Large Graph Mining Patterns, Tools and Cascade analysis

Christos Faloutsos
CMU

Thank you!

- Xuewen Chen
- Dennis Schwartz

Roadmap

\Rightarrow - Introduction - Motivation

- Why 'big data'
- Why (big) graphs?
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Why 'big data'

- Why?
- What is the problem definition?
- What are the major research challenges?

Main message: Big data: often $>$ experts

- 'Super Crunchers’ Why Thinking-By-Numbers is the New Way To Be Smart by Ian Ayres, 2008
- Google won the machine translation competition 2005
- http://www.itl.nist.gov/iad/mig//tests/mt/2005/doc/ mt05eval_official results release 20050801 v3.html

Problem definition - big picture

Tera/Peta-byte data

Analytics
Insights, outliers

Problem definition - big picture

Tera/Peta-byte data

Analytics
Insights, outliers

Main emphasis in this talk

Problem definition - big picture

(my personal) rules of thumb: if data

- fits in memory -> R, matlab, scipy
- single disk -> RDBMS (sqlite3, mysql, postgres)
- multiple (<100-1000) disks: parallel RDBMS (Vertica, TeraData)
- multiple (>1000) disks: hadoop, pig

(Free) Resource for graphs

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining
System)

- www.cs.cmu.edu/~pegasus

- Apache license for s / w
- code and papers

Research challenges

- The usual ones from data mining
- Data cleansing
- Feature engineering

PLUS

- Scalability ($<\mathrm{O}\left(\mathrm{N}^{* *}\right.$ 2))
- Real data *disobey* textbook assumptions (uniformity, independence, Gaussian, Poisson) with huge performance implications

Roadmap

- Introduction - Motivation
- Why 'big data’
- Why (big) graphs?
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Graphs - why should we care?

Food Web
[Martinez '91]

>\$10B revenue

>0.5B users

Internet Map [lumeta.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- Subject-verb-object -> graph
- Many-to-many db relationship -> graph

Outline

- Introduction - Motivation

Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope
$E=-0.48$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix
C. Faloutsos (CMU)

Solution\# S.2: Eigen Exponent E

Eigenvalue

> Exponent = slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou '02]: slope is $1 / 2$ of rank exponent
Wayne State, Feb. 2013
C. Faloutsos (CMU)

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

epinions.com

And numerous more

- \# of sexual contacts
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants’)
- Size of files of a user
- 'Black swans’

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws’

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

Wayne Sate, Feb. 2013

ASN

X-axis: \# of participating triangles
Y: count (\sim pdf)
10^{5} is (CMU)

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

Epinions

X-axis: \# of participating triangles
Y: count (\sim pdf)

Triangle Law: \#S. 4 [Tsourakakis ICDM 2008]

Wayne State, Feb. 2013 Degree

X-axis: degree
Y-axis: mean \# triangles
n friends -> $\sim n^{1.6}$ triangles

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

38

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Observations on weighted graphs?

- A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

Wayne State, Feb. 2013

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': $1.01<\mathrm{iw}<1.26$

More donors, even more \$

In-weights

C. Faloutsos (CMU)

Orgs-Candidates
e.g. John Kerry, \$10M received, from 1K donors

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ $\mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim($ ($\mathrm{L} \alpha \mathrm{I})$
- diameter $\sim \mathrm{O}($ rug $\log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
-@1999
- 2.9 M nodes
- 16.5 M edges

C. Faloutsos (CMU)

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q: what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
- Q: what is your guess for
$\mathrm{E}(\mathrm{t}+1)=?$? $\mathrm{E}(\mathrm{t})$
- A: over-doubled!
- But obeying the "Densification Power Law"

T. 2 Densification - Patent Citations

- Citations among patents granted
- @1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

T. 3 : popularity over time

\# in links

Post popularity drops-off - exponentially?

T. 3 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expon e^{\dagger} ally? POWER LAW!
Exponent?

T. 3 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!
Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk

Wayne State, Feb. 2013
C. Faloutsos (CMU)

-1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

Figure 1 |The correspondence patterns of Darwin and Einstein.

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief Propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability
- Conclusions

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

Wayne State, Feb. 2013
C. Faloutsos (CMU)

E-bay Fraud detection - NetProbe

Compatibility matrix

	\mathbf{F}	\mathbf{A}	\mathbf{H}
\mathbf{F}		99%	
\mathbf{A}	99%		
\mathbf{H}		49%	49%

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief Propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability
- Conclusions

GigaTensor: Scaling Tensor Analysis Up By 100 Times Algorithms and Discoveries

U Evangelos Abhay Christos
Kang Papalexakis Harpale Faloutsos

KDD'12

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Hyperlinks \&anchor text [Kolda+,05]

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
- Predicates (subject, verb, object) in knowledge base

Wayne State, Feb. 2013
(48M) verbs subjects (26M)

