb. 2013 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

Wayne State, Feb. 2013 
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Radius Plot of GCC of YahooWeb. 

100 C. Faloutsos (CMU) Wayne State, Feb. 2013 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Wayne State, Feb. 2013 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Wayne State, Feb. 2013 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Wayne State, Feb. 2013 

~7 

Conjecture: 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability –PEGASUS 

– Diameter 
– Connected components 

•  Conclusions 

Wayne State, Feb. 2013 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 106 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

Wayne State, Feb. 2013 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 107 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

Wayne State, Feb. 2013 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Wayne State, Feb. 2013 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Wayne State, Feb. 2013 

2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Wayne State, Feb. 2013 

3) SLOPE! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) Wayne State, Feb. 2013 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) Wayne State, Feb. 2013 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) Wayne State, Feb. 2013 



CMU SCS 

C. Faloutsos (CMU) 115 

Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Wayne State, Feb. 2013 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
triangle-laws, conn. components, etc) 

•  New tools: 
–  belief propagation, gigaTensor, etc 

•  Scalability: PEGASUS / hadoop 

Wayne State, Feb. 2013 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise 

Wayne State, Feb. 2013 



CMU SCS 

ML & 
Stats. 

Comp. 
Systems 

Theory 
& Algo. 

Biology 

Econ. 

Social 
Science 

Physics 

118 

Graph 
Analytics 

Wayne State, Feb. 2013 C. Faloutsos (CMU) 
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Project info & ‘thanks’ 
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Take-home message 
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Tera/Peta-byte  
data 

Analytics Insights, 
outliers 

Big data reveal insights that would be 
invisible otherwise (even to experts) 