NELL (Never Ending Language Learner) data Nonzeros $=144 \mathrm{M}$
C. Faloutsos (CMU)69

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
- Predicates (subject, verb, object) in knowledge base

Anomaly
Detection in
Computer
networks

IP-destination

Problem Definition

- How to decompose a billion-scale tensor?
- Corresponds to SVD in 2D case

Problem Definition

- Q1: Dominant concepts/topics?
\square Q2: Find synonyms to a given noun phrase?
- (and how to scale up: |data|> RAM)
(48M) verbs

NELL (Never Ending
Language Learner) data
Nonzeros $=144 \mathrm{M}$

Experiments

- GigaTensor solves $100 x$ larger problem

Number of
nonzero
= I / 50

A1: Concept Discovery

- Concept Discovery in Knowledge Base

Wayne State, Feb. 2013
C. Faloutsos (CMU)

75

A1: Concept Discovery

Noun Phrase	Noun Phrase 2	Context
Concept 1: interne file data	Web Protocol' protocol software suite	'np1' 'stream' 'np2' 'np1' 'marketing' 'np2' 'np1' 'dating' 'np2'
Concept 2: credit Credit library	Credit Cards" information debt number	
Concept 3: health child home	Health System provider providers system	'np1' 'care' 'np2' 'np' 'insurance, 'np2' 'np1' 'service' ' n n2'

A2: Synonym Discovery

(Given)
 Noun Phrase

pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast

Christian history European history, American history, Islamic history, history
disbelief dismay, disgust, astonishment

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability -PEGASUS
- Conclusions

Rise and fall patterns in social media

- Meme (\# of mentions in blogs)
- short phrases Sourced from U.S. politics in 2008
"you can put lipstick on a pig"

"yes we can"

C. Faloutsósecheyrs)

Rise and fall patterns in social media

- Can we find a unifying model, which includes these patterns?
- four classes on YouTube [Crane et al. '08]
- six classes on Meme [Yang et al. '11]

Rise and fall patterns in social media

- Answer: YES!

- We can represent all patterns by single model

In Matsubara+ SIGKDD 2012

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $n=n_{b}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function
$f(n)=\beta * n^{-1.5}$

SpikeM - with periodicity

- Full equation of SpikeM

$$
\begin{array}{cc}
\Delta B(n+1)=\frac{p(n+1)}{\text { Periodicity }} \cdot\left[U(n) \cdot \sum_{t=n_{b}}^{n}(\Delta B(t)+S(t)) \cdot f(n+1-t)+\varepsilon\right] \\
\begin{array}{c}
\text { Bloggers change their } \\
\text { activity over time } \\
\text { (e.g., daily, weekly, } \\
\text { yearly) }
\end{array} & \text { noon } \\
\text { activity } \\
\text { Wayne State, Feb. 2013 }
\end{array}
$$

Details

- Analysis - exponential rise and power-raw fall

Details

- Analysis - exponential rise and power-raw fall

Tail-part forecasts

- SpikeM can capture tail part

"What-if" forecasting

"What-if" forecasting

SpikeM can forecast upcoming spikes

C. Faloutsos (CMU)

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Problem\#3: Scalability -PEGASUS
- Diameter
- Connected components
- Conclusions

Scalability

- Google: $>450,000$ processors in clusters of ~ 2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

Roadmap - Algorithms \& results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	HERE
Conn. Comp	old	HERE
Triangles	done	HERE
Visualization	started	

HADI for diameter estimation R.

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}\left(\mathbf{N}^{* *} \mathbf{2}\right)$ space and up to $\mathrm{O}\left(\mathrm{N}^{*} * 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E ($\sim 10 \mathrm{~B}$)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
-7 degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Wayne State, Feb. 2013
C. Faloutsos (CMU)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Conjecture:
EN
$\{D E$

$\sum \sum B R$

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Wayne State, Feb. 2013

C. Faloutsos (CMU)

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Problem\#3: Scalability -PEGASUS
- Diameter
- Connected components
- Conclusions

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix - vector Multiplication
(iterated)

Example: GIM-V At Work

- Connected Components - 4 observations:

Example: GIM-V At Work

- Connected Components

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Problem\#3: Scalability
\Rightarrow - Conclusions

OVERALL CONCLUSIONS low level:

- Several new patterns (fortification, triangle-laws, conn. components, etc)
- New tools:
- belief propagation, gigaTensor, etc
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS high level

- BIG DATA: Large datasets reveal patterns/ outliers that are invisible otherwise

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

References

- Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, Christos Faloutsos, "Rise and Fall Patterns of Information Diffusion: Model and Implications", KDD'12, pp. 6-14, Beijing, China, August 2012

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info \& 'thanks'

Www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Beutel, Alex

Chau, Polo

Kang, U

McGlohon, Mary

Prakash, Aditya

Papalexakis, Vagelis

Tong, Hanghang

Take-home message

Big data reveal insights that would be invisible otherwise (even to experts)

C. Faloutsos (CMU)

